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Abstract

Verification of imperative programs means reasoning about modifications of a program state. So
proper representation of state spaces is crucial for the usability of a corresponding verification
environment. In this paper we discuss various existing state space models under different aspects
like strong typing, modularity and scalability. We also propose a variant based on the locale
infrastructure of Isabelle. Thus we manage to combine the advantages of previous formulations
(without suffering from their disadvantages), and gain extra flexibility in composing state space
components (inherited from the modularity of locales).
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1 Introduction

The core of any kind of imperative program is the update of a system state.
Every theorem proving approach for reasoning about imperative programs
involves a formal representation of the system state at the base of the program
calculus, whether this is UNITY [1], TLA [15], Hoare logics [8,11,20], or others
[9,22,6].
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An adequate formal model for representing program state is a delicate
issue. The model has to be sufficiently detailed to express the properties to be
verified, but excessive detail may pose a burden to interactive verification due
to “formal noise” that conceals the interesting problems. Even more, some
specific properties of a programming language may have to be reflected in
the state space model. E.g. Java ensures that only initialised variables are
accessed, whereas C lacks such guarantees. In the latter case, it is desirable to
ensure the absence of illegal memory accesses by formal verification. For Java
a state space model that abstracts from initialisation is fine, but it would be
ill-suited for C.

This short discussion already shows that we cannot expect a single solution
that fits best to all possible applications. Our particular motivation for this
work was reasoning about C0 programs (a type-safe subset of C), within the
Verisoft project. 4 Here the state was represented as a record in a general Hoare
logic environment [20], implemented in Isabelle/HOL [17]. It turned out that
the main limitation of this record representation is a lack of compositionality
and scalability in the large verification tasks of Verisoft.

In the present paper we introduce an improved version of state spaces,
which is also of interest beyond Hoare logic reasoning: it can be viewed as a
general concept for abstract open records in HOL with support for multiple
inheritance.

Preliminaries. Isabelle is a generic logical framework which works with dif-
ferent object logics. We only refer to Isabelle/HOL [17], which is an implemen-
tation of higher-order logic augmented with facilities for defining datatypes,
records, inductive sets, recursive functions etc. The implementation language
of Isabelle is SML, which can also be used at run-time to program and extend
the system in a logically sound manner, according to the well-known “LCF
approach”.

Keywords like lemma, record, locale, etc. refer to Isabelle theory com-
mands. The notation for types, terms and propositions approximates standard
mathematical notation, with a bias towards λ-calculus. There are the usual
type constructors T 1 × T 2 for product and T 1 ⇒ T 2 for the total function
space. For type variables we use greek letters α, β, γ or alternatively ′name
for longer names. For type constants we use plain identifiