
Theoretical Computer Science 113 (1993) 23 t-258

Eisevier

231

A true concurrency model of CCS
semantics

Lu Ruqian
Itistiiute qf Mathematics, Academia Sinica. 100080 Beijing, Peoplei Republic of China

Communicated by M. Nivat

Received August 1991

Revised November I991

Abstract

Ruqian, L., A true concurrency model of CCS semantics, Theoretical Computer Science 113 (1993)

23 t-258.

Degano et al. (1989) introduced AC/E systems (augmented C/E systems) to give a true concurrency

semantics to CCS. But the true concurrency was not complete. There was no true concurrency for

recursive agents (like (x).eI le2) and nondeterminant agents (like e, lez +e,le,). Also the concept of

bisimulation has not been transplanted to AC/E systems. This paper defines a complete true

concurrency model of CCS by exploiting the potential concurrency of any CCS agent to its full

strength. It introduces a kind of multilayered Petri nets, called NP/ R nets, to define the processes on

AC/E systems. We also introduced the notion of bisimulation of groups of NP/R nets and proved

that this bisimulation relation can determine the CCS bisimulation uniquely.

1. Introduction

The interleaving semantics of CCS given by Milner [3] is well-known. This

semantics allows the actions of concurrent agents to occur in different orders, but not

“without orders”. Therefore, the interleaving semantics is not considered as a true

concurrent one. Degano et al. [l] used a new kind of net systems, the so-called

contact-free augmented C/E systems (AC/E systems), to give a true concurrent

semantics to CCS. They decomposed a CCS agent into a set of grapes which can act

concurrently. The derivation of a set of grapes corresponds to the firing of an event of

the related AC/E system. Therefore, the concurrency of event firings of AC/E systems

guarantees the concurrency of grapes derivations and thus the concurrency of CCS

Correspondence CO: Lu Ruqian, Institute of Mathematics, Academia Sinica, 100080 Beijing, People’s
Republic of China.

0304-3975/93/$06.00 0 1993--Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82123353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 Lu Ruqian

agent derivations. But their solution was not perfect. According to their approach, the

first step of the derivation of e, 1 e2 + e3 1 e4 or (x). e, I e, (recursive agent) can only be

sequential, not concurrent. Another defect of their approach was the absence of

bisimulation concepts for AC/E systems, the importance of which should not be

underestimated. Without this concept one cannot compare the behaviors of two

AC/E systems and their relation to behaviors of CCS agents. The reason of this

absence may be the fact that the AC/E systems defined by Degano et al. are in general

not contact-free in the usual net-theoretical sense. It lacks a tool (like the occurrence

net) to define processes of such systems. In this paper, we introduce a new kind of Petri

nets, called NP/R nets, to define processes on AC/E systems. We define also the

bisimulation concept for groups of NP/R nets and prove that this bisimulation

relation is necessary and sufficient for the existence of a bisimulation relation between

corresponding CCS agents. We also solve the problem of completely decomposing

CCS agents into sets of concurrent grapes, including those of form e, le, +e31 e4 or

(x).el le,. Thus, we give a new true concurrent semantics to CCS.

2. AC/E systems and NP/R nets

Definition 2.1. Let N = (S, T, F) be a net, M be a subset of S, called a marking. An

event eET is said to be a-enabled under the marking M, if the following condition is

fulfilled:

*e&M & e’G’eu(S-M).

(1)

Definition 2.2. Let N= (S, T, F) be a net, Ml, M2 c S, B G T, and suppose that the

following conditions are fulfilled:

(a) VeeB, e is a-enabled under M 1,

C-4 Vel,e2EB, e, #e2 --f 'eln'e2=e;ne~=(il, (2)

(4 M2=(M1-‘B)uB*. (3)

Then the events in B are said to be concurrently a-enabled under Ml.

Further we se that the marking M2 is reached after the concurrent firing of the

events in B. We call this firing an a-step and denote it by

Ml CB)M, (4)

We also say that B is a step forward from Ml to M2, and at the same time a step
backward from M2 to Ml.

It is called a maximal a-step if there is no B’ with B’ 2 B (B’ contains B properly)

such that the events of B’ can fire concurrently under Ml.

True concurrency model of CCS 233

Definition 2.3. C = (S, T, F, C) is called an extended C/E system ~ an AC/E system for

short ~ if

(1) (S, T, F) is a net;

(2) C is a set of markings with the property that for any two different markings

(called cases henceforth) M1 and M,, there exists a chain of forward and/or backward

steps, which transforms M1 into MZ; and

(3) For each eeT, there exists a case MEC, such that e is a-enabled under M.

Here the concepts “a-enabled” and “a-steps” are used because some pre-conditions

of an event may coincide with some postconditions of the same event, if the net is

nonpure. In that case it is difficult to decide whether the event has already fired.

Example 2.4. The event in Fig. 1 is a-enabled. Its (only) pre-condition coincides with

its post-condition.

Corollary 2.5. Any C/E system is an AC/E system.

Definition 2.6. Let C =(S, T, F, C) be an AC/E system. A triple R = (R [i] =

(Si,7;:,Fi)li=l,2,3,...) . IS called an NP/R net over C (or a NP/R net for short) if the

following conditions are satisfied.

(a) K =(u Si, U T, u Fi) is an occurrence net.

(b) 4 Fi=Ui<jFij,

kfi,<j, FijESiX TjUT,XSj.

(C) VXESiU Ti, let

‘x={yI3jdi, (y, X)EFji},

(d) If S’= u Si, T’= U T, F’= U Fi, then there exists a mapping

p:S’+S, T’+T, F’-+F,

such that Vi, VX, Y~S~U z:

(x, Y)EF’+P((X, ~))=(p(x),p(y))~F>

xzy + p(x)fp(y),

(5)

(7)

(8)

Fig. 1. An AC/E system.

234 Lu Ruqian

Vi, xEK, p(‘x)=‘p(x)Ap(x’)=p(x)‘. (9)

We call R [i] the ith page of R, and S’i, K, Fi the condition set, event set and arc set of

R [i], respectively. Finally, we call l x and x l the preset and postset of x, respectively.

Corollary 2.7. It ~O~~OWS from (8) that for any X~SiU Ti SUCK that P(X)=Y we may use

the notation y [i] (=x).

Example 2.8. In Fig. 2, (a) and (b) are two AC/E systems, and (c) and (d) are two

NP/R nets over them, where c has infinitely many pages.

