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We consider a direct approach to quark mixing based on the discrete family symmetry �(6N2) in which 
the Cabibbo angle is determined by a residual Z2 × Z2 subgroup to be |V us| = 0.222521, for N being 
a multiple of 7. We propose a particular model in which unequal smaller quark mixing angles and CP 
phases may occur without breaking the residual Z2 × Z2 symmetry. We perform a numerical analysis of 
the model for N = 14, where small Z2 × Z2 breaking effects of order 3% are allowed by model, allowing 
perfect agreement within the uncertainties of the experimentally determined best fit quark mixing values.
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1. Introduction

Non-Abelian discrete groups have been extensively used as family symmetries in the lepton sector, in order to account for the large 
leptonic mixing angles [1] (for reviews see e.g. [2–5]). In the direct approach, a non-Abelian family symmetry in the lepton sector is 
assumed. Following the determination of a Cabibbo-sized reactor angle, the only viable class appears to be �(6N2) for large N values 
[6–9]. Then, such a symmetry is broken to Z2 × Z2 in the neutrino sector (the so-called Klein symmetry) and Z3 in the charged lepton 
sector, with the mixing angles determined from symmetry.

An analogous approach based on �(6N2) has also been considered in the quark sector [10,11]. In the quark sector one may envisage a 
residual Zn × Zm symmetry of the quark mass matrices, where this is a subgroup of the �(6N2) family symmetry. However, in the quark 
sector, this approach is more challenging due to the small mixing angles. Nevertheless, earlier work showed that the Cabibbo angle could 
emerge from a residual Z2 × Z2 symmetry, arising as a subgroup of the dihedral family symmetry D7 [12,13], D12 [14], or D14 [15–17]. 
Then, more general analyses based on larger discrete family symmetry groups were considered [18,10]. Some authors have speculated 
that both the lepton mixing angles and the Cabibbo angle may arise from some common discrete family symmetry group [17,18]. Note 
that only the Cabibbo angle is determined, since the residual Z2 × Z2 symmetry only fixes the upper 2 × 2 block of the mixing matrix. 
The Cabibbo angle is predicted by θC = πn/N where n and N are integers relating to the family symmetry. A complementary approach 
to deriving the Cabibbo angle of θC ≈ 1/4 at leading order was recently considered in an indirect model based on a vacuum alignment 
(1, 4, 2) without any residual symmetry [19].

It is clear that the residual Z2 × Z2 symmetry is insufficient by itself to determine all the small quark mixing angles. Moreover, it is not 
even sufficient to fully determine the structure of the CKM matrix, since the eigenvalues of Z2 are ±1, hence at least two eigenvalues of 
the 3 × 3 generators should be the same. In order to break the degeneracy, it is necessary to consider concrete models. In a recent paper 
[11], a realistic model of quarks was proposed based on the discrete family symmetry �(6N2), where the residual symmetry for the quark 
sector was assumed to be Z2 × Z2 symmetry, corresponding to a Z2 symmetry in each of the up and down sectors. However, a drawback 
of that model was that, the resulting structure of the CKM matrix required θ23 = θ13, in the Z2 × Z2 symmetry limit. The purpose of the 
present paper is to consider an alternative direct model of quarks based on �(6N2) in which an alternative Z2 × Z2 subgroup is preserved 
which allows θ23 �= θ13. As in the previous model, the present model will provide a qualitative explanation for the smaller mixing angles, 
although their quantitative values must be fitted to experimental values, rather than being predicted.
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This paper is organised as follows. In Section 2, we discuss the Zn × Zm symmetry of the quark mass matrices and the relation with 
the CKM matrix. In Section 3, we present a brief review of the group theory of the �(6N2) series and identify suitable Z2 × Z2 subgroups 
which may be preserved in the quark sector, leading to a successful determination of the Cabibbo angle. In Section 4, we present a model 
of quarks based on �(6N2). We construct the quark mass matrices and resulting CKM mixing and derive the vacuum alignments that are 
required. In Section 5, we perform a full numerical analysis of the model for N = 14 and show that all the quark masses, CKM mixing 
angles and the unitarity triangle are accommodated. Section 6 is devoted to the summary.

