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Abstract 

Ruqian, L., A true concurrency model of CCS semantics, Theoretical Computer Science 113 (1993) 

23 t-258. 

Degano et al. (1989) introduced AC/E systems (augmented C/E systems) to give a true concurrency 

semantics to CCS. But the true concurrency was not complete. There was no true concurrency for 

recursive agents (like ( x).eI le2) and nondeterminant agents (like e, lez +e,le,). Also the concept of 

bisimulation has not been transplanted to AC/E systems. This paper defines a complete true 

concurrency model of CCS by exploiting the potential concurrency of any CCS agent to its full 

strength. It introduces a kind of multilayered Petri nets, called NP/ R nets, to define the processes on 

AC/E systems. We also introduced the notion of bisimulation of groups of NP/R nets and proved 

that this bisimulation relation can determine the CCS bisimulation uniquely. 

1. Introduction 

The interleaving semantics of CCS given by Milner [3] is well-known. This 

semantics allows the actions of concurrent agents to occur in different orders, but not 

“without orders”. Therefore, the interleaving semantics is not considered as a true 

concurrent one. Degano et al. [l] used a new kind of net systems, the so-called 

contact-free augmented C/E systems (AC/E systems), to give a true concurrent 

semantics to CCS. They decomposed a CCS agent into a set of grapes which can act 

concurrently. The derivation of a set of grapes corresponds to the firing of an event of 

the related AC/E system. Therefore, the concurrency of event firings of AC/E systems 

guarantees the concurrency of grapes derivations and thus the concurrency of CCS 
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agent derivations. But their solution was not perfect. According to their approach, the 

first step of the derivation of e, 1 e2 + e3 1 e4 or (x). e, I e, (recursive agent) can only be 

sequential, not concurrent. Another defect of their approach was the absence of 

bisimulation concepts for AC/E systems, the importance of which should not be 

underestimated. Without this concept one cannot compare the behaviors of two 

AC/E systems and their relation to behaviors of CCS agents. The reason of this 

absence may be the fact that the AC/E systems defined by Degano et al. are in general 

not contact-free in the usual net-theoretical sense. It lacks a tool (like the occurrence 

net) to define processes of such systems. In this paper, we introduce a new kind of Petri 

nets, called NP/R nets, to define processes on AC/E systems. We define also the 

bisimulation concept for groups of NP/R nets and prove that this bisimulation 

relation is necessary and sufficient for the existence of a bisimulation relation between 

corresponding CCS agents. We also solve the problem of completely decomposing 

CCS agents into sets of concurrent grapes, including those of form e, le, +e31 e4 or 

(x).el le,. Thus, we give a new true concurrent semantics to CCS. 

2. AC/E systems and NP/R nets 

Definition 2.1. Let N = (S, T, F) be a net, M be a subset of S, called a marking. An 

event eET is said to be a-enabled under the marking M, if the following condition is 

fulfilled: 

*e&M & e’G’eu(S-M). 

(1) 

Definition 2.2. Let N= (S, T, F) be a net, Ml, M2 c S, B G T, and suppose that the 

following conditions are fulfilled: 

(a) VeeB, e is a-enabled under M 1, 

C-4 Vel,e2EB, e, #e2 --f 'eln'e2=e;ne~=(il, (2) 

(4 M2=(M1-‘B)uB*. (3) 

Then the events in B are said to be concurrently a-enabled under Ml. 

Further we se that the marking M2 is reached after the concurrent firing of the 

events in B. We call this firing an a-step and denote it by 

Ml CB)M, (4) 

We also say that B is a step forward from Ml to M2, and at the same time a step 
backward from M2 to Ml. 

It is called a maximal a-step if there is no B’ with B’ 2 B (B’ contains B properly) 

such that the events of B’ can fire concurrently under Ml. 
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Definition 2.3. C = (S, T, F, C) is called an extended C/E system ~ an AC/E system for 

short ~ if 

(1) (S, T, F) is a net; 

(2) C is a set of markings with the property that for any two different markings 

(called cases henceforth) M1 and M,, there exists a chain of forward and/or backward 

steps, which transforms M1 into MZ; and 

(3) For each eeT, there exists a case MEC, such that e is a-enabled under M. 

Here the concepts “a-enabled” and “a-steps” are used because some pre-conditions 

of an event may coincide with some postconditions of the same event, if the net is 

nonpure. In that case it is difficult to decide whether the event has already fired. 

Example 2.4. The event in Fig. 1 is a-enabled. Its (only) pre-condition coincides with 

its post-condition. 

Corollary 2.5. Any C/E system is an AC/E system. 

Definition 2.6. Let C =(S, T, F, C) be an AC/E system. A triple R = (R [i] = 

(Si,7;:,Fi)li=l,2,3,...) . IS called an NP/R net over C (or a NP/R net for short) if the 

following conditions are satisfied. 

(a) K =( u Si, U T, u Fi) is an occurrence net. 

(b) 4 Fi=Ui<jFij, 

kfi,<j, FijESiX TjUT,XSj. 

(C) VXESiU Ti, let 

‘x={yI3jdi, (y, X)EFji}, 

(d) If S’= u Si, T’= U T, F’= U Fi, then there exists a mapping 

p:S’+S, T’+T, F’-+F, 

such that Vi, VX, Y~S~U z: 

(x, Y)EF’+P((X, ~))=(p(x),p(y))~F> 

xzy + p(x)fp(y), 

(5) 

(7) 

(8) 

Fig. 1. An AC/E system. 
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Vi, xEK, p(‘x)=‘p(x)Ap(x’)=p(x)‘. (9) 

We call R [i] the ith page of R, and S’i, K, Fi the condition set, event set and arc set of 

R [i], respectively. Finally, we call l x and x l the preset and postset of x, respectively. 

Corollary 2.7. It ~O~~OWS from (8) that for any X~SiU Ti SUCK that P(X)=Y we may use 

the notation y [i] (=x). 

Example 2.8. In Fig. 2, (a) and (b) are two AC/E systems, and (c) and (d) are two 

NP/R nets over them, where c has infinitely many pages. 

Definition 2.9. Given an AC/E system C. The sequence ci [ Bi)ci+ 1, 1~ i < n, is called 

a step sequence of C, where each element of the sequence is an a-step (a step for short). 