Definition 2.9. Given an AC/E system C. The sequence ci [Bi)ci+ 1, 1~ i < n, is called

a step sequence of C, where each element of the sequence is an a-step (a step for short).

In the following, we will not differentiate between the terminologies step sequence,

firing sequence, or a run. A successive subsequence of a step sequence is called

a subrun. We denote the set of all event occurrences of the run A with eu(A), and the

ith occurrence of the event e in it with e(i).

Definition 2.10. Given a run A of an AC/E system C. Define the partial order of the

event occurrences in ev(A) as follows. Let A be composed of the step sequence

ci[Bi)ci+,, then:

(1) e, is before e2, or in other words, e2 is after e,, if i< k, elEBi, ezEBk.

(2) there is no other order among the event occurrences besides the one mentioned

above.

Corollary 2.11. The order given above is a partial order.

Definition 2.12. Let R be an NP/R net. Define relations <, rli and rco as follows.

(a) If the elements x[i], y [j] of R, when considered as elements of the correspond-

ing occurrence net (see Definition 2.6(a)), satisfy

XC4 <yCjl,

then the following is also true:

XCil < YCjl. (10)

(b) Vi-ck, x[i] <y[k]. (11)

(4 Vi, j, k, x[il < y[jl A y[jl < z[kl * xCi1 -C zCk1. (12)

(4 Vi, j, if x [i] < y [j], then one of (a)-(c) must be valid. (13)

(e) Vi,j, x[i]=y[j] v x[i] <y[j] v y[j]ix[i] - xCi1rliyC.A (14)

(f) Vi,j, -x[i] <y[j] A -y[j] <x[i] 0 x[ilrcoyCjl (15)

True concurrency model of CCS 235

Theorem 2.13. (1) x[i] < y[i] * x[i] <y[i],

(2) relation < is transitive,

(3) relation < is anti-symmetric,

(4) therefore, < is a partial order.

Definition 2.14. Let R be a NP/R net, Q C_ (U Si)U (u 7;), then:

(1) Q is called an r-line, if Vx, yeQ, there is always x rli y, and Vz$Q, 3teQ, mz rli t;

(2) Q is called an r-slice, if vx,y~Q, there is always xrco y, and Vz$Q, i’tEQ,

mzrcot.

Definition 2.15. Let R={R[i]=(Si, Ti,Fi)Ji=1,2,3,...} be an NP/R net over the

AC/E system C = (S, T, F, C). Let A be a run of C. R is called an exact description of A,

if the following conditions are satisfied:

(1) There is a bi-unique mapping /I:

fi:ev(A)+UT,. (16)

(2) The mapping p of Definition 2.6 has the following properties:

(2.1) p is an internal mapping on each r-slice of R.

(2.2) Let a be a single-valued mapping which maps each event occurrence a(i) of

eu(A) to the event a of C, then we have

(17)

(3) For tl, t2Eev(A), t, is behind tl if and only if fi(tl) < /i’(t2).

This mapping p is called a process of C.

Theorem 2.16. Let C = (S, T, F, C) be an AC/E system, then for each run A of C, there

must be an NPIR net R over C, such that R is an exact description of A.

Proof. Let A be a step sequence B1, B2, B3, We construct the corresponding NP/R

net, starting from B1.

Step 1. Assume that {er, er} is the set of events firing concurrently in B1. Let

‘ei={air ,..., aini}, e;={bi, ,...) bi,,}, 1 <iid. (18)

Construct new objects tl, . . , tl. For each i, construct new objects xir, xi”,;

Yil, . . .9 Yim;. Let

Xi={Xil~~~~~Xini)~ yi={Yil~~~~~Yim,}~ 1 dibl. (19)

Define a mapping p:

v&j, P(xij)=aij, P(Yij)=bij,

P(ti)=ei, P((& Y))=(P(x)? P(Y)).
(20)

236 Lu Ruqian

Call the ti’s, xij’s and yij’s separable objects, and their p-mappings ei’s, aij’s, bij’s

original objects. Obviously, p is single-valued. Further let

Frr=jfJ ij {(Xij,fi)}, F12= b 5 (tti9 Yij)}; (21)
i=l j=l i=l j=l

Sl=Xl= (j Xi, Yl= ~ Yi, Tl= ~ {ti}, Fl=FllUF12; (22)
i= 1 i=l i=l

Step II. Assume that we have already constructed R [11, . . . , R[k] for the steps

B 1, . . . , Bk. Differentiate between two different cases.

Case I: The number of steps of A is greater than k. Let

R[i]=(Si, T,,Fi), 1 <i<k.

At first, we construct a new page. Let

y(k)= (j yi, Y’=p(Y(k)).
i=l

Note that above we have extended the mapping p, in such a way that it maps also

sets of objects to sets of objects.

Furthermore, let the events that fire concurrently in BK + 1 be fi , . . . ,fh

•~=(Uil, ...) ain,), ff=(bilt...tbim~), l<i<h. (24)

Let

y”= (1 (j ‘J n Y’.
i=l

(251

If Y”=@, then construct Xkfr, Yk+l, &+I, Tk+i, Fk+r and

R[k+l]=(&+r, Tk+l, Fk+l)

in the same way as we constructed R [11.

If Y” # 8, let Y”‘= { ylp(y)~ Y”}. Then

Vi, Ofi’- Y”={Uil, ...) ai,,}, O<gibni. (26)

Generate new objects ul, . . . , u,,. For each i, generate new objects xii, . ..,Xigi;

Yil,Yim.. Let

xi={xil~~~~~xig,}~ yi={Yi19..~,Yimi}, 1 <i<h; (271

_ _
S k+l=Xk+lu yk, T kfl =it)l rut>;

True concurrency model of CCS 231

F12= ,j {(Y2”i)lYEyk9 P(Y)E’.h),
i=t

(29)

Now, for 1 <i < k, modify the sets of objects constructed above as follows:

Fi=U((X,y)lXE~iilnY”‘, yETk+l}r

Fi:=FiuFi,

ri := Fi _ Y”‘,

(30)

(31)

Note that := is the assignment symbol. It just replaces the content of the left-hand side

by the right-hand side.

