Note

Upper signed domination number∗

Huajun Tanga, Yaojun Chenb,*

aDepartment of Logistics, The Hong Kong Polytechnic University, Hung Kom, Kowloon, Hong Kong, PR China
bDepartment of Mathematics, Nanjing University, Nanjing 210093, PR China

Received 1 September 2006; received in revised form 3 June 2007; accepted 24 June 2007
Available online 1 August 2007

Abstract

Let $G = (V, E)$ be a graph. A signed dominating function on G is a function $f : V \rightarrow \{-1, 1\}$ such that $\sum_{u \in N[v]} f(u) \geq 1$ for each $v \in V$, where $N[v]$ is the closed neighborhood of v. The weight of a signed dominating function f is $\sum_{v \in V} f(v)$. A signed dominating function f is minimal if there exists no signed dominating function g such that $g \neq f$ and $g(v) \leq f(v)$ for each $v \in V$. The signed upper domination number of a graph G, denoted by $\Gamma_u(G)$, equals the maximum weight of a minimal signed dominating function of G. In this paper, we establish an upper bound for $\Gamma_u(G)$ in terms of minimum degree and maximum degree. Our result is a generalization of those for regular graphs and nearly regular graphs obtained in [O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287–293] and [C.X. Wang, J.Z. Mao, Some more remarks on domination in cubic graphs, Discrete Math. 237 (2001) 193–197], respectively.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Upper bound; Upper signed domination number

1. Introduction

All graphs considered in this paper are finite simple graphs. Let $G = (V, E)$ be a graph and $v \in V$. The neighborhood of v is $N(v) = \{u \in V | uv \in E\}$ and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. The degree of v in G is $d(v) = |N(v)|$. We call G k-regular if $d(v) = k$ for all $v \in V$ and nearly k-regular if $d(v) = k - 1$ or k for all $v \in V$. For a subset $S \subseteq V$, $N(S) = \bigcup_{u \in S} N(u)$. We denote by $G[S]$ the subgraph induced by S in G and $d_S(v)$ the number of vertices in S adjacent to v. The minimum degree and maximum degree of the vertices of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. When no ambiguity can occur, we often simply write δ and Δ instead of $\delta(G)$ and $\Delta(G)$, respectively. For vertex-disjoint subsets A and B, we use $e(A, B)$ to denote the number of edges between A and B.

A signed dominating function on G is a function $f : V \rightarrow \{-1, 1\}$ such that $\sum_{u \in N[v]} f(u) \geq 1$ for each $v \in V$. The weight of a signed dominating function f is $\omega(f) = \sum_{v \in V} f(v)$. A signed dominating function f is minimal if there exists no signed dominating function g such that $g \neq f$ and $g(v) \leq f(v)$ for each $v \in V$. The upper signed domination number of a graph G, denoted by $\Gamma_u(G)$, is defined as $\Gamma_u(G) = \max \{\omega(f) | f$ is a minimal signed dominating function of $G\}$.

In [3] Henning and Slater asked for upper bounds on $\Gamma_u(G)$ for cubic graphs. Favaron gave sharp upper bounds on $\Gamma_u(G)$ for regular graphs.

∗ This project was supported by NSFC under Grant no. 10671090.
* Corresponding author.
E-mail address: yaojunc@nju.edu.cn (Y. Chen).

Available online 1 August 2007
Theorem 1 (Favaron [2]). If \(G \) is a \(k \)-regular graph, \(k \geq 1 \), of order \(n \), then \(\Gamma_\delta(G) \leq n(k + 1)/(k + 3) \) if \(k \) is even and \(\Gamma_\delta(G) \leq n(k + 1)^2/(k^2 + 4k - 1) \) if \(k \) is odd.

Wang and Mao established the best possible upper bounds on \(\Gamma_\delta \) for nearly regular graphs.

Theorem 2 (Wang and Mao [4]). If \(G \) is a nearly \((k+1)\)-regular graph of order \(n \), then \(\Gamma_\delta(G) \leq n(k+2)^2/(k^2+6k+4) \) for \(k \) even, and \(\Gamma_\delta(G) \leq n(k^2+3k+4)/(k^2+5k+2) \) for \(k \) odd.

Obviously, \(\Delta - \delta \leq 1 \) for regular graphs and nearly regular graphs and the two theorems above establish upper bounds for \(\Gamma_\delta \) in the case when \(\Delta - \delta \leq 1 \). In general, the minimum and maximum degrees of most graphs do not satisfy the condition \(\Delta - \delta \leq 1 \). Thus one may ask what are the upper bounds for \(\Gamma_\delta \) when \(\Delta - \delta \) is arbitrary large. In this paper, we establish the best possible upper bound for \(\Gamma_\delta \) in terms of minimum and maximum degrees. The main result of this paper is the following.