In the following, we will not differentiate between the terminologies step sequence, 

firing sequence, or a run. A successive subsequence of a step sequence is called 

a subrun. We denote the set of all event occurrences of the run A with eu(A), and the 

ith occurrence of the event e in it with e(i). 

Definition 2.10. Given a run A of an AC/E system C. Define the partial order of the 

event occurrences in ev(A) as follows. Let A be composed of the step sequence 

ci[Bi)ci+,, then: 

(1) e, is before e2, or in other words, e2 is after e,, if i< k, elEBi, ezEBk. 

(2) there is no other order among the event occurrences besides the one mentioned 

above. 

Corollary 2.11. The order given above is a partial order. 

Definition 2.12. Let R be an NP/R net. Define relations <, rli and rco as follows. 

(a) If the elements x[ i], y [j] of R, when considered as elements of the correspond- 

ing occurrence net (see Definition 2.6(a)), satisfy 

XC4 <yCjl, 

then the following is also true: 

XCil < YCjl. (10) 

(b) Vi-ck, x[i] <y[k]. (11) 

(4 Vi, j, k, x[il < y[jl A y[ jl < z[kl * xCi1 -C zCk1. (12) 

(4 Vi, j, if x [ i] < y [j], then one of (a)-(c) must be valid. (13) 

(e) Vi,j, x[i]=y[j] v x[i] <y[j] v y[j]ix[i] - xCi1rliyC.A (14) 

(f) Vi,j, -x[i] <y[j] A -y[j] <x[i] 0 x[ilrcoyCjl (15) 
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Theorem 2.13. (1) x[i] < y[i] * x[i] <y[i], 

(2) relation < is transitive, 

(3) relation < is anti-symmetric, 

(4) therefore, < is a partial order. 

Definition 2.14. Let R be a NP/R net, Q C_ (U Si)U (u 7;), then: 

(1) Q is called an r-line, if Vx, yeQ, there is always x rli y, and Vz$Q, 3teQ, mz rli t; 

(2) Q is called an r-slice, if vx,y~Q, there is always xrco y, and Vz$Q, i’tEQ, 

mzrcot. 

Definition 2.15. Let R={R[i]=(Si, Ti,Fi)Ji=1,2,3,...} be an NP/R net over the 

AC/E system C = (S, T, F, C). Let A be a run of C. R is called an exact description of A, 

if the following conditions are satisfied: 

(1) There is a bi-unique mapping /I: 

fi:ev(A)+UT,. (16) 

(2) The mapping p of Definition 2.6 has the following properties: 

(2.1) p is an internal mapping on each r-slice of R. 

(2.2) Let a be a single-valued mapping which maps each event occurrence a(i) of 

eu(A) to the event a of C, then we have 

(17) 

(3) For tl, t2Eev(A), t, is behind tl if and only if fi(tl) < /i’(t2). 

This mapping p is called a process of C. 

Theorem 2.16. Let C = (S, T, F, C) be an AC/E system, then for each run A of C, there 

must be an NPIR net R over C, such that R is an exact description of A. 

Proof. Let A be a step sequence B1, B2, B3, . . . . We construct the corresponding NP/R 

net, starting from B1. 

Step 1. Assume that {er, . . . . er} is the set of events firing concurrently in B1. Let 

‘ei={air ,..., aini}, e;={bi, ,...) bi,,}, 1 <iid. (18) 

Construct new objects tl, . . , tl. For each i, construct new objects xir, . . . . xi”,; 

Yil, . . .9 Yim;. Let 

Xi={Xil~~~~~Xini)~ yi={Yil~~~~~Yim,}~ 1 dibl. (19) 

Define a mapping p: 

v&j, P(xij)=aij, P(Yij)=bij, 

P(ti)=ei, P((& Y))=(P(x)? P(Y)). 
(20) 
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Call the ti’s, xij’s and yij’s separable objects, and their p-mappings ei’s, aij’s, bij’s 

original objects. Obviously, p is single-valued. Further let 

Frr=jfJ ij {(Xij,fi)}, F12= b 5 (tti9 Yij)}; (21) 
i=l j=l i=l j=l 

Sl=Xl= (j Xi, Yl= ~ Yi, Tl= ~ {ti}, Fl=FllUF12; (22) 
i= 1 i=l i=l 

Step II. Assume that we have already constructed R [ 11, . . . , R[k] for the steps 

B 1, . . . , Bk. Differentiate between two different cases. 

Case I: The number of steps of A is greater than k. Let 

R[i]=(Si, T,,Fi), 1 <i<k. 

At first, we construct a new page. Let 

y(k)= (j yi, Y’=p( Y(k)). 
i=l 

Note that above we have extended the mapping p, in such a way that it maps also 

sets of objects to sets of objects. 

Furthermore, let the events that fire concurrently in BK + 1 be fi , . . . ,fh 

•~=(Uil, ...) ain,), ff=(bilt...tbim~), l<i<h. (24) 

Let 

y”= ( 1 (j ‘J n Y’. 
i=l 

(251 

If Y”=@, then construct Xkfr, Yk+l, &+I, Tk+i, Fk+r and 

R[k+l]=(&+r, Tk+l, Fk+l) 

in the same way as we constructed R [ 11. 

If Y” # 8, let Y”‘= { ylp(y)~ Y”}. Then 

Vi, Ofi’- Y”={Uil, ...) ai,,}, O<gibni. (26) 

Generate new objects ul, . . . , u,,. For each i, generate new objects xii, . ..,Xigi; 

Yil, . . ..Yim.. Let 

xi={xil~~~~~xig,}~ yi={Yi19..~,Yimi}, 1 <i<h; (271 

_ _ 
S k+l=Xk+lu yk, T kfl =it)l rut>; 
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F12= ,j {(Y2”i)lYEyk9 P(Y)E’.h), 
i=t 

(29) 

Now, for 1 <i < k, modify the sets of objects constructed above as follows: 

Fi=U((X,y)lXE~iilnY”‘, yETk+l}r 

Fi:=FiuFi, 

ri := Fi _ Y”‘, 

(30) 

(31) 

Note that := is the assignment symbol. It just replaces the content of the left-hand side 

by the right-hand side. 

Extend the mapping p as follows: 

Vi, 1 <i,<h: p(Xij)=Uij, 1 bj~gi, 

P(.Yij)=bij, 1 dj<W, 

Pt”i)=_Af 

Case 2: The number of steps of A is k. Let 

s - k+l = yk, R[Ik+ll=(Sk+l, 8, 8). 