Extend the mapping p as follows:

Vi, 1 <i,<h: p(Xij)=Uij, 1 bj~gi,

P(.Yij)=bij, 1 dj<W,

Pt”i)=_Af

Case 2: The number of steps of A is k. Let

s - k+l = yk, R[Ik+ll=(Sk+l, 8, 8).

In this way, we get a (finitely or infinitely) multi-layered net on C.

(32)

(33)

R={R[i]=(Si,Ti,Fi)(i=1,2,3 ,...).

We prove that R is an NP/R net over C.

(i) In order to prove that K, =(SO, TO, F,) is an occurrence net, where

sO = u si, T,=lJ T, FO = U Fi, (34)

we define the union of two occurrence nets as follows:

(K’=(S’,T’,F’))u(K”=(S”,T”,F”))

=(K”‘=(S’uS”,T’uT”,F’uF”))

The proof proceeds inductively. It is easy to see that

(35)

(36) Vi,j, I’XijI=IY~jI=O, IX~jI=l’yijI=l

238 Lu Ruqian

was valid in the first step when constructing R[l]. Therefore R[l] is an occurrence

net (see e.g. [S, Section 3.21).

Now assume that Rck)=R[l]uR[2] u ... u R[k] is an occurrence net. Our asser-

tion is already proved if the run A has only k steps. Otherwise, construct

RCk+ l]=(Sk+l, T,, 1, Fk+ 1) by using the method given above. From the way we

constructed R [k + l] we know that R [k + l] remains an occurrence net before the

assignment formulas of (30). It has no common elements with Rck’, i.e.

(S (k)UT(k))fT(Sk+,UT,+,)=@. (37)

In the assignment of (30) and thereafter, the modification to R[k+ l] is only the

addition of some arcs from certain condition elements x (satisfying x* = 8) of Rck) to

certain event elements y (satisfying ‘y =@) of R[k+ 11. Therefore, if we construct

(38)

then all its condition elements x still satisfy /*xJ < 1, Ix* I< 1, and there is no cycle in it.

That means Rck+ ‘) is still an occurrence net.

(ii) The validity of (b)-(d) of Definition 2.6 is easy to prove.

(iii) In order to see the existence of the mapping p we need only to note that the

mapping p produced when constructing R is precisely the mapping p required in

Definition 2.6. The validity of requirements (8) and (9) can be checked in a straight-

forward way.

Thus we have shown that R is really a NP/R net over C. Now we prove that it is

also an exact simulation of the run A (see Definition 2.15) as follows:

(i) From the way we constructed R we know, that there is an one-to-one corres-

pondence between the objects of U K and the event occurrences of A = { Bj), where Bj

are the steps of A. This correspondence is the mapping fl required in Definition 2.15.

(ii) To prove that p is injective on each r-slice of R we assume that Q is such

a r-slice, x [i], y [j] EQ, x [i] # y [j]. Then i =j follows from the definition of partial

order of NP/R nets.

From (8) of Definition 2.16 we know that

p(xCil) Z~(vCil). (39)

This shows that p is injective on Q.

(iii) To prove (17) we assume that e(j) (the jth occurrence of the event e in A) is in

the ith step Bi of A. Then there is a unique element t=P(e(j)) corresponding to it,

which is generated as a new object when constructing R [i]. It is p(t) = e according to

the definition of p. This is consistent with the fact x(e(j))=e.

(iv) To prove property (3) of Definition 2.15, assume that tl,t2Eev(A) and t2 is

behind tr. From Definition 2.10 we know 3Bi, Bj, tl~Bi, tzEBj, i< j. We know also

that P(tl) and /I(f2) are objects of R[i] and R [j] from the way we constructed R.
Thus /?(tr) < P(tz) by (11) of Definition 2.12.

True concurrency model of CCS 239

(a) (b)

R [II

R 121

R 01

XL21 yr21 zr21

~-~-.--w~ R[21

I I

Fig. 2. Two NP/R nets.

The second part of the proof (validation of the other direction of the assertion) is

similar to the first part and thus omitted here. 0

Example 2.17. The NP/R net (c) given in Fig. 2 is an exact simulation of a run of the

AC/E system in (a). Note that (c) was constructed using the algorithm given in

Theorem 2.16. The NP/R net (d) of the same figure is an exact simulation of a run of

the AC/E system in (b). But (d) was not constructed in the way (c) was.

Corollary 2.18. DifSerent NP/R nets may be exact simulations of the same run of the

same AC/E system.

3. The partial derivation semantics of CCS

In the following we reproduce briefly the results about CCS semantics given by

Degano et al. based on AC/E systems.

A = { c(, /I, y, . } is called the action set of CCS, 6= { 6, MEA} its anti-action set.

Actions of A u 1 are called visible ones; T is the (only) invisible action, r# A u 2. The

agents of CCS are defined with the following syntax:

e ::= x) nil) cc.e 1 e\cc 1 e[s] 1 el+e, 1 elle2) (x).e (40)

240 Lu Ruqian

and the following derivation rules:

cc.e--cc+e,

e,--+ee, implies er\fi-cc-e,\/?, where p$(cz,c(},

e,---+e2 implies e,[s]--s(C()+e2[s],

e,--+eez implies e,+e-Rae2 and e+er--+e2,

e,-a-e, implies e,Ie-cc-e2/e and eler--a--ele2,

e,--a-+-t2 and e;--&+ei imply e,Ie;-r+e21e;,

e,[(x).e,/x]-cz+e2 implies (x).e,--see,.

The grapes are defined by Degano et al. [l] with the following syntax:

g ::= nil 1 51.e I e+e I (x).e I idle I elid I e\a I e[s]

and the following decomposition rules:

dec(nil) = {nil},

dec(a.e)=(cc.e},

dec(e\cc)=dec(e)\a,

dec(e[s])=dec(e)[s],

dec(e, Se*)= {el +e2},

dec(e,Ie2)=dec(el)liduidIdec(e2),

dec((x).e)={(x).e}.