2. CKM matrix and Zn × Zm symmetry of quark mass matrices

The quark mass matrices, Mu and Md , are defined in a general RL basis by

−L = ( u c t )R Mu

⎛
⎝

u

c

t

⎞
⎠

L

+ (d s b )R Md

⎛
⎝

d

s

b

⎞
⎠

L

+ H .c. (2.1)

We write the mass matrices in the diagonal basis with hats, where,

Mu = V ′
u M̂u V †

u and Md = V ′
d M̂d V †

d. (2.2)

Hence,

M†
u Mu = V u M̂†

u M̂u V †
u and M†

d Md = Vd M̂†
d M̂d V †

d. (2.3)

Thanks to Zn × Zm symmetry, the quark mass matrices in the diagonal basis are invariant under Q̂ and Â transformations,

Q̂ †
(

M̂†
u M̂u

)
Q̂ = M̂†

u M̂u and Â†
(

M̂†
d M̂d

)
Â = M̂†

d M̂d, (2.4)

where Q̂ and Â are elements of Zn and Zm , respectively, given by

Q̂ =
⎛
⎝

e2π inu/n 0 0

0 e2π inc/n 0

0 0 e2π int/n

⎞
⎠ , Â =

⎛
⎝

e2π imd/m 0 0

0 e2π ims/m 0

0 0 e2π imb/m

⎞
⎠ , (2.5)

where nu,c,t and md,s,b are integers. It then follows that in the original (non-diagonal) basis that the mass matrices are invariant under Q
and A transformations,

Q †
(

M†
u Mu

)
Q = M†

u Mu and A†
(

M†
d Md

)
A = M†

d Md, (2.6)

where

Q = V u Q̂ V †
u, A = Vd ÂV †

d. (2.7)

In the non-diagonal basis they also satisfy Q n = Am = e. Since the CKM matrix is given by V †
u Vd , up to phase transformations, it can be 

determined from the matrices which diagonalise Q and A,

Q = V Q Q̂ V †
Q , A = V A ÂV †

A, (2.8)

where we identify V u = V Q and Vd = V A .

3. The group �(6N2) and Z2 symmetry

Let us briefly review the discrete group �(6N2) [3], which is isomorphic to (Z c
N × Zd

N ) � S3. The group S3 is isomorphic to Za
3 � Zb

2, 
where we denote the generators of Za

3 and Zb
2 as a and b and we write the generators of Z c

N and Zd
N as c and d. These generators satisfy

a3 = b2 = (ab)2 = cN = dN = e, cd = dc,

aca−1 = c−1d−1, ada−1 = c,

bcb−1 = d−1, bdb−1 = c−1. (3.1)

Using them, all of �(6N2) elements are written as

g = akb�cmdn, (3.2)

for k = 0, 1, 2, � = 0, 1 and m, n = 0, 1, 2, · · · , N − 1.
For N/3 �= integer, irreducible representations are 10,1, 2, 31k , 32k , and 6[[k],[�]] . Tensor products relating to doublet and triplets are

31k × 31k′ = 31(k+k′) + 6[[k],[−k′]], 31k × 32k′ = 32(k+k′) + 6[[k],[−k′]],
32k × 32k′ = 31(k+k′) + 6[[k],[−k′]], 31k × 2 = 31k + 32k,

32k × 2 = 31k + 32k, 2 × 2 = 10 + 11 + 2. (3.3)
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Some triplets and sextet are reducible, precisely 310 = 10 + 2, 320 = 11 + 2, and 6[[−k],[k]] = 31k + 32k . If their representations are explicitly 
given, they are (x1, x2, x3)310 = (x1 + x2 + x3)10 + (ωx1 + x2 + ω2x3, ω2x1 + x2 + ωx3)2 , (x1, x2, x3)320 = (x1 + x2 + x3)11 + (ωx1 + x2 +
ω2x3, ω2x1 + x2 + ωx3)2 , and (x1, x2, x3, x4, x5, x6)6[[−k],[k]] = (x1 + x6, x2 + x5, x3 + x4)31k + (−x1 + x6, −x2 + x5, −x3 + x4)32k .

In a particular matrix representation, the irreducible triplet generators are,

a =
⎛
⎝

0 1 0

0 0 1

1 0 0

⎞
⎠ , b = ±

⎛
⎝

0 0 1

0 1 0

1 0 0

⎞
⎠ , c =

⎛
⎝

ηk 0 0

0 η−k 0

0 0 1

⎞
⎠ , d =

⎛
⎝

1 0 0

0 ηk 0

0 0 η−k

⎞
⎠ , (3.4)

for the triplet 31k with plus sign and for 32k with minus sign where η = e2π i/N .
Let us consider Q = abcx and A = abc y , i.e.