In this way, we get a (finitely or infinitely) multi-layered net on C. 

(32) 

(33) 

R={R[i]=(Si,Ti,Fi)(i=1,2,3 ,... ). 

We prove that R is an NP/R net over C. 

(i) In order to prove that K, =(SO, TO, F,) is an occurrence net, where 

sO = u si, T,=lJ T, FO = U Fi, (34) 

we define the union of two occurrence nets as follows: 

(K’=(S’,T’,F’))u(K”=(S”,T”,F”)) 

=(K”‘=(S’uS”,T’uT”,F’uF”)) 

The proof proceeds inductively. It is easy to see that 

(35) 

(36) Vi,j, I’XijI=IY~jI=O, IX~jI=l’yijI=l 
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was valid in the first step when constructing R[l]. Therefore R[l] is an occurrence 

net (see e.g. [S, Section 3.21). 

Now assume that Rck)=R[l]uR[2] u ... u R[ k] is an occurrence net. Our asser- 

tion is already proved if the run A has only k steps. Otherwise, construct 

RCk+ l]=(Sk+l, T,, 1, Fk+ 1) by using the method given above. From the way we 

constructed R [ k + l] we know that R [ k + l] remains an occurrence net before the 

assignment formulas of (30). It has no common elements with Rck’, i.e. 

(S (k)UT(k))fT(Sk+,UT,+,)=@. (37) 

In the assignment of (30) and thereafter, the modification to R[k+ l] is only the 

addition of some arcs from certain condition elements x (satisfying x* = 8) of Rck) to 

certain event elements y (satisfying ‘y =@) of R[k+ 11. Therefore, if we construct 

(38) 

then all its condition elements x still satisfy /*xJ < 1, Ix* I< 1, and there is no cycle in it. 

That means Rck+ ‘) is still an occurrence net. 

(ii) The validity of (b)-(d) of Definition 2.6 is easy to prove. 

(iii) In order to see the existence of the mapping p we need only to note that the 

mapping p produced when constructing R is precisely the mapping p required in 

Definition 2.6. The validity of requirements (8) and (9) can be checked in a straight- 

forward way. 

Thus we have shown that R is really a NP/R net over C. Now we prove that it is 

also an exact simulation of the run A (see Definition 2.15) as follows: 

(i) From the way we constructed R we know, that there is an one-to-one corres- 

pondence between the objects of U K and the event occurrences of A = { Bj), where Bj 

are the steps of A. This correspondence is the mapping fl required in Definition 2.15. 

(ii) To prove that p is injective on each r-slice of R we assume that Q is such 

a r-slice, x [ i], y [ j] EQ, x [ i] # y [ j]. Then i =j follows from the definition of partial 

order of NP/R nets. 

From (8) of Definition 2.16 we know that 

p(xCil) Z~(vCil). (39) 

This shows that p is injective on Q. 

(iii) To prove (17) we assume that e(j) (the jth occurrence of the event e in A) is in 

the ith step Bi of A. Then there is a unique element t=P(e( j)) corresponding to it, 

which is generated as a new object when constructing R [ i]. It is p(t) = e according to 

the definition of p. This is consistent with the fact x(e( j))=e. 

(iv) To prove property (3) of Definition 2.15, assume that tl,t2Eev(A) and t2 is 

behind tr. From Definition 2.10 we know 3Bi, Bj, tl~Bi, tzEBj, i< j. We know also 

that P(tl) and /I(f2) are objects of R[i] and R [ j] from the way we constructed R. 
Thus /?(tr) < P(tz) by (11) of Definition 2.12. 
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(a) (b) 

R [II 

R 121 

R 01 

XL21 yr21 zr21 

~-~-.--w~ R[21 

I I 

Fig. 2. Two NP/R nets. 

The second part of the proof (validation of the other direction of the assertion) is 

similar to the first part and thus omitted here. 0 

Example 2.17. The NP/R net (c) given in Fig. 2 is an exact simulation of a run of the 

AC/E system in (a). Note that (c) was constructed using the algorithm given in 

Theorem 2.16. The NP/R net (d) of the same figure is an exact simulation of a run of 

the AC/E system in (b). But (d) was not constructed in the way (c) was. 

Corollary 2.18. DifSerent NP/R nets may be exact simulations of the same run of the 

same AC/E system. 

3. The partial derivation semantics of CCS 

In the following we reproduce briefly the results about CCS semantics given by 

Degano et al. based on AC/E systems. 

A = { c(, /I, y, . } is called the action set of CCS, 6= { 6, MEA} its anti-action set. 

Actions of A u 1 are called visible ones; T is the (only) invisible action, r# A u 2. The 

agents of CCS are defined with the following syntax: 

e ::= x ) nil ) cc.e 1 e\cc 1 e[s] 1 el+e, 1 elle2 ) (x).e (40) 
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and the following derivation rules: 

cc.e--cc+e, 

e,--+ee, implies er\fi-cc-e,\/?, where p$(cz,c(}, 

e,---+e2 implies e,[s]--s(C()+e2[s], 

e,--+eez implies e,+e-Rae2 and e+er--+e2, 

e,-a-e, implies e,Ie-cc-e2/e and eler--a--ele2, 

e,--a-+-t2 and e;--&+ei imply e,Ie;-r+e21e;, 

e,[(x).e,/x]-cz+e2 implies (x).e,--see,. 

The grapes are defined by Degano et al. [l] with the following syntax: 

g ::= nil 1 51.e I e+e I (x).e I idle I elid I e\a I e[s] 

and the following decomposition rules: 

dec( nil) = {nil}, 

dec(a.e)=(cc.e}, 

dec(e\cc)=dec(e)\a, 

dec(e[s])=dec(e)[s], 

dec(e, Se*)= {el +e2}, 

dec(e,Ie2)=dec(el)liduidIdec(e2), 

dec((x).e)={(x).e}. 