(414

(41’4

(41o)

(41d)

(4W

(41f)

(41g)

(42)

(43a)

(43b)

(43o)

(43d)

(43e)

(43f)

(43g)

The partial order semantics of CCS is defined by the following derivation rules for

grapes:

(rx.e}-cc+dec(e), (44a)

G1-~-+G2 implies G,\fi-cc+G,\p, /I${x,~?}, (44b)

G1-cl+G2 implies G,[s]-s(a)+G2[s], (44c)

(dec(er)-Gg)-cz+GGz implies

{e,+e}--z+GG,uG, and {e+e,}-a+G2uG,, (44d)

Gr-cc-G2 implies GIlid--a-tG21id and idIG1-cx+idIG2, (44e)

Cl-cc-+G2 and G3-C(+Gq imply

GIIiduidIG,-z~GZIiduidIGq, (44f)

(dec(e,[(x).e,/x]-G,)-a+G2 implies {(x).e,}-cc+G2uG3, (44g)

True concurrency model of CCS 241

where Gi, GZ, G3, G4 are sets of grapes. A set G of grapes is called complete, if there

exists an agent e such that dec(e) = G. It was proved [l] that the function dec defines

an one-to-one correspondence between agents and complete sets of grapes. It was also

proved that if G-a + G2 is a derivation of grapes, then there must be a set G3 of

grapes, such that G1 n G3 =8 and G1 u G3 is a complete set of grapes. Furthermore, we

must have Gz n G3 =8 and G2 u G3 is also a complete set of grapes.

The system Cccs = (S, T, F, C) is defined as follows:

l S= the set of all grapes,

l T= the set of all derivations of grapes,

. F={(g,,Gi-a+Gz), (G1-~+G,,g,)Ig,EG,, gzEGz> G,-@+G~ET},
l C = the set of all complete sets of grapes.

It was proved that Cccs is an AC/E system.

4. A true concurrency semantics for CCS

In order to solve the problems which have not been solved in [l], we extend the

syntax of CCS a little bit and then give its operational semantics in the form of

derivation rules.

Definition 4.1. The CCS syntax is extended as follows:

e ::= x 1 nil 1 u.e 1 e\cx(a) I e[s] I el+e2 I e,le, 1 e,wherex=e,,

(45)

where a is an arbitrary identifier.

Let Hi, Hi, HI’, i=O, 1, be multisets (i.e. bags) with the elements of Audu{s} as

their elements. V(Hi) is the multiset of all visible actions in Hi, whereas ino(Hi) is the

multiset of all invisible actions (t) of Hi. Then we have the following derivation rules

cr.e-{acc)+e,

e, -Ho -+ ez implies

(464

e,\cr(a)-(Ho-{sc,i})-,e,\a(u), for all c(.

where Ho - { a, c(} means “delete all occurrences of c(and rX from Ho”,

(46’4

e,-H,+ez implies e,[s]-s(Ho)+ez[s], (46~)

el-Ho--+e2 implies el+e-Ho-e2 and e+e,-Ho-+e2, (464

e,-HH,+eZ implies elIe-HH,-+e21e and elel--Ho+e/ez, We)

242 Lu Ruqian

el--H1-+ez and e3-H2-+e4, c~{fl,P} imply

e,Ie-H,+e,le, and el\cc(a)le3\P(a)-Hk-ez\cc(a)le4\B(a),

e, [(ez wherex=e,)/x] -Ho-e3 wherex=e,

implies (e,wherex=e2)-HO-+e3wherex=e2.

Here we have used the following notations:

H,=H;UH;UinU(H,)UinU(H,)Uinv(lH3I),

Hk=H;‘UH’;UinU(H,)UinU(H,)UinU(lHjl),

H;=u(H,)-H,, H;=u(H,)-H,,

H';=H;-{a,E}, H';=H;-(a,ii},

H3 su(Hl)n4H2),

Wf 1

W&s)

where the intersection of two multisets is defined as the maximal sub-multiset which is

contained in both multisets. 1 HiI is the number of elements contained in multiset Hi,
inU(lHil) is the multiset of IHil T’S. Hi={crIcr~Hi}.

Note that this concurrency semantics of CCS is different from both Milner’s and

that of Degano et al. It will contain the Milner semantics as its proper subset by

adding the following two rules.

(a) Let e, where x = e 1 be equal to (x). e, in the original syntax.

(b) Let the agents in which the identifiers “a” in operations \~(a) are all different

from each other equal to those agents in the original syntax, which have the same form

except for the identifiers which do not exist.

As to the derivation rules, note that the rules (46b)-(46e) and (46g) will be the same

as those in Milner’s semantics if I Ho I = 1. The derivation (46f) will be the same as that

in Milner’s semantics if I HI I = I H2 I= 1, o(H,) = u(Hz) # @. Rule (46a) as it stands is

also valid for Milner’s semantics.

Example 4.2. Let

e, =(a.nillp.nil)l((a.nilly.nil)l(w.nillcp.nil)),

e2=((6.nillB.nil)l(y.nil1~..il))l(o.nilIICI.nil).

It follows from (46f) that

e,-{t,B,‘Y)-‘(nillnil)l((nilJnil)l(o.nillcp.nil)),

e2-{z,p,y}~((nillnil)l(nillnil))l(o.nilI~.nil)

True concurrency model of CCS 243

implies

e,Ie,-{2,z,B,B,~}~((nillnil)l((nillnil)l(W.nillcp.nil)))

I(((nillnil)l(nillniZ))I(W.nill$.nil))

where

k=(Y) c({P,Y}n{B,Y})={P,Y},

Hi ={Bl, Hi= {iq,

inv(H,)=inu(H2)=inu(lH31)={z},

H4={V,B,iG).

Definition 4.3. A relation SB E E x E, where E is the set of all agents, is called

a bisimulation if the following conditions are fulfilled:

(a) if (e,,e2)~SB, el-H+e;, then there exists e;, such that e2-H+ee;, and

(e;, e;kSB,
(b) (eI,e2)ESB o (e,,e,)ESB where H is a multiset of actions.

Theorem 4.4. For each agent e there exists another agent N(e) such that

N(e)= f fi eij and (N(e),e)ESB,
i=l j=l

where

(49)

(the n-ary product nl= 1 ei is appropriately composed of binary products (e’l e”) by using

parentheses. Each eij takes one of the following forms:

iiI xi.e:\Ai where xi=ey or nil,

where each Cli is a (visible or invisible) action. ei and e:l take the form (49). Ai is a set of
actions with identij‘ier parameters {c(~ (a,), . . . , q(aJ}, Vi #j, Mi # aj. Ai may be empty.
To avoid details, the naming action e[s] is not considered here.