Q =
⎛
⎝

0 η−kx 0

ηkx 0 0

0 0 1

⎞
⎠ , A =

⎛
⎝

0 η−ly 0

ηly 0 0

0 0 1

⎞
⎠ , (3.5)

for 31k to Q and 31l to A. Because of the degeneracy of the two eigenvalues +1 for the above matrices, we generally have

Q = V Q

⎛
⎝

±1 0 0

0 ∓1 0

0 0 +1

⎞
⎠ V †

Q , A = V A

⎛
⎝

±1 0 0

0 ∓1 0

0 0 +1

⎞
⎠ V †

A, (3.6)

which corresponds to having a +1 eigenvalue in the (3, 3) position and the other two eigenvalues ±1 being in all possible places, with 
the trace equal to +1. The position of these eigenvalues is not fixed by symmetry arguments alone since they may be interchanged by 
further (1, 2) unitary rotations, with each choice being consistent with Q , A in Eq. (3.5). A particular model will resolve the degeneracy. 
For example in the model in [11], the ordering chosen was,

Q = V Q

⎛
⎝

−1 0 0

0 1 0

0 0 1

⎞
⎠ V †

Q , A = V A

⎛
⎝

−1 0 0

0 1 0

0 0 1

⎞
⎠ V †

A . (3.7)

This ordering was responsible for the unwanted prediction θ23 = θ13, as discussed in [11].
In the present paper we propose a model which selects the following ordering,

Q = V Q

⎛
⎝

1 0 0

0 −1 0

0 0 1

⎞
⎠ V †

Q , A = V A

⎛
⎝

−1 0 0

0 1 0

0 0 1

⎞
⎠ V †

A, (3.8)

where

V Q = 1√
2

⎛
⎝

η−kx −η−kx 0

1 1 0

0 0
√

2

⎞
⎠

⎛
⎝

cos θ 0 sin θeiα

0 1 0

− sin θe−iα 0 cos θ

⎞
⎠ ,

V A = 1√
2

⎛
⎝

−η−ly η−ly 0

1 1 0

0 0
√

2

⎞
⎠

⎛
⎝

1 0 0

0 cos θ ′ sin θ ′eiβ

0 − sin θ ′e−iβ cos θ ′

⎞
⎠ . (3.9)

For simplicity, we consider α = β = 0 in this section. As noted above, the CKM matrix is given by V CKM = V †
Q V A up to phase transforma-

tions so that

V CKM = 1

2

⎛
⎝

(1 − ηkx−ly)c (1 + ηkx−ly)cc′ + 2ss′ −2sc′ + (1 + ηkx−ly)cs′

1 + ηkx−ly (1 − ηkx−ly)c′ (1 − ηkx−ly)s′

(1 − ηkx−ly)s (1 + ηkx−ly)sc′ − 2cs′ 2cc′ + (1 + ηkx−ly)ss′

⎞
⎠ , (3.10)

where c = cos θ , s = sin θ , c′ = cos θ ′ , and s′ = sin θ ′ . If we take N = 7, kx − ly = 5 with s = −0.0021 and s′ = 0.042, we obtain |V us| =
0.222, |V cb| = 0.0409, |V ub| = 0.00911 and J = Im(V us V cb V ∗

ub V ∗
cs) = 1.81 × 10−5. Detail numerical discussions will be presented based on 

our model in Section 5.

4. Model building

4.1. Particle contents and charge assignment

Let us present the model, which realises the quark mass matrices with the symmetric property in Section 3. As seen Table 1, we 
suppose the charge assignment of the quarks and scalar fields χ s in the flavor symmetry �(6N2) and Z N+1 where N/3 is not integer.

The superpotential for the quark sector is
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Table 1
Particle contents and charge assignment of the flavor symmetry for fermions and scalar fields χ ’s.