(414 

(41’4 

(41o) 

(41d) 

(4W 

(41f) 

(41g) 

(42) 

(43a) 

(43b) 

(43o) 

(43d) 

(43e) 

(43f) 

(43g) 

The partial order semantics of CCS is defined by the following derivation rules for 

grapes: 

(rx.e}-cc+dec(e), (44a) 

G1-~-+G2 implies G,\fi-cc+G,\p, /I${x,~?}, (44b) 

G1-cl+G2 implies G,[s]-s(a)+G2[s], (44c) 

(dec(er)-Gg)-cz+GGz implies 

{e,+e}--z+GG,uG, and {e+e,}-a+G2uG,, (44d) 

Gr-cc-G2 implies GIlid--a-tG21id and idIG1-cx+idIG2, (44e) 

Cl-cc-+G2 and G3-C(+Gq imply 

GIIiduidIG,-z~GZIiduidIGq, (44f) 

(dec(e,[(x).e,/x]-G,)-a+G2 implies {(x).e,}-cc+G2uG3, (44g) 
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where Gi, GZ, G3, G4 are sets of grapes. A set G of grapes is called complete, if there 

exists an agent e such that dec(e) = G. It was proved [l] that the function dec defines 

an one-to-one correspondence between agents and complete sets of grapes. It was also 

proved that if G-a + G2 is a derivation of grapes, then there must be a set G3 of 

grapes, such that G1 n G3 =8 and G1 u G3 is a complete set of grapes. Furthermore, we 

must have Gz n G3 =8 and G2 u G3 is also a complete set of grapes. 

The system Cccs = (S, T, F, C) is defined as follows: 

l S= the set of all grapes, 

l T= the set of all derivations of grapes, 

. F={(g,,Gi-a+Gz), (G1-~+G,,g,)Ig,EG,, gzEGz> G,-@+G~ET}, 
l C = the set of all complete sets of grapes. 

It was proved that Cccs is an AC/E system. 

4. A true concurrency semantics for CCS 

In order to solve the problems which have not been solved in [l], we extend the 

syntax of CCS a little bit and then give its operational semantics in the form of 

derivation rules. 

Definition 4.1. The CCS syntax is extended as follows: 

e ::= x 1 nil 1 u.e 1 e\cx(a) I e[s] I el+e2 I e,le, 1 e,wherex=e,, 

(45) 

where a is an arbitrary identifier. 

Let Hi, Hi, HI’, i=O, 1, be multisets (i.e. bags) with the elements of Audu{s} as 

their elements. V( Hi) is the multiset of all visible actions in Hi, whereas ino( Hi) is the 

multiset of all invisible actions (t) of Hi. Then we have the following derivation rules 

cr.e-{acc)+e, 

e, -Ho -+ ez implies 

(464 

e,\cr(a)-(Ho-{sc,i})-,e,\a(u), for all c(. 

where Ho - { a, c(} means “delete all occurrences of c( and rX from Ho”, 

(46’4 

e,-H,+ez implies e,[s]-s(Ho)+ez[s], (46~) 

el-Ho--+e2 implies el+e-Ho-e2 and e+e,-Ho-+e2, (464 

e,-HH,+eZ implies elIe-HH,-+e21e and elel--Ho+e/ez, We) 
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el--H1-+ez and e3-H2-+e4, c~{fl,P} imply 

e,Ie-H,+e,le, and el\cc(a)le3\P(a)-Hk-ez\cc(a)le4\B(a), 

e, [(ez wherex=e,)/x] -Ho-e3 wherex=e, 

implies (e,wherex=e2)-HO-+e3wherex=e2. 

Here we have used the following notations: 

H,=H;UH;UinU(H,)UinU(H,)Uinv(lH3I), 

Hk=H;‘UH’;UinU(H,)UinU(H,)UinU(lHjl), 

H;=u(H,)-H,, H;=u(H,)-H,, 

H';=H;-{a,E}, H';=H;-(a,ii}, 

H3 su(Hl)n4H2), 

Wf 1 

W&s) 

where the intersection of two multisets is defined as the maximal sub-multiset which is 

contained in both multisets. 1 HiI is the number of elements contained in multiset Hi, 
inU(lHil) is the multiset of IHil T’S. Hi={crIcr~Hi}. 

Note that this concurrency semantics of CCS is different from both Milner’s and 

that of Degano et al. It will contain the Milner semantics as its proper subset by 

adding the following two rules. 

(a) Let e, where x = e 1 be equal to (x ). e, in the original syntax. 

(b) Let the agents in which the identifiers “a” in operations \~(a) are all different 

from each other equal to those agents in the original syntax, which have the same form 

except for the identifiers which do not exist. 

As to the derivation rules, note that the rules (46b)-(46e) and (46g) will be the same 

as those in Milner’s semantics if I Ho I = 1. The derivation (46f) will be the same as that 

in Milner’s semantics if I HI I = I H2 I= 1, o(H,) = u( Hz) # @. Rule (46a) as it stands is 

also valid for Milner’s semantics. 

Example 4.2. Let 

e, =(a.nillp.nil)l((a.nilly.nil)l(w.nillcp.nil)), 

e2=((6.nillB.nil)l(y.nil1~..il))l(o.nilIICI.nil). 

It follows from (46f) that 

e,-{t,B,‘Y)-‘(nillnil)l((nilJnil)l(o.nillcp.nil)), 

e2-{z,p,y}~((nillnil)l(nillnil))l(o.nilI~.nil) 
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implies 

e,Ie,-{2,z,B,B,~}~((nillnil)l((nillnil)l(W.nillcp.nil))) 

I(((nillnil)l(nillniZ))I(W.nill$.nil)) 

where 

k=(Y) c({P,Y}n{B,Y})={P,Y}, 

Hi ={Bl, Hi= {iq, 

inv(H,)=inu(H2)=inu(lH31)={z}, 

H4={V,B,iG). 

Definition 4.3. A relation SB E E x E, where E is the set of all agents, is called 

a bisimulation if the following conditions are fulfilled: 

(a) if (e,,e2)~SB, el-H+e;, then there exists e;, such that e2-H+ee;, and 

(e;, e;kSB, 
(b) (eI,e2)ESB o (e,,e,)ESB where H is a multiset of actions. 

Theorem 4.4. For each agent e there exists another agent N(e) such that 

N(e)= f fi eij and (N(e),e)ESB, 
i=l j=l 

where 

(49) 

(the n-ary product nl= 1 ei is appropriately composed of binary products (e’l e”) by using 

parentheses. Each eij takes one of the following forms: 

iiI xi.e:\Ai where xi=ey or nil, 

where each Cli is a (visible or invisible) action. ei and e:l take the form (49). Ai is a set of 
actions with identij‘ier parameters {c(~ (a,), . . . , q(aJ}, Vi #j, Mi # aj. Ai may be empty. 
To avoid details, the naming action e[s] is not considered here. 