Proof. We use the following transformation rules to prove this theorem:

(e~~+e~2)l(e2l+e22)=ellle21+e,,le22+e,2le2l+el2le22,

wherex=e” = i$I (e;wherex=e”),

(504

(job)

244 Lu Ruqian

(1

f) e; where xj=ey = i (eiwherexi=e;‘),
i=l i=l

e;wherex:=ey = e: where e: does not contain xi,

(ejwherex;=ej’)\Ai = (ei\/&)wherex:=ej’,

c~\Ai\A~=ei\(/tiuA:(), where

AI’={~(u)~~~(u)EA:,N~~#u, such that a(b)EAi or tY(b)EAi},

(Cei)\A=C(ei\A),

(nei)\A=n(ei\ia(c)Ia(a)EA})

where c is a completely new identifier.

nil \ A = nil.

To avoid going too far into the details, we assume here that each recursive agent has

only one agent variable. Different recursive agents use different identifiers to denote

their agent variables. We assume also that there is no nested recursive agent.

Using induction it is easy to prove that each agent can be transformed into the form

(49) by using the transformation rules given above.

Now we will prove that each of these transformations keeps the bisimulation

relation unchanged.

Transformation (50a). Let

e=(e11+e12)l(e2r +c22),

f=el,/e,,+e,,Iezz+elzlezl+elzIe22.

Given a derivation e-H +e’, let (see Definition 4.1):

H=HluH2, HI =HII uH12,

H2=H3uH4, H~=H~I uHu;

el =ell +e12, e2=e21 +e22

where H 1 1 and HI2 are the sets of visible actions executed by eI and e2, respectively.

Hbl and Hb2 are the sets of invisible actions executed by e, and e2, respectively. H3 is

the set of invisible actions produced during the communication between e, and e2. All

the sets mentioned above are multisets.

W.l.o.g., assume that HII and HI2 are the sets of visible actions produced by

cl1 and e2r respectively. Hhl and Hd2 are the sets of invisible actions produced by

ell and ezl respectively. H3 is the set of invisible actions produced during the

communication between eI 1 and e2r. That means

cl1 le 21-H+e;llel;l (=e’).

True concurrency model of CCS

From (46d) follows the existence of derivation f-H --f e’. On

derivation f-H +f’ is given, we can also prove the existence

derivation e-H +y in the same way. That means (e,f)ESB.

Transformation (50b). Let

245

the other hand, if any

of the corresponding

e=\ z1 ei)wherex=e”, -f=zl (eiwherex=e”).

Consider a derivation

e-H+e’wherex=e”. (51)

It follows from (46g), that derivation (51) can only occur when there is another

derivation of the following form:

()
i$1 ei C(e”w erex=e”)/x]-H+e’wherex=e”. h (52)

This can be rewritten as follows:

n

c ei[(e”wherex=e”)/x]-H+e’wherex=e”.
i=l

Therefore there exists a j, such that

e>[(e”wherex=e”)/x]-H-+e’wherex=e”.

It follows again from (46g) that

(eiwherex=e”)-H+e’wherex=e”.

Thus we have

ii1 (eiwherex=e”)-H-+e’wherex=e”.

On the other hand, each derivation f-H-f’ where x =f” implies also the existence of

a derivation e - H +f’ where x =f”. This means (e,f)ESB.

Transformation (50~). The proof is similar to that of Transformation (50b).

Transformation (50d). Proof is obvious.

Transformation (50e). Proof is obvious.

Transformation (50f). Let

e=e,\Ai\Az, (53)

f=e,\A, uA3 (54)

where

A3 = {~(a) I dakA,, - 3b # a, such that Ada, or CLEAN}.

246

Consider the derivation

e-H+e’\A,\A2.

Lu Ruqian

(55)

It follows from (46f) that the following derivation is valid:

e,-H-e’, V’~(~)EA,UA,, a#HuI?.

Since(A,uA3)E(A1uAZ)weknowthatV’a(a)EA,uA,,cr4Hu~.Thusthevalidity

of the following derivation is assured by (46f):

f-H+e’\(A,uA,). (56)

Note that the forms of (55) and (56) are similar to those of (53) and (54), respectively.

Therefore we can repeat the reasoning described above and prove that for all n,

e(“)-H+e:“)\A1\A2

implies

f(“)-H-e :“‘\(A, WA,)

where et”), f(“), ey’ are the nth derivations of e, f and e, respectively.

On the other hand, any

f(“)-H+ey’\(A,uA,)

implies

e(“-H+e:“‘\A1\A2

because { c(130, a(U)E A2 or E(a)~A,}={ccIZla, cc(a)~A~ or c%(a)~A,}. Hence

(e,fWB.
Transformation (50g). Proof is obvious.

Transformation (50h). To shorten the proof, we consider only the cases of binary

products and 1 A I= 1. Let

e=(eil+)\a(a), (57)

f=(ei\a(c))l(e,\cc(c)) (58)

where c is a new identifier. Assume

e-H4+e’\cc(a) (59)

then the following must hold:

el)e3-H4-+e’, a#H4u&.

This is only possible when

e1 -Hi -te2, ez-H,-+e,, e2 1 e4 = e’.

It then follows that

True concurrency model of CCS 247

For the meaning of HI, Hz, H4 see (46f). Note that the only difference between H4 and
Hi is that H4 may have CI or cl which do not exist in Hi. But in our case we have
a$H,u i?i4, therefore the derivation above can be rewritten as follows:

(er\~(a))l(e,\~(a))-H,-t(e,\a(a))l(e,\@(a))

This is valid and does not depend on the choice of a. Therefore we have

f-K+fl, f’=(e2\cQc))l(e4\a(c)). (60)

By comparing (57), (58) with (59), (60) we know that the same way of reasoning can be
applied to e’ and f’, and e’“‘, f(“) f or arbitrary n. On the other hand, if

f-K -*.I’ (=(e2\a(c))l(cd\cGc)))

is given, then it follows from (46f) that

e,--H,+e,, +-Hz+e4, elle~-H4-*e21e4.

This implies:

(eIle3)\a(a)-(H4-{% cc})-(ezleJ\~(a),

(elle3)\~(a)-Hk-(e2le4)\cc(a).

This way of reasoning can be applied to any e’“’ and f(“) for arbitrary n, thus
(e,f)ESB. q

Discussion. The key point of transforming any agent e into N(e) (sometimes we call it
the normal form of e, although N(e) is not uniquely determined by e) is not to lose the
global information of the agent, especially for recursive agents “e where x = e” and
masked agents “e\A”. See (b), (c) and (h) of the following example.