(q1,q2,q3) (uc , cc) tc (dc , sc) bc hu ,hd χu χ ′
u χ ′′

u χd χ ′
d χ ′′

d

�(6N2) 31k 2 10 2 10 10 31(−k) 31(−k) 10 31(−k) 31(−k) 10

ZN+1 0 1 1 0 0 0 −1 −1 0 1 0 −1
Z ′

N+1 0 0 0 1 1 0 1 0 −1 −1 −1 0
U (1)R 1 1 1 1 1 0 0 0 0 0 0 0

wq = yu1((uc + ω2cc)q1χu1 + (uc + cc)ωq2χu2 + (ω2uc + cc)q3χu3)huχ
′′
u /�2

+ yu2((uc + ω2cc)q1χ
′
u1 + (uc + cc)ωq2χ

′
u2 + (ω2uc + cc)q3χ

′
u3)hu/�

+ yu3tc(q1χu1 + q2χu2 + q3χu3)huχ
′′
u /�2 + yu4tc(q1χ

′
u1 + q2χ

′
u2 + q3χ

′
u3)hu/�

+ yd1((d
c + ω2sc)q1χd1 + (dc + sc)ωq2χd2 + (ω2dc + sc)q3χd3)hdχ

′′
d /�2

+ yd2((d
c + ω2sc)q1χ

′
d1 + (dc + sc)ωq2χ

′
d2 + (ω2dc + sc)q3χ

′
d3)hd/�

+ yd3bc(q1χd1 + q2χd2 + q3χd3)hdχ
′′
d /�2 + yd4bc(q1χ

′
d1 + q2χ

′
d2 + q3χ

′
d3)hd/�. (4.1)

Multiplication rule of the group �(6N2) is based on the review [3]. For instance, the term of yu1 is given by using (x1, x2, x3)31k ×
(y1, y2, y3)31k = (x1 y1 + x2 y2 + x3 y3)10 + (ωx1 y1 + x2 y2 + ω2x3 y3, ω2x1 y1 + x2 y2 + ωx3 y3)2 + (x3 y2, x1 y3, x2 y1, x1 y2, x3 y1, x2 y3)6[k,k]
and (x1, x2)2 × (y1, y2)2 = (x1 y2 + x2 y1)10 + (x1 y2 − x2 y1)11 + (x2 y2, x1 y1)2, where ω is the cubic root of one. The vacuum alignment is 
taken as

〈χu〉 =
⎛
⎝

uu

−uuη
x

0

⎞
⎠ , 〈χ ′

u〉 =
⎛
⎝

0

0

u′
u

⎞
⎠ , 〈χ ′′

u 〉 = u′′
u,

〈χd〉 =
⎛
⎝

ud

−udη
y

0

⎞
⎠ , 〈χ ′

d〉 =
⎛
⎝

0

0

u′
d

⎞
⎠ , 〈χ ′′

d 〉 = u′′
d . (4.2)

We will discuss how to get this vacuum alignment in Subsection 4.2. The minus signs of the vacuum expectation values (VEV’s) 〈χu〉 and 
〈χd〉 are important to get the stable vacuum in the potential analysis, and those can be given only when N is even. Although, N = 7 is 
the minimum number to get the Cabibbo angle θ12 ≈ 0.22, we have to take N = 14 as the minimum to realise the stable vacuum in our 
model. In this paper, we assume VEV’s are real. By choosing proper Q and A, we can obtain Q 〈χu〉 = 〈χu〉, Q 〈χ ′

u〉 = 〈χ ′
u〉, A〈χd〉 = 〈χd〉, 

and A〈χ ′
d〉 = 〈χ ′

d〉 from Eq. (3.5) when kx = x + N/2 and ly = y + N/2. Then we have residual symmetry Z2 × Z2 for mass matrices of 
quarks. Actually, the mass matrices are expressed by

(Mu)RL = vu

�2

⎛
⎝

yu1uuu′′
u −ωyu1uuu′′

uη
x ω2 yu2u′

u�

ω2 yu1uuu′′
u −ωyu1uuu′′

uη
x yu2u′

u�

yu3uuu′′
u −yu3uuu′′

uη
x yu4u′

u�

⎞
⎠ ,

(Md)RL = vd

�2

⎛
⎜⎝

yd1udu′′
d −ωyd1udu′′

dη
y ω2 yd2u′

d�

ω2 yd1udu′′
d −ωyd1udu′′

dη
y yd2u′

d�

yd3udu′′
d −yd3udu′′

dη
y yd4u′

d�

⎞
⎟⎠ . (4.3)