Theorem 3. If \(G \) is a graph of order \(n \), then \(\Gamma_\delta(G) \leq (\delta \Delta + 4 \Delta - \delta)n/(\delta \Delta + 4 \Delta + \delta) \) for \(\delta \) even, and \(\Gamma_\delta(G) \leq (\delta \Delta + 3 \Delta - \delta + 1)n/(\delta \Delta + 3 \Delta + \delta - 1) \) for \(\delta \) odd. Furthermore, if \(G \) is an Eulerian graph, then \(\Gamma_\delta(G) \leq (\delta \Delta + 2 \Delta - \delta)n/(\delta \Delta + 2 \Delta + \delta) \).

In this paper, we need the following lemmas.

Lemma 1 (Dunbar et al. [1]). A signed dominating function \(f \) on a graph \(G \) is minimal if and only if for every vertex \(v \in V \) with \(f(v) = 1 \), there exists a vertex \(u \in N[v] \) with \(f[u] \in \{1, 2\} \).

Lemma 2 (Favaron [2]). If \(\delta \geq 2 \), then we have

\[
\begin{align*}
(1) & \quad n = m + \sum_{i=0}^l a_i, \\
(2) & \quad e(M, P) = \sum_{i=1}^l i a_i \leq m A.
\end{align*}
\]

If \(\delta = 1 \), then the result is trivial. Thus we may assume \(\delta \geq 2 \).

If \(A_0 = \emptyset \), then by Lemma 2, we have \(n = m + \sum_{i=1}^l a_i \leq m + \sum_{i=1}^l i a_i \leq (\Delta + 1)m \), which implies that \(m \geq n/(\Delta + 1) \), and hence \(\Gamma_\delta(G) = n - 2m \leq (\Delta - 1)n/(\Delta + 1) \). Noting that \((\Delta - 1)n/(\Delta + 1) < \min\{\delta \Delta + 4 \Delta - \delta)n/(\delta \Delta + 4 \Delta + \delta), (\delta \Delta + 3 \Delta - \delta + 1)n/(\delta \Delta + 3 \Delta + \delta - 1)\} \), we see the conclusion holds. Thus we may assume \(A_0 \neq \emptyset \).

For any \(v \in A_0 \), since \(f[v] = d(v) + 1 \geq \delta \geq 3 \) and \(f \) is minimal, by Lemma 1, \(v \) has at least one neighbor \(u \) such that \(u \notin A_0 \) and \(f[u] = 1 \) or \(2 \). Let \(Q = \{v \in N(A_0) \mid f[v] = 1 \text{ or } 2\} \). Noting that \(f[v] \geq 3 \) for any \(v \in \bigcup_{i=0}^{l-1} A_i \), we see that \(Q \subseteq \bigcup_{i=1}^l A_i \). Obviously, each \(u \in Q \cap A_i \) has at most \(i + 1 \) neighbors in \(A_0 \). Thus \(Q \cap A_i \) has at most \((i + 1)|Q \cap A_i| \) neighbors in \(A_0 \). By the arguments above, we have \(A_0 \subseteq \bigcup_{i=k}^l N(Q \cap A_i) \), which implies

\[
a_0 = |A_0| \leq \sum_{i=k}^l |N(Q \cap A_i)| \leq \sum_{i=k}^l (i + 1)a_i.
\]
By Lemma 2(1) and (1), we have
\[n \leq m + \sum_{i=k}^{\ell} (i + 1)a_i + \sum_{i=1}^{\ell} a_i. \] (2)

If \(k = 1 \), then by (2), we have
\[n \leq m + \sum_{i=1}^{\ell} (i + 2)a_i \] (3)

and if \(k \geq 2 \), then by (2), we have
\[n \leq m + \sum_{i=k}^{k-1} a_i + \sum_{i=k}^{\ell} (i + 2)a_i. \] (4)

If \(\bar{\delta} \) is odd, then since \((\bar{\delta} + 3)i/(\bar{\delta} - 1) \geq i + 2\) for \(i \geq (\bar{\delta} - 1)/2 = k \), by (3) and (4), we have \(n \leq m + [(\delta + 3)/(\delta - 1)]\sum_{i=1}^{\ell} i a_i \). By Lemma 2(2), we have \(n \leq m + m A(\delta + 3)/(\delta - 1) \), which implies that \(m \geq n(\delta - 1)/(\delta A + 3A + \delta - 1) \), and hence \(\Gamma_s(G) = n - 2m \leq (\delta A + 3A - \delta + 1)n/(\delta A + 3A + \delta - 1) \).