Example 4.5.

(a) ~~~I~2+~~l~4~l~~5l~6+~7l~8~=~~~I~2~l~~~I~6~f~~~I~2~l~~-iI~~~

+(e3le4)l(e~le~)+(e3le4)(e7le~).

(b) (a.x+fi.xwherex=cc.x+/?.x)=(cr.xwherex=M.x+/?.x)

+(j?.xwherex=ff.x+P.x)

(c) (C(.xIfi.xwherex=cc.x+fi.x)

=(a.xwherex=cr.x+fl.x)l(fl.xwherex=cc.x+fl.x)

(d) (cr.fi.nilwherex=y.x)=a./I.nil

(e) (~.xwherex=~.x)\{~(u)}=(a.x\/?(u))wherex=j3.x

(f) e\{~(~),B(~))\(~(~),~(~))=e\(~(~),B(~),~(~))

248 Lu Ruqian

(8) (rx.nil+~.nil)\{cr(b)}= cLnil\{a(b)}+p.nil\{a(b)}

(h) ((~.~lillcl.nil)\{a(b)}Icc.nil)\{cx(a)}

=(a.nil\{C((c)})I(Ei.nil\{a(c)})l(cc.nil\{a(a)})

Definition 4.6. All agents in normal form (or their grapes) can be decomposed into sets

of grapes (or their sub-grapes) in the following way:

dec(nil)= { nil}, (614

dec(a.e)=(a.e}, (61b)

dec(e\a(a))=dec(e)\a(u), (614

dec(e[s])=dec(e)[s], (614

deC(Cei)=CdeC(ei), We)

idldec(ej+l)l fi id
i=j+2

(61~)

fi idldec(e)l fi id , (61g)

i=l j=k

where the products of id do not exist if l> m or k > m (but always min (I, k) d m).

dec(eI wherex=e2)={dec(e1)wherex=e2). (6lh)

Note that e, e, and e2 can be any agents. In rule (61h), e, can be an agent or a grape.

Here we allow the operands of the sum operator “+” and the product operator “I” to

be sets of grapes, i.e.

Remember that each product of agents and/or grapes must be combined into

binary products appropriately. Further we define:

{Gwherex=e}={gwherex=eIgeGj.

Definition 4.7, The concurrent derivation rules of grapes are the following:

{cc.e}-cc+dec(e), (624

G1-a+G2 implies G1\P(a)-~+Gz\P(a), fl$(a,E}, (62b)

Gr-a+G2 implies G,[s]-s(a)-+Gz[s] (62~)

(dec(eI)-G,)-a+G2 implies (dec(e,)-G,)+dec(e2)-a-tG2 and

dec(e,)+(dec(e,)-Cl)--a-+GZ, (624

True concurrency model of CCS

G,-a-+G2 implies G1lid-a+Gllid and

idIG1-cc+idIG2,

G,-a-G2 and G3-X-+Gq imply

G,(id~idIG,--zG~IiduidIG~

G,\cc(a)~iduidIG,\~(a)-r

~G,\cr(a)/iduidIGq\B(a), ~+,fl}>

Gi - CI + Gz implies

G1 wherex=e-x-+dec(G,[e/x])wherex=e,

provided that Gi does not contain something like “where x=el”.

249

We)

Example 4.8.

dec(elIez+e,Ieq)=dec(e,Iez)+dec(e31e,)

=ie,/id,idlez)+ie3Jid,id/e,}

={e,Iid+ 3j’d, J.d e z e I + +idIe4,idIe,+e31id,idle,+idIe,}

provided that Vi, dec(ei) = ei.

Example 4.9.

dec((a.xI~.x+r.xl6.x)wherex=cc.xl/?.x+y.xl6.x

=dec(z.xI~.x+r.xIG.x)wherex=~.xIfi.x+y.x(6.x

={r.xIid+y.xIid,cc.xIid+id(6.x,idlp.x+y.x(id,

idj/3.x+idl6.x} wherex=a.xlp.x+v.xl6.x

=(cc.xlid+y.xlidwherex=cc.xlp.x+y.x)6.x,

cc.xjid+idl6.xwherex=r.xI~.x+y.xlJ.x,

id(/?.x+y.xIidwherex=cc.xI~.x+y.xl6.x,

idlj?.x+idj6.xwherex=a.xlj3.x+y.xl6.x}.

Example 4.10. It follows from rules (62d), (62e) and Example 4.8 that e, --CI + e;

implies

Example 4.11. It follows from rules (62d), (62e), (62g) and Example 4.9 that:

{a.x(id+y.x\idwherex=st.x(p.x+y.xJ6.x,

a.x~id+id~6.xwherex=~.x~~.x+~.x~6.x}-~

+dec(a.xIp.x+r.xl6.x)lidwherex=cr.x)/3.x+~.xl6.x.

250 Lu Ruqian

The representation of a CCS agent by an AC/E system is not perfect. In fact, the
information contained in it is not complete, there is no initial case (marking) in an
AC/E system. In the following we give a more exact way of representing an agent.

Definition 4.12. If C = (S, T, F, C) is an AC/E system, then C1 = (S, T, F, C, M) is called
an AC/EN system, where MEC is called the initial marking of Ci. The firing rules of
AC/EN systems are the same as those of AC/E systems.

Definition 4.13. An AC/EN system (S, T, F, C, M) is called reachable, if any case of
C is reachable by foward firing, starting from the initial marking.

Definition 4.14. A set G of grapes is called a direct unfolding of an agent e, if G = dec(e).
G is called a unfolding of e if
l G is a direct unfolding of e, or
l there exists a unfolding G’ of e and a derivation:

(G’-G”-c(+(G-G”)

where G” is a set of grapes, GL is an action of CCS.
A grape g is called a direct descendent of an agent e, if g is an element of dec(e). g is

called a descendent of e, if g is an element of some unfolding of e.

Definition 4.15. The net-representation of an agent e is an AC/EN system Z(e)=
(S, T, F, C, M), constructed as follows:

M=dec(e), (634

C = {a 1 a is an unfolding of e}, (63b)

S = {b 1 b is a descendent of e}, (63~)

T={(G’-G”)-H+(G-G”)IG’ and G are both unfoldings of e}, (63d)

F=((x,y)Ix@G’-G”)}u{(y,z)~z~(G-G”)}, We)

where ycT, and y takes the form (G’-G”)-H-t(G-G”).