They satisfy Q †M†
u Mu Q = M†

u Mu and A†M†
d Md A = M†

d Md .
Mass matrices in LL basis become

V u†
12 M†

u Mu V u
12 = v2

u

�4

⎛
⎜⎝

(|yu1|2 + 2|yu3|2)u2
uu′′ 2

u 0 −√
2(y∗

u1 yu2 − y∗
u3 yu4)uuu′

uu′′
u�

0 3|yu1|2u2
uu′′ 2

u 0

−√
2(yu1 y∗

u2 − yu3 y∗
u4)uuu′

uu′′
u� 0 (2|yu2|2 + |yu4|2)u′ 2

u �2

⎞
⎟⎠ ,

V d†
12M†

d Md V d
12 = v2

d

�4

⎛
⎜⎝

3|yd1|2u2
du′′ 2

d 0 0

0 (|yd1|2 + 2|yd3|2)u2
du′′ 2

d

√
2(y∗

d1 yd2 − y∗
d3 yd4)udu′

du′′
dη

−y

0
√

2(yd1 y∗
d2 − yd3 y∗

d4)udu′
du′′

d�ηy (2|yd2|2 + |yd4|2)u′ 2
d �2

⎞
⎟⎠ , (4.4)

where

V u
12 =

⎛
⎝

1 ηx 0

−η−x 1 0

0 0
√

2

⎞
⎠ =

⎛
⎝

1 0 0

0 −η−kx−x 0

0 0 1

⎞
⎠ V Q

⎛
⎝

ηkx 0 0

0 −ηkx+x 0

0 0 1

⎞
⎠ ,

V d
12 = 1√

2

⎛
⎝

1 −ηy 0

η−y 1 0√

⎞
⎠ =

⎛
⎝

−1 0 0

0 η−ly−y 0

⎞
⎠ V A

⎛
⎝

ηly 0 0

0 ηly+y 0

⎞
⎠ , (4.5)
0 0 2 0 0 1 0 0 1
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Table 2
Particle contents and charge assignment of the flavor symmetry and U (1)R for the flavon fields χ ’s and driving fields �i .

χu χ ′
u χ ′′

u χd χ ′
d χ ′′

d �1 �2 �3 �4 �5 �6 �7 �8

�(6N2) 31(−k) 31(−k) 10 31(−k) 31(−k) 10 10 10 10 10 10 10 10 10

ZN+1 −1 −1 0 1 0 −1 3 3 3 −3 −1 0 −1 1
Z ′

N+1 1 0 −1 −1 −1 0 −3 −1 0 3 3 3 1 −1
U (1)R 0 0 0 0 0 0 2 2 2 2 2 2 2 2

where V Q and V A are the ones of Eq. (3.9) (where the CKM matrix is only specified by the symmetry up to phase transformations). Each 
mass matrix contains four parameters, we can obtain three masses and additional mixing angle in general.

4.1.1. Masses and mixing
Masses and mixing angles can be obtained by diagonalising the mass matrices. Masses are expressed by

m2
u = v2

u

2�4
(m4

u22 + m4
u33 −

√
(m4

u22 − m4
u33)

2 + 4m8
u23), m2

c = 3|yu1|2 v2
uu2

uu′′ 2
u

�4
,

m2
t = v2

u

2�4
(m4

u22 + m4
u33 +

√
(m4

u22 − m4
u33)

2 + 4m8
u23),

m2
d = 3|yd1|2 v2

du2
du′′ 2

d

�4
, m2

s = v2
d

2�4
(m4

d22 + m4
d33 −

√
(m4

d22 − m4
d33)

2 + 4m8
d23),

m2
b = v2

d

2�4
(m4

d22 + m4
d33 +

√
(m4

d22 − m4
d33)

2 + 4m8
d23), (4.6)

where m4
α22 = (|yα1|2 + 2|yα3|2)u2

αu′′ 2
α , m4

α23 = √
2|(y∗

α1 yα2 − y∗
α3 yα4)|uαu′

αu′′
α�, and m4

α33 = (2|yα2|2 + |yα4|2)u′ 2
α �2 with α = u, d. 