Proof. We use the following transformation rules to prove this theorem: 

(e~~+e~2)l(e2l+e22)=ellle21+e,,le22+e,2le2l+el2le22, 

wherex=e” = i$I (e;wherex=e”), 

(504 

(job) 
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( 1 

f) e; where xj=ey = i (eiwherexi=e;‘), 
i=l i=l 

e;wherex:=ey = e: where e: does not contain xi, 

(ejwherex;=ej’)\Ai = (ei\/&)wherex:=ej’, 

c~\Ai\A~=ei\(/tiuA:(), where 

AI’={~(u)~~~(u)EA:,N~~#u, such that a(b)EAi or tY(b)EAi}, 

(Cei)\A=C(ei\A), 

(nei)\A=n(ei\ia(c)Ia(a)EA}) 

where c is a completely new identifier. 

nil \ A = nil. 

To avoid going too far into the details, we assume here that each recursive agent has 

only one agent variable. Different recursive agents use different identifiers to denote 

their agent variables. We assume also that there is no nested recursive agent. 

Using induction it is easy to prove that each agent can be transformed into the form 

(49) by using the transformation rules given above. 

Now we will prove that each of these transformations keeps the bisimulation 

relation unchanged. 

Transformation (50a). Let 

e=(e11+e12)l(e2r +c22), 

f=el,/e,,+e,,Iezz+elzlezl+elzIe22. 

Given a derivation e-H +e’, let (see Definition 4.1): 

H=HluH2, HI =HII uH12, 

H2=H3uH4, H~=H~I uHu; 

el =ell +e12, e2=e21 +e22 

where H 1 1 and HI2 are the sets of visible actions executed by eI and e2, respectively. 

Hbl and Hb2 are the sets of invisible actions executed by e, and e2, respectively. H3 is 

the set of invisible actions produced during the communication between e, and e2. All 

the sets mentioned above are multisets. 

W.l.o.g., assume that HII and HI2 are the sets of visible actions produced by 

cl1 and e2r respectively. Hhl and Hd2 are the sets of invisible actions produced by 

ell and ezl respectively. H3 is the set of invisible actions produced during the 

communication between eI 1 and e2r. That means 

cl1 le 21-H+e;llel;l (=e’). 
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From (46d) follows the existence of derivation f-H --f e’. On 

derivation f-H +f’ is given, we can also prove the existence 

derivation e-H +y in the same way. That means (e,f)ESB. 

Transformation (50b). Let 
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the other hand, if any 

of the corresponding 

e=\ z1 ei)wherex=e”, -f=zl (eiwherex=e”). 

Consider a derivation 

e-H+e’wherex=e”. (51) 

It follows from (46g), that derivation (51) can only occur when there is another 

derivation of the following form: 

( ) 
i$1 ei C( e”w erex=e”)/x]-H+e’wherex=e”. h (52) 

This can be rewritten as follows: 

n 

c ei[(e”wherex=e”)/x]-H+e’wherex=e”. 
i=l 

Therefore there exists a j, such that 

e>[(e”wherex=e”)/x]-H-+e’wherex=e”. 

It follows again from (46g) that 

(eiwherex=e”)-H+e’wherex=e”. 

Thus we have 

ii1 (eiwherex=e”)-H-+e’wherex=e”. 

On the other hand, each derivation f-H-f’ where x =f” implies also the existence of 

a derivation e - H +f’ where x =f”. This means (e,f)ESB. 

Transformation (50~). The proof is similar to that of Transformation (50b). 

Transformation (50d). Proof is obvious. 

Transformation (50e). Proof is obvious. 

Transformation (50f). Let 

e=e,\Ai\Az, (53) 

f=e,\A, uA3 (54) 

where 

A3 = {~(a) I dakA,, - 3b # a, such that Ada, or CLEAN}. 
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Consider the derivation 

e-H+e’\A,\A2. 

Lu Ruqian 

(55) 

It follows from (46f) that the following derivation is valid: 

e,-H-e’, V’~(~)EA,UA,, a#HuI?. 

Since(A,uA3)E(A1uAZ)weknowthatV’a(a)EA,uA,,cr4Hu~.Thusthevalidity 

of the following derivation is assured by (46f): 

f-H+e’\(A,uA,). (56) 

Note that the forms of (55) and (56) are similar to those of (53) and (54), respectively. 

Therefore we can repeat the reasoning described above and prove that for all n, 

e(“)-H+e:“)\A1\A2 

implies 

f(“)-H-e :“‘\(A, WA,) 

where et”), f(“), ey’ are the nth derivations of e, f and e, respectively. 

On the other hand, any 

f(“)-H+ey’\(A,uA,) 

implies 

e(“-H+e:“‘\A1\A2 

because { c( 130, a( U)E A2 or E(a)~A,}={ccIZla, cc(a)~A~ or c%(a)~A,}. Hence 

(e,fWB. 
Transformation (50g). Proof is obvious. 

Transformation (50h). To shorten the proof, we consider only the cases of binary 

products and 1 A I= 1. Let 

e=(eil+)\a(a), (57) 

f=(ei\a(c))l(e,\cc(c)) (58) 

where c is a new identifier. Assume 

e-H4+e’\cc(a) (59) 

then the following must hold: 

el)e3-H4-+e’, a#H4u&. 

This is only possible when 

e1 -Hi -te2, ez-H,-+e,, e2 1 e4 = e’. 

It then follows that 
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For the meaning of HI, Hz, H4 see (46f). Note that the only difference between H4 and 
Hi is that H4 may have CI or cl which do not exist in Hi. But in our case we have 
a$H,u i?i4, therefore the derivation above can be rewritten as follows: 

(er\~(a))l(e,\~(a))-H,-t(e,\a(a))l(e,\@(a)) 

This is valid and does not depend on the choice of a. Therefore we have 

f-K+fl, f’=(e2\cQc))l(e4\a(c)). (60) 

By comparing (57), (58) with (59), (60) we know that the same way of reasoning can be 
applied to e’ and f’, and e’“‘, f(“) f or arbitrary n. On the other hand, if 

f-K -*.I’ (=(e2\a(c))l(cd\cGc))) 

is given, then it follows from (46f) that 

e,--H,+e,, +-Hz+e4, elle~-H4-*e21e4. 

This implies: 

(eIle3)\a(a)-(H4-{% cc})-(ezleJ\~(a), 

(elle3)\~(a)-Hk-(e2le4)\cc(a). 