It is easy to prove the following theorem.

Theorem 4.16. Z(e)=(S, T, F, C, M) as it is constructed in Definition 4.15 is really an
AC/EN system.

Example 4.17. Reconsider Example 4.8 with e, = a. nil, e2 = /?. nil, e3 = y .nil, e4 = 6. nil.
Let a, b, c, d denote the four grapes in dec(e, 1 e, + e3 1 e4) in the order as it was given
there. Then C(e) is shown in Fig. 3, where the simplified notations CI, /I, y, 6 denote the
four events {a, b) - c(--) {nil 1 id}, etc.

True concurrency model of CCS 251

a 6

nil 1 id id 1 nil

Fig. 3

Example 4.18. Fig. 3 can also be understood as the net-representation of the agent

e in Example 4.9, if we give a new explanation to it. Namely, let e = CI. x 1 p. x + y . x 16. x.

Let a, b,c, d denote the four grapes of dec(e). Let cc,/?, y, 6 denote the four grape

derivations (one of which was shown in Example 4.11). Rename the elements nil 1 id
and id I nil in Fig. 3 as e 1 id where x = e and id I e where x = e. Then Fig. 3 contains all

possible unfoldings of Example 4.9 for the “first step”.

5. Bisimulation and semantical equivalence

Definition 5.1. Let R and R’ be NP/R nets. Their occurrence net representations (see

Definition 2.6(a)) are:

K=(S, T,F), K’=(S’, T’, F’).

We say that R is t-isomorphic to R’, if there is a mapping

@: T-+T’

such that

@ is a bi-unique mapping, (64a)

@(a[i])=b[j] + Va[k], 3m, @(a[k])=b[m],

u[i] < b[j] * @(aCil) <@(b[jl).

Wb)

(64~)

Condition (64b) guarantees that if two elements x, y of a NP/R net R correspond to

the same element of the underlying AC/EN system, and if R is t-isomorphic to R’, then

the mappings x’, y’ of x,y in R’ correspond also to the same event of its underlying

AC/EN system. Condition (64~) keeps the partial order unchanged.

252 Lu Ruqian

Definition 5.2. Let e1 and e2 be two agents. RI and R2 are NP/R nets over Z(el) and

X(e2), respectively. We say that RI is b-isomorphic to RZ, if we change (64b) as follows:

@ maps the event G1 -IX + Gz of R, to an event G3 - CI + G, of R,.
(64b’)

Definition 5.3. Let R=(R[i]=(Si,T,,Fi)Ii=l,2,...) be a NP/R net, then

R[i] @ n=(S, T,F) (65)

where

S={X[i+n] IX[i]~Si}, T={x[i+n]Ix[i]ETi},

R@n={R[i]@nli=l,2,...}.

Definition 5.4. Let R={R[i]li=1,2,...,n} and R’=(R’[i]li=1,2,3,...} be two

NP/R nets over the same AC/EN system C. We define the concatenation R” of R and

R’ as follows.

Let

Vi<n, R”[i]=R[i],

Vi74 R”[i]=R’[i-n] on. (66)

Modify R” as follows. If

K=(S, T,F), K’=(S’, T’,F’)

are the occurrence net representations of R and R’ (see Definition 2.6), respectively,

then the following is true: Whenever there is a [i] ES, a [j] ES’, and there is no k > i

such that a[k]~S, and there is no m<j, such that a[m]~S’, we can always (but not

necessarily) delete a[j+ n] from R”, and replace the set {(a [j + n], y)} by the set

C(aCil,y)).
R”, as modified above, is also a NP/R net over C. It is called the concatenation of

R and R’. We call R a predecessor of R’, and R’ a successor of R.

Definition 5.5. Let R be a NP/R net. Denote the set of all predecessors of R with

PRED(R), and the set of all successors of R with SUC(R). Note that either of these

may be empty, and SUC(R) is only defined when R is finite.

Let PRS, and PRS2 be the sets of all NP/R nets over the two AC/EN systems C1

and C2, respectively. The relation

True concurrency model of CCS 253

is called the b-equivalent relation, or bisimulation, if

(a) for (PR1, PR,)gBS the following holds

l VR, EPR,, RI has finitely many pages,

l ~R,EPR,, R2 has finitely many pages,

a R, is b-isomorphic to RZ, and

l (SUC(R,), SUC(RZ))~BS; and

(b) (PR,, PR,)EBS implies (PR,, PR,)EBS.

Definition 5.6. Let C be an AC/EN system with M as its initial marking. The proper

set of NP/R nets of C consists of all those NP/R nets which are exact simulations of

some runs starting from M.

Theorem 5.7. Let e, and e2 be two CCS agents in normal form. Let Z(e,) and I(e,) be
the corresponding AC/EN systems. Then (e,,e*)ESB if and only if(PR,, PR,)EBS,

where PR, and PR2 are the proper sets of NP/R nets of Z(e,) and Z(e,).

In order to prove this, we need the following lemma.

Lemma 5.8. Let e be an agent in normal form, Z(e) the corresponding AC/ EN system
(S, T, F, C, M). Then there is a one-to-one correspondence between the derivation

sequences of e:

ei-Hi+ei+l, 1 <i<n, e=e,

and the firing sequences of C (e):

MiCBi)Mi+l, l,<idn, M=M1

where Bi is the step transforming Mi into Mi+ 1.

Proof. First, we prove the one-to-one correspondence between the derivations of

e (one step derivation) and the firings of Z(e) (one step run). Let

e= jJ fi eij

i=l j=l

where each eij takes one of the following two forms:

k$, gk.e;\A,wherexk=e; or nil.

Case 1. n= 1, i.e.

n,
e= n eij.

j=l

254 Lu Ruqian

n, =m, differentiate two

Case 1.1. m= 1, i.e.

P

e= 1 Nk.e,\A,wherex,=e[.
k=l

There is no need to consider the case where e = nil, because in that case there will be

no action at all.

Clearly, dec(e)=e. From (61a) and (61d) in Definition 4.6 we know that the event of

Z(e), which takes part in its first firing, must be one of the following:

e-ak~deC(ek[e;/Xk])WhereXk=e~\A, and CI,&!Ak

This shows its one-to-one correspondence to the derivations of e.