Similarly, mixing matrices are

V u = V u
12

⎛
⎝

cos θu 0 −eiφu sin θu

0 1 0

e−iφu sin θu 0 cos θu

⎞
⎠ , V d = V d

12

⎛
⎝

1 0 0

0 cos θd −eiφd sin θd

0 e−iφd sin θd cos θd

⎞
⎠ , (4.7)

where

tan 2θu = 2m4
u23

m4
u33 − m4

u22

, tan 2θd = 2m4
d23

m4
d33 − m4

d22

, (4.8)

and φu,d are given by phases of Yukawa coupling and ηy . The CKM matrix is given by V CKM = V †
u Vd so that

V CKM = 1

2

⎛
⎝

(1 − ηx−y)cu −(ηx + ηy)cucd + 2ei(φu−φd)su sd 2eiφu sucd + (ηx + ηy)eiφd cu sd

η−x + η−y (1 − η−x+y)cd −(1 − η−x+y)eiφd sd

−(1 − ηx−y)e−iφu su (ηx + ηy)e−iφu sucd + 2e−iφd cu sd 2cucd − (ηx + ηy)e−i(φu−φd)su sd

⎞
⎠ , (4.9)

where su = sin θu , cu = cos θu , sd = sin θd , and cd = cos θd . For example, if we take N = 7, x − y = 4, su = −0.0021 and sd = 0.042 with real 
Yukawa couplings, we obtain the desired values |V us| = 0.22 and |V cb| = 0.041, but undesired one |V ub| = 0.0091, which is the predicted 
lower bound of |V ub|.

In addition, they obtain the unitarity triangle with three angles α = 90◦ , β = 77◦ , and γ = 13◦ , which is an unfavoured triangle. 
Therefore, we need to take complex Yukawa couplings in order to get the proper |V ub| and CP phase.

4.2. Potential analysis

In order to get desired vacuum expectation values of χ ’s, we introduce the driving fields �i with the U (1)R symmetry in the framework 
of the supersymmetry. The charge assignment for the scalar fields χ ’s and driving fields �i is given in Table 2. Then, the leading order of 
the superpotential is given by

w = λ1

�
χ3

u �1 + λ2

�
χuχ

′ 2
u �2 + λ3

�
χ ′ 3

u �3 + λ4

�
χ3

d �4 + λ5

�
χdχ

′ 2
d �5 + λ6

�
χ ′ 3

d �6

+
∑

n

(
λ7n

�2n−1
χn

u χn+1
d )�7 + λ′

7

�N−2
χ N

u �7 +
∑

n

(
λ8n

�2n−1
χn+1

u χn
d )�8 + λ′

8

�N−2
χ N

d �8. (4.10)

They can be explicitly written as

w = λ1

�
χu1χu2χu3�1 + λ2

�
(χu1χ

′
u2χ

′
u3 + χu2χ

′
u1χ

′
u3 + χu3χ

′
u1χ

′
u2)�2 + λ3

�
χ ′

u1χ
′
u2χ

′
u3�3

+ λ4
χd1χd2χd3�4 + λ5

(χd1χ
′
d2χ

′
d3 + χd2χ

′
d1χ

′
d3 + χd3χ

′
d1χ

′
d2)�5 + λ6

χ ′
d1χ

′
d2χ

′
d3�6
� � �
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+
∑

n1,n2,n1≥n2

λ7n1,n2

�12n1−6n2+1
(χu1χu2χu3)

n1(χd1χd2χd3)
n2

× (χu1χd2χd3 + χu2χd1χd3 + χu3χd1χd2)
3n1−3n2+1�7

+
∑

n1,n2,n1≥n2

λ8n1,n2

�12n1−6n2+1
(χu1χu2χu3)

n1(χd1χd2χd3)
n2

× (χu1χu2χd3 + χu2χu3χd1 + χu3χu1χd2)
3n1−3n2+1�8

+ λ′
7

�N−2
(χ N

u1 + χ N
u2 + χ N

u3)�7 + λ′
8

�N−2
(χ N

d1 + χ N
d2 + χ N

d3)�8. (4.11)

By solving the potential minimum conditions, we obtain the vacuum expectation values as follows:

〈χu〉 =
⎛
⎝

uu

−uuη
x

0

⎞
⎠ , 〈χ ′

u〉 =
⎛
⎝

0

0

u′
u

⎞
⎠ , 〈χd〉 =

⎛
⎝

ud

−udη
y

0

⎞
⎠ , 〈χ ′

d〉 =
⎛
⎝

0

0

u′
d

⎞
⎠ , (4.12)

where N is taken to be even otherwise the minus sign does not appear. These VEV’s present desirable vacuum alignments.