This way of reasoning can be applied to any e’“’ and f(“) for arbitrary n, thus 
(e,f)ESB. q 

Discussion. The key point of transforming any agent e into N(e) (sometimes we call it 
the normal form of e, although N(e) is not uniquely determined by e) is not to lose the 
global information of the agent, especially for recursive agents “e where x = e” and 
masked agents “e\A”. See (b), (c) and (h) of the following example. 

Example 4.5. 

(a) ~~~I~2+~~l~4~l~~5l~6+~7l~8~=~~~I~2~l~~~I~6~f~~~I~2~l~~-iI~~~ 

+(e3le4)l(e~le~)+(e3le4)(e7le~). 

(b) (a.x+fi.xwherex=cc.x+/?.x)=(cr.xwherex=M.x+/?.x) 

+(j?.xwherex=ff.x+P.x) 

(c) (C(.xIfi.xwherex=cc.x+fi.x) 

=(a.xwherex=cr.x+fl.x)l(fl.xwherex=cc.x+fl.x) 

(d) (cr.fi.nilwherex=y.x)=a./I.nil 

(e) (~.xwherex=~.x)\{~(u)}=(a.x\/?(u))wherex=j3.x 

(f) e\{~(~),B(~))\(~(~),~(~))=e\(~(~),B(~),~(~)) 
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(8) (rx.nil+~.nil)\{cr(b)}= cLnil\{a(b)}+p.nil\{a(b)} 

(h) ((~.~lillcl.nil)\{a(b)}Icc.nil)\{cx(a)} 

=(a.nil\{C((c)})I(Ei.nil\{a(c)})l(cc.nil\{a(a)}) 

Definition 4.6. All agents in normal form (or their grapes) can be decomposed into sets 

of grapes (or their sub-grapes) in the following way: 

dec(nil)= { nil}, (614 

dec(a.e)=(a.e}, (61b) 

dec(e\a(a))=dec(e)\a(u), (614 

dec(e[s])=dec(e)[s], (614 

deC(Cei)=CdeC(ei), We) 

idldec(ej+l)l fi id 
i=j+2 

(61~) 

fi idldec(e)l fi id , (61g) 

i=l j=k 

where the products of id do not exist if l> m or k > m (but always min (I, k) d m). 

dec(eI wherex=e2)={dec(e1)wherex=e2). (6lh) 

Note that e, e, and e2 can be any agents. In rule (61h), e, can be an agent or a grape. 

Here we allow the operands of the sum operator “+” and the product operator “I” to 

be sets of grapes, i.e. 

Remember that each product of agents and/or grapes must be combined into 

binary products appropriately. Further we define: 

{Gwherex=e}={gwherex=eIgeGj. 

Definition 4.7, The concurrent derivation rules of grapes are the following: 

{cc.e}-cc+dec(e), (624 

G1-a+G2 implies G1\P(a)-~+Gz\P(a), fl$(a,E}, (62b) 

Gr-a+G2 implies G,[s]-s(a)-+Gz[s] (62~) 

(dec(eI)-G,)-a+G2 implies (dec(e,)-G,)+dec(e2)-a-tG2 and 

dec(e,)+(dec(e,)-Cl)--a-+GZ, (624 
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G,-a-+G2 implies G1lid-a+Gllid and 

idIG1-cc+idIG2, 

G,-a-G2 and G3-X-+Gq imply 

G,(id~idIG,--zG~IiduidIG~ 

G,\cc(a)~iduidIG,\~(a)-r 

~G,\cr(a)/iduidIGq\B(a), ~+,fl}> 

Gi - CI + Gz implies 

G1 wherex=e-x-+dec(G,[e/x])wherex=e, 

provided that Gi does not contain something like “where x=el”. 
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We) 

Example 4.8. 

dec(elIez+e,Ieq)=dec(e,Iez)+dec(e31e,) 

=ie,/id,idlez)+ie3Jid,id/e,} 

={e,Iid+ 3j’d, J.d e z e I + +idIe4,idIe,+e31id,idle,+idIe,} 

provided that Vi, dec( ei) = ei. 

Example 4.9. 

dec((a.xI~.x+r.xl6.x)wherex=cc.xl/?.x+y.xl6.x 

=dec(z.xI~.x+r.xIG.x)wherex=~.xIfi.x+y.x(6.x 

={r.xIid+y.xIid,cc.xIid+id(6.x,idlp.x+y.x(id, 

idj/3.x+idl6.x} wherex=a.xlp.x+v.xl6.x 

=(cc.xlid+y.xlidwherex=cc.xlp.x+y.x)6.x, 

cc.xjid+idl6.xwherex=r.xI~.x+y.xlJ.x, 

id(/?.x+y.xIidwherex=cc.xI~.x+y.xl6.x, 

idlj?.x+idj6.xwherex=a.xlj3.x+y.xl6.x}. 

Example 4.10. It follows from rules (62d), (62e) and Example 4.8 that e, --CI + e; 

implies 

Example 4.11. It follows from rules (62d), (62e), (62g) and Example 4.9 that: 

{a.x(id+y.x\idwherex=st.x(p.x+y.xJ6.x, 

a.x~id+id~6.xwherex=~.x~~.x+~.x~6.x}-~ 

+dec(a.xIp.x+r.xl6.x)lidwherex=cr.x)/3.x+~.xl6.x. 
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The representation of a CCS agent by an AC/E system is not perfect. In fact, the 
information contained in it is not complete, there is no initial case (marking) in an 
AC/E system. In the following we give a more exact way of representing an agent. 

Definition 4.12. If C = (S, T, F, C) is an AC/E system, then C1 = (S, T, F, C, M) is called 
an AC/EN system, where MEC is called the initial marking of Ci. The firing rules of 
AC/EN systems are the same as those of AC/E systems. 

Definition 4.13. An AC/EN system (S, T, F, C, M) is called reachable, if any case of 
C is reachable by foward firing, starting from the initial marking. 

Definition 4.14. A set G of grapes is called a direct unfolding of an agent e, if G = dec(e). 
G is called a unfolding of e if 
l G is a direct unfolding of e, or 
l there exists a unfolding G’ of e and a derivation: 

(G’-G”-c(+(G-G”) 

where G” is a set of grapes, GL is an action of CCS. 
A grape g is called a direct descendent of an agent e, if g is an element of dec( e). g is 

called a descendent of e, if g is an element of some unfolding of e. 