Case 1.2. m> 1. Let

e= fi ej-H+e’,
j= 1

then each ej can take part in this derivation in one of the following three ways:

l ej produces no action at all,

l ej produces an action cr~H,
l ej communicates with another ek and produces an action TEH.

Now consider Z(e). Let

k-l m

dec(e)={gkIk=l,...,m}, gk= n idlekl n id.
j=l j=k+l

It follows from (62e) and (62f) in Definition 4.7, that each gk can take part in the

firing of C(e) in one of the following three ways:

0 gk is not a condition of any firing event;

l for some ~1, gk-a+g; fires independently (we call it Simply ak);

l gk and some g,,, h fk, are both condition elements of the following firing event:

(we call it simply rkh).

These gk’s are different from each other. That means that in case j # k, j # 1, h # k,
h # I, the events ozk and clj of C(e) have no common condition elements. The same

conclusion is true for uk and t jh, or rjh and rk’.

It follows from (62e) and (62f) that

k-l

g;= n idle;1 fi id.
j=l j=k+l

Therefore, we have

Vh # k, Vxq;, yEgi,, x # y

because the numbers of id on the left and right sides of e; and ej, are different.

True concurrency model of CCS 255

Note that both gk and g; are combined appropriately into binary products using

parentheses. This means that the events cxk, T h’, etc. can fire concurrently in the sense of

Definition 2.2. Thus we have shown the one-to-one correspondence between the

event firings of C(e) and the derivation of e.

Case 2. n> 1.

Case 2.1. Vi, ni = 1. This case is equivalent to Case 1.1.

Case 2.2. 3, ni> 1. Let

e= i ei,
n,

f?i= JJ f?ij.

i=l j=l

Then any action of e must be produced by some ci. W.1.o.g. assume ni> 1. Let US recall

Case 1.2. Let

i-i
Gij= 1 deC(eh)i- (gij} -k i dec(eh)

h=l h=i+l

where gijEdec(ei):

j-l

gij= n id/eijI fi id.

k=l k=j+ 1

Note that dec(eij) = eij because e is in normal form. Gij is the pre-condition of the event

Gij-~ij-+ GIj(=glj) or part of the pre-condition ofthe event { Gij, Gik} -t--+(Gjj, G:k}

in C (e), where “ij is the action produced by e;j, and t is the action produced by eij

and cik.

(i) Vj # k, gij # gik. That means

Vi, Vj # k, Gij n G,=O.

This shows that the events cr’j or rijk in Z(e), which correspond to the actions mij or

r mentioned above, have no pre-condition elements in common.

(ii) We have

j-l

gjjckvl idldec(eij)l fi id
k=j+l

where eij - tl + dec(e;j). Therefore

Vj # k, VXEg:j, yEg;k, X # _Y

and

GIjI7G:k=Q).

This shows that the events clijor rijk have no post-condition elements in common. It

follows then that these events can fire concurrently in Z(e), by combining (i) and (ii).

(iii) Vl#j, Vh, k

Glh n Gjk # 8.

256 Lu Ruqian

This shows that the events of Z(e), which correspond to actions of different ei’s cannot

fire concurrently.

Now we can conclude by combining (i)-(iii) that in Case 2.2 the event firings within

a step in Z(e) are in a one-to-one correspondence to the one step derivations of e.

It is now easy to prove the conclusion by induction for a derivation sequence

consisting of any number of steps. 0

R,EPR,, with finitely many pages. Then RI

must be an exact simulation of a run A of C (e, starting from its initial marking M 1.

I consists

of which of

B2 1, Bz2, . , B2,,. Let R2 be a NP/R net which is an exact simulation of A2 and is

constructed according to the way of Theorem 2.16. Clearly R2 is finite.

True concurrency model of CCS 257

Now assume that R; is a successor of RI and has finitely many pages. Assume

further that R; is the concatenation of RI and R;. From Definition 5.4 we know that

R; belongs to the proper set of NP/R nets over Z(e,). It corresponds to a run A’; of

C(ei), namely,

Bll, B12, ...,Bln,Bl,n+l,...,Bl,m, m>n

and thus to a derivation sequence of e,:

(ei =) e 11~e12~e13-f...~el,n+l-)..‘-‘el,m

and thus to a derivation sequence of e2:

=I e 21je22'e23'...'e2,n+1'...~e2,m

and thus to a run Ai of C(ez):

B2l,B22,&.,Bz,~+I>Bz.m

Note that A2 is a subrun of A’;.

Construct a NP/R net R; which is an exact simulation of the step sequence

B 2,n+lr ‘..3 B 2,m by using the algorithm given in Theorem 2.16. R; has also finitely

many pages. Based on the same way of reasoning we can show that R; is b-isomorph

to R;. Let

where

(MI=) M,,CB,,)M12...MlnCBln)M1,,+1,

Apply the same proof procedure which has been applied to ei , e2, C(eI), C(ez), to

e,,,, i, e2,n+ 1, Z’(e,), ,?I’(e,), we can obtain similar conclusions. Continue this process

for arbitrary n and we complete the proof of the theorem in one direction. The proof of

the other direction is similar and is thus omitted here. 0

Corollary 5.9. Let e, and e2 be two arbitrary CCS agents, N(e,) and N(e,) be their
normal forms (not necessary unique), C(N(eI)) and C(N(e,)) be the corresponding
AC/EN systems. Then (e,,e2)sSB, ifand only if(PR,,PR2)~BS, where PR, and PR,
are the proper sets of NPIR nets over C(N(eI)) and C(N(e,)), respectively.

258 Lu Ruqian

Acknowledgment

The work of using Petri nets to describe the true concurrency semantics of CCS was
introduced to me by Prof. Montanari while I was visiting the University of Pisa. I owe
many thanks to him and his research group for this inspiration.

References

[l] P. Degano, R. De Nicola and U. Montanari, CCS is an (augmented) contact free C/E system, in: Proc.
Advanced School on Mathematical Models for the Semantics of Parallelism, Lecture Notes in Computer

Science, Vol. 280 (Springer, Berlin, 1987) 144-165.

[Z] Lu Ruqian, P/R nets and process concepts (I), (II), Acta Scientica 35(l) (1992) 21-31; 35(2) (1992)
148-157.

[3] R. Milner, A Calculus of Communicating Sysfems, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1984).

[4] CA. Petri, Non-Sequential Processes, GMD, ISF 77-05

[S] W. Reisig, Petri Nets (Springer, Berlin, 1985).