4.3. Z2 breaking terms

Z2 breaking terms for the Yukawa couplings are highly suppressed. The leading order for the breaking is

�wq = yb1((uc + ω2cc)q1χd1 + (uc + cc)ωq2χd2 + (ω2uc + cc)q3χd3)huχ
′′N−1
u χ ′′ 2

d /�N+2

+ yb2tc(q1χd1 + q2χd2 + q3χd3)huχ
′′N−1
u χ ′′ 2

d /�N+2

+ yb3((d
c + ω2sc)q1χu1 + (dc + sc)ωq2χu2 + (ω2dc + sc)q3χu3)hdχ

′′ 2
u χ ′′N−1

d /�N+2

+ yb4bc(q1χu1 + q2χu2 + q3χu3)hdχ
′′ 2
u χ ′′N−1

d /�N+2. (4.13)

For the superpotential of scalar fields, the leading order of Z2 breaking terms appears as

�w = λb1

�N−1
χ ′N

u χ ′′
u �7 + λb2

�N−1
χ ′N

d χ ′′
d �8. (4.14)

The VEV’s of χu and χd are deviated by these terms. Then, the vacuum alignment is deviated by

〈χu〉 =
⎛
⎝

uu +O(u′N
u u′′

u/�N)

−uuη
x +O(u′N

u u′′
u/�N)

0

⎞
⎠ , 〈χd〉 =

⎛
⎜⎝

ud +O(u′N
d u′′

d/�N)

−udη
y +O(u′N

d u′′
d/�N)

0

⎞
⎟⎠ , (4.15)

and alignment of other fields are highly suppressed. With this deviation, the mass matrix is modified as

(Mu)RL = vu

�2

⎛
⎝

yu1uuu′′
u −ωyu1uuu′′

uη
x ω2 yu2u′

u�

ω2 yu1uuu′′
u −ωyu1uuu′′

uη
x yu2u′

u�

yu3uuu′′
u −yu3uuu′′

uη
x yu4u′

u�

⎞
⎠ + vu

�N+2

⎛
⎝
O(u′N

u u′′ 2
u ) O(u′N

u u′′ 2
u ) 0

O(u′N
u u′′ 2

u ) O(u′N
u u′′ 2

u ) 0

O(u′N
u u′′ 2

u ) O(u′N
u u′′ 2

u ) 0

⎞
⎠ ,

(Md)RL = vd

�2

⎛
⎜⎝

yd1udu′′
d −ωyd1udu′′

dη
y ω2 yd2u′

d�

ω2 yd1udu′′
d −ωyd1udu′′

dη
y yd2u′

d�

yd3udu′′
d −yd3udu′′

dη
y yd4u′

d�

⎞
⎟⎠ + vd

�N+2

⎛
⎜⎝
O(u′N

d u′′ 2
d ) O(u′N

d u′′ 2
d ) 0

O(u′N
d u′′ 2

d ) O(u′N
d u′′ 2

d ) 0

O(u′N
d u′′ 2

d ) O(u′N
d u′′ 2

d ) 0

⎞
⎟⎠ . (4.16)

Thus, the magnitude of Z2 breaking terms for the mass matrix is of order O(u′N
u u′′

u/uu�N ) for up-type quarks and O(u′N
d u′′

d/ud�
N ) for 

down-quarks, respectively.

5. Numerical analysis

When the subgroup Z2 × Z2 is preserved and the phase of VEV’s is fixed, the number of parameters is four in each mass matrix. 
Then we can obtain three masses and one mixing angle as free parameters. For the symmetry and phases, we choose N = 14 and 
x − y = 6 then we predict sin θ12 = 0.222521 at the leading order.1 This is to be compared to the experimental value at the weak scale of 
|V us| = 0.225 ± 0.001.

Suppose that the flavor symmetry exists at the scale of the grand unified theory (GUT). Then, we should fit the quark masses and 
mixing angles at the GUT scale with the supersymmetry. Inputting experimental data at the low energy scale, the renormalisation group 
runnings give us following values [20]:

1 This is identical to the example in the Introduction for N = 7 as well as the prediction of the previous model for N = 28 [11].
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Fig. 1. Scattering plots among the CKM matrix elements, the angles of the unitarity triangle and the mass ratios in the case of the Z2 × Z2 invariant mass matrices. Cross 
marks denote the experimental central values.