Definition 4.15. The net-representation of an agent e is an AC/EN system Z(e)= 
(S, T, F, C, M), constructed as follows: 

M=dec(e), (634 

C = {a 1 a is an unfolding of e}, (63b) 

S = {b 1 b is a descendent of e}, (63~) 

T={(G’-G”)-H+(G-G”)IG’ and G are both unfoldings of e}, (63d) 

F=((x,y)Ix@G’-G”)}u{(y,z)~z~(G-G”)}, We) 

where ycT, and y takes the form (G’-G”)-H-t(G-G”). 

It is easy to prove the following theorem. 

Theorem 4.16. Z(e)=(S, T, F, C, M) as it is constructed in Definition 4.15 is really an 
AC/EN system. 

Example 4.17. Reconsider Example 4.8 with e, = a. nil, e2 = /?. nil, e3 = y .nil, e4 = 6. nil. 
Let a, b, c, d denote the four grapes in dec( e, 1 e, + e3 1 e4) in the order as it was given 
there. Then C(e) is shown in Fig. 3, where the simplified notations CI, /I, y, 6 denote the 
four events {a, b) - c( --) {nil 1 id}, etc. 
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a 6 

nil 1 id id 1 nil 

Fig. 3 

Example 4.18. Fig. 3 can also be understood as the net-representation of the agent 

e in Example 4.9, if we give a new explanation to it. Namely, let e = CI. x 1 p. x + y . x 16. x. 

Let a, b,c, d denote the four grapes of dec(e). Let cc,/?, y, 6 denote the four grape 

derivations (one of which was shown in Example 4.11). Rename the elements nil 1 id 
and id I nil in Fig. 3 as e 1 id where x = e and id I e where x = e. Then Fig. 3 contains all 

possible unfoldings of Example 4.9 for the “first step”. 

5. Bisimulation and semantical equivalence 

Definition 5.1. Let R and R’ be NP/R nets. Their occurrence net representations (see 

Definition 2.6(a)) are: 

K=(S, T,F), K’=(S’, T’, F’). 

We say that R is t-isomorphic to R’, if there is a mapping 

@: T-+T’ 

such that 

@ is a bi-unique mapping, (64a) 

@(a[i])=b[j] + Va[k], 3m, @(a[k])=b[m], 

u[i] < b[j] * @(aCil) <@(b[jl). 

Wb) 

(64~) 

Condition (64b) guarantees that if two elements x, y of a NP/R net R correspond to 

the same element of the underlying AC/EN system, and if R is t-isomorphic to R’, then 

the mappings x’, y’ of x,y in R’ correspond also to the same event of its underlying 

AC/EN system. Condition (64~) keeps the partial order unchanged. 
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Definition 5.2. Let e1 and e2 be two agents. RI and R2 are NP/R nets over Z(el) and 

X(e2), respectively. We say that RI is b-isomorphic to RZ, if we change (64b) as follows: 

@ maps the event G1 -IX + Gz of R, to an event G3 - CI + G, of R,. 
(64b’) 

Definition 5.3. Let R=(R[i]=(Si,T,,Fi)Ii=l,2,...) be a NP/R net, then 

R[i] @ n=(S, T,F) (65) 

where 

S={X[i+n] IX[i]~Si}, T={x[i+n]Ix[i]ETi}, 

R@n={R[i]@nli=l,2,...}. 

Definition 5.4. Let R={R[i]li=1,2,...,n} and R’=(R’[i]li=1,2,3,...} be two 

NP/R nets over the same AC/EN system C. We define the concatenation R” of R and 

R’ as follows. 

Let 

Vi<n, R”[i]=R[i], 

Vi74 R”[i]=R’[i-n] on. (66) 

Modify R” as follows. If 

K=(S, T,F), K’=(S’, T’,F’) 

are the occurrence net representations of R and R’ (see Definition 2.6), respectively, 

then the following is true: Whenever there is a [ i] ES, a [ j] ES’, and there is no k > i 

such that a[k]~S, and there is no m<j, such that a[m]~S’, we can always (but not 

necessarily) delete a[ j+ n] from R”, and replace the set {(a [ j + n], y)} by the set 

C(aCil,y)). 
R”, as modified above, is also a NP/R net over C. It is called the concatenation of 

R and R’. We call R a predecessor of R’, and R’ a successor of R. 

Definition 5.5. Let R be a NP/R net. Denote the set of all predecessors of R with 

PRED(R), and the set of all successors of R with SUC(R). Note that either of these 

may be empty, and SUC(R) is only defined when R is finite. 

Let PRS, and PRS2 be the sets of all NP/R nets over the two AC/EN systems C1 

and C2, respectively. The relation 
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is called the b-equivalent relation, or bisimulation, if 

(a) for (PR1, PR,)gBS the following holds 

l VR, EPR,, RI has finitely many pages, 

l ~R,EPR,, R2 has finitely many pages, 

a R, is b-isomorphic to RZ, and 

l (SUC(R,), SUC(RZ))~BS; and 

(b) (PR,, PR,)EBS implies (PR,, PR,)EBS. 

Definition 5.6. Let C be an AC/EN system with M as its initial marking. The proper 

set of NP/R nets of C consists of all those NP/R nets which are exact simulations of 

some runs starting from M. 

Theorem 5.7. Let e, and e2 be two CCS agents in normal form. Let Z(e,) and I(e,) be 
the corresponding AC/EN systems. Then (e,,e*)ESB if and only if(PR,, PR,)EBS, 

where PR, and PR2 are the proper sets of NP/R nets of Z(e,) and Z(e,). 

In order to prove this, we need the following lemma. 

Lemma 5.8. Let e be an agent in normal form, Z(e) the corresponding AC/ EN system 
(S, T, F, C, M). Then there is a one-to-one correspondence between the derivation 

sequences of e: 

ei-Hi+ei+l, 1 <i<n, e=e, 

and the firing sequences of C (e): 

MiCBi)Mi+l, l,<idn, M=M1 

where Bi is the step transforming Mi into Mi+ 1. 

Proof. First, we prove the one-to-one correspondence between the derivations of 

e (one step derivation) and the firings of Z(e) (one step run). Let 

e= jJ fi eij 

i=l j=l 

where each eij takes one of the following two forms: 

k$, gk.e;\A,wherexk=e; or nil. 