If \(\bar{\delta} \) is even, then since \((\bar{\delta} + 4)i/\bar{\delta} \geq i + 2\) for \(i \geq \bar{\delta}/2 = k \), by (3) and (4), we have \(n \leq m + [(\delta + 4)/\bar{\delta}]\sum_{i=1}^{\ell} i a_i \). By Lemma 2(2), we have \(n \leq m + m A(\delta + 4)/\bar{\delta} \), which implies that \(m \geq n\bar{\delta}/(\delta A + 4A + \bar{\delta}) \), and hence \(\Gamma_s(G) = n - 2m \leq (\delta A + 4A - \bar{\delta})n/(\delta A + 4A + \bar{\delta}) \).

Furthermore, if \(G \) is an Eulerian graph, that is, every vertex of \(G \) has even degree, then each \(u \in Q \cap A_i \) has at most \(i \) neighbors in \(A_0 \). Thus the inequality (2) can be improved as below:
\[n \leq m + \sum_{i=k}^{\ell} i a_i + \sum_{i=1}^{\ell} a_i. \]

Using similar proof, we have \(n \leq m + m A(\delta + 2)/\bar{\delta} \), which gives \(\Gamma_s(G) \leq (\delta A + 2A - \bar{\delta})n/(\delta A + 2A + \bar{\delta}) \).

Remark. Since Theorem 1 is a special case of Theorem 3, we see that the bounds in Theorem 3 are sharp in the case when \(A = \delta \), and the graph which shows the equality holds was given in [2]. In the following, we will show that the bounds in Theorem 3 are best possible in the case when \(A = \delta \geq 1 \). To see this, we first define two graphs \(K^*_r \) and \(K^*_{r.r,r} \) as follows, where \(r = [(s + 2)/2] \) and \(s \geq 2 \). Let \(K^*_r \) be a graph obtained from complete graph \(K_{2r} \) by deleting a perfect matching if \(s \) is odd and the edges of a hamiltonian cycle if \(s \) is even, and \(K^*_{r.r,r} \) a graph obtained from complete 3-partite graph \(K_{r,r,r} \) by deleting the edges of a hamiltonian cycle if \(s \) is odd and the edges of a
hamiltonian cycle together with any other edge if \(s \) is even. Let \(t \geq s + 1 \). Now, we define \(G \) to be the graph as shown in Fig. 1, where \(V(G) = X \cup Y \cup Z \) with \(|X| = \lfloor s/2 \rfloor \), \(|Y| = t \) and \(|Z| = rt \), \(G[X \cup Y] \) is a complete bipartite graph, \(G[Z] = (t/2)K^*_2r \) if \(t \) is even and \(G[Z] = [(t-3)/2]K^*_2r \cup K^*_r, r, r, r \) if \(t \) is odd, \(d_Z(y) = r \) for any \(y \in Y \) and \(\bigcup_{y \in Y} N_Z(y) = Z \), and there is no edges between \(X \) and \(Z \). Obviously, \(|G| = t + \lfloor (s + 2)/2 \rfloor t + \lfloor s/2 \rfloor \), \(\delta(G) = s \) and \(\Delta(G) = t \). Let \(f \) be a function defined on \(V(G) \) such that \(f(v) = -1 \) for \(v \in X \) and \(f(v) = 1 \) otherwise. It is easy to check \(f \) is a signed dominating function. Since \(f(y) = 2 \) for any \(y \in Y \) and \(Y \) is a dominating set of \(G \), by Lemma 1, \(f \) is minimal. Clearly, \(\omega(f) = |G| - 2|X| = t + \lfloor (s + 2)/2 \rfloor t - \lfloor s/2 \rfloor \). If \(s \) is odd, then it is easy to check that \(\omega(f) = t + (s + 1)t/2 - (s - 1)/2 = (st + 3t - s + 1)/2 = (\delta A + 3A - \delta - 1)n/(\delta A + 3A + \delta - 1) \). If \(s \) is even, then it is not difficult to see that \(\omega(f) = t + (s + 2)t/2 - s/2 = (st + 4t - s)/2 = (\delta A + 4A - \delta)n/(\delta A + 4A + \delta) \).

References