θ12 ≈ 0.2276, 2.9 × 10−3 ≤ θ13 ≤ 3.4 × 10−3, 3.3 × 10−2 ≤ θ23 ≤ 3.9 × 10−2,

4.8 × 10−6 ≤ mu

mt
≤ 5.4 × 10−6, 2.3 × 10−3 ≤ mc

mt
≤ 2.6 × 10−3,

6.3 × 10−4 ≤ md

mb
≤ 8.9 × 10−4, 1.8 × 10−2 ≤ ms

mb
≤ 1.2 × 10−2. (5.1)

We reproduce these mass and mixing angles by scattering our model parameters while N = 14 and x − y = 6 are fixed.
In Figs. 1 and 2, we show the scattering plots to see the consistency with experiments. Giving random values for all the Yukawa 

couplings with phases and VEV’s of flavons, we get quark masses and mixing angles by diagonalising mass matrices of up- and down-type 
quarks, which are constrained by the observed values in Eq. (5.1). The physical values are actually three up-quark masses, three-down 
quark masses, three mixing angles, and CP phase. Since the third generation masses can be determined independently, we fit the mass 
ratios.

For the case of the Z2 × Z2 invariant quark mass matrices, we plot the CKM matrix elements, the CP angles (α, β , γ ) and the mass 
ratios in Fig. 1, where red and blue cross marks denote the experimental central values at the weak scale [1] since the running effect is 
small.

As discussed above, |V us| (|V cd|) is predicted to be in the very narrow range even if the next leading terms are added to the leading 
term |ηx + ηy |/2. The CKM elements |V cb| and |Vts| are reproduced due to the parameter θd . The |V ub| and |Vtd| depend on both θd
and θu . Due to the phases of Yukawa couplings, these elements are fitted well. The three angles of the unitarity triangle and the quark 
mass ratios are also reproduced.

In order to fit the mixing angles perfectly, especially |V us|, Z2 breaking terms are required. As seen in Eq. (4.16), the mass matrices 
are modified due to the deviation of VEV’s. Comparing to the leading terms that preserve Z2, the magnitude of breaking terms is of order 
u′N

u u′′
u/uu�N . We show the scattering plot of the CKM matrix elements including the Z2 breaking effect at 3% level in Fig. 2, where red 

and blue cross marks also denote the experimental central values at the weak scale [1]. As seen in this figure, we can reproduce the 
experimental values of the mixing angles perfectly if Z2 is broken of order 3%.

6. Summary

We have considered a direct approach to quark mixing based on the discrete family symmetry �(6N2) in which the Cabibbo angle 
is determined by a residual Z2 × Z2 subgroup to be |V us| = 0.222521, for N being a multiple of 7. This prediction is very close to 
the experimental value |V us| = 0.225 ± 0.001. We have proposed a particular model in which |V cb|, |V ub| and the CP phase may occur 
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Fig. 2. Relations among the CKM matrix elements, where the Z2 breaking effects of order 3% are introduced. Cross marks denote the experimental central values.

without breaking the residual Z2 × Z2 symmetry. We performed a numerical analysis of the model for N = 14, which realises the stable 
vacuum. For the Z2 × Z2 invariant quark mass matrices, the CKM matrix elements, the CP angles (α, β , γ ) and the mass ratios are 
accommodated to the experimental data. The small Z2 × Z2 breaking effects of order 3% allow perfect agreement within the uncertainties 
of the experimentally determined best fit quark mixing values.

Finally, it is tempting to speculate that �(6N2) could be suitable as a candidate family symmetry for a complete model of quark and 
lepton masses and mixing. In the lepton sector, �(6N2) has been shown to be the only viable candidate group which can provide a direct 
symmetry explanation of the lepton mixing, with a preserved Klein symmetry Z2 × Z2 in the neutrino sector and a Z3 in the charged 
lepton sector, where both symmetries are subgroups of �(6N2). However no detailed model of leptons has been proposed. Here we have 
proposed a �(6N2) model of quarks where a different Z2 × Z2 subgroup controls the quark sector, providing an explanation of the Cabibbo 
angle for N being a multiple of 7, while allowing a good fit to other quark mixing parameters. It might be possible to extend this model 
to include also leptons, although we leave this idea for future work.
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