Case 1. n= 1, i.e. 

n, 
e= n eij. 

j=l 



254 Lu Ruqian 

n, =m, differentiate two 

Case 1.1. m= 1, i.e. 

P 

e= 1 Nk.e,\A,wherex,=e[. 
k=l 

There is no need to consider the case where e = nil, because in that case there will be 

no action at all. 

Clearly, dec(e)=e. From (61a) and (61d) in Definition 4.6 we know that the event of 

Z(e), which takes part in its first firing, must be one of the following: 

e-ak~deC(ek[e;/Xk])WhereXk=e~\A, and CI,&!Ak 

This shows its one-to-one correspondence to the derivations of e. 

Case 1.2. m> 1. Let 

e= fi ej-H+e’, 
j= 1 

then each ej can take part in this derivation in one of the following three ways: 

l ej produces no action at all, 

l ej produces an action cr~H, 
l ej communicates with another ek and produces an action TEH. 

Now consider Z(e). Let 

k-l m 

dec(e)={gkIk=l,...,m}, gk= n idlekl n id. 
j=l j=k+l 

It follows from (62e) and (62f) in Definition 4.7, that each gk can take part in the 

firing of C(e) in one of the following three ways: 

0 gk is not a condition of any firing event; 

l for some ~1, gk-a+g; fires independently (we call it Simply ak); 

l gk and some g,,, h fk, are both condition elements of the following firing event: 

(we call it simply rkh). 

These gk’s are different from each other. That means that in case j # k, j # 1, h # k, 
h # I, the events ozk and clj of C(e) have no common condition elements. The same 

conclusion is true for uk and t jh, or rjh and rk’. 

It follows from (62e) and (62f) that 

k-l 

g;= n idle;1 fi id. 
j=l j=k+l 

Therefore, we have 

Vh # k, Vxq;, yEgi,, x # y 

because the numbers of id on the left and right sides of e; and ej, are different. 
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Note that both gk and g; are combined appropriately into binary products using 

parentheses. This means that the events cxk, T h’, etc. can fire concurrently in the sense of 

Definition 2.2. Thus we have shown the one-to-one correspondence between the 

event firings of C(e) and the derivation of e. 

Case 2. n> 1. 

Case 2.1. Vi, ni = 1. This case is equivalent to Case 1.1. 

Case 2.2. 3, ni> 1. Let 

e= i ei, 
n, 

f?i= JJ f?ij. 

i=l j=l 

Then any action of e must be produced by some ci. W.1.o.g. assume ni> 1. Let US recall 

Case 1.2. Let 

i-i 
Gij= 1 deC(eh)i- (gij} -k i dec(eh) 

h=l h=i+l 

where gijEdec(ei): 

j-l 

gij= n id/eijI fi id. 

k=l k=j+ 1 

Note that dec( eij) = eij because e is in normal form. Gij is the pre-condition of the event 

Gij-~ij-+ GIj(=glj) or part of the pre-condition ofthe event { Gij, Gik} -t--+(Gjj, G:k} 

in C (e), where “ij is the action produced by e;j, and t is the action produced by eij 

and cik. 

(i) Vj # k, gij # gik. That means 

Vi, Vj # k, Gij n G,=O. 

This shows that the events cr’j or rijk in Z(e), which correspond to the actions mij or 

r mentioned above, have no pre-condition elements in common. 

(ii) We have 

j-l 

gjjckvl idldec(eij)l fi id 
k=j+l 

where eij - tl + dec( e;j). Therefore 

Vj # k, VXEg:j, yEg;k, X # _Y 

and 

GIjI7G:k=Q). 

This shows that the events clijor rijk have no post-condition elements in common. It 

follows then that these events can fire concurrently in Z(e), by combining (i) and (ii). 

(iii) Vl#j, Vh, k 

Glh n Gjk # 8. 
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This shows that the events of Z(e), which correspond to actions of different ei’s cannot 

fire concurrently. 

Now we can conclude by combining (i)-(iii) that in Case 2.2 the event firings within 

a step in Z(e) are in a one-to-one correspondence to the one step derivations of e. 

It is now easy to prove the conclusion by induction for a derivation sequence 

consisting of any number of steps. 0 

R,EPR,, with finitely many pages. Then RI 

must be an exact simulation of a run A of C (e, starting from its initial marking M 1. 

I consists 

of which of 

B2 1, Bz2, . , B2,,. Let R2 be a NP/R net which is an exact simulation of A2 and is 

constructed according to the way of Theorem 2.16. Clearly R2 is finite. 
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Now assume that R; is a successor of RI and has finitely many pages. Assume 

further that R; is the concatenation of RI and R;. From Definition 5.4 we know that 

R; belongs to the proper set of NP/R nets over Z(e,). It corresponds to a run A’; of 

C(ei ), namely, 

Bll, B12, ...,Bln,Bl,n+l,...,Bl,m, m>n 

and thus to a derivation sequence of e,: 

(ei =) e 11~e12~e13-f...~el,n+l-)..‘-‘el,m 

and thus to a derivation sequence of e2: 

=I e 21je22'e23'...'e2,n+1'...~e2,m 

and thus to a run Ai of C(ez): 

B2l,B22, . . ..&.,Bz,~+I> . . ..Bz.m 

Note that A2 is a subrun of A’;. 

Construct a NP/R net R; which is an exact simulation of the step sequence 

B 2,n+lr ‘..3 B 2,m by using the algorithm given in Theorem 2.16. R; has also finitely 

many pages. Based on the same way of reasoning we can show that R; is b-isomorph 

to R;. Let 

where 

(MI=) M,,CB,,)M12...MlnCBln)M1,,+1, 

Apply the same proof procedure which has been applied to ei , e2, C( eI ), C( ez), to 

e,,,, i, e2,n+ 1, Z’(e,), ,?I’(e,), we can obtain similar conclusions. Continue this process 

for arbitrary n and we complete the proof of the theorem in one direction. The proof of 

the other direction is similar and is thus omitted here. 0 

Corollary 5.9. Let e, and e2 be two arbitrary CCS agents, N(e,) and N(e,) be their 
normal forms (not necessary unique), C( N(eI)) and C( N(e,)) be the corresponding 
AC/EN systems. Then (e,,e2)sSB, ifand only if(PR,,PR2)~BS, where PR, and PR, 
are the proper sets of NPIR nets over C(N(eI)) and C(N(e,)), respectively. 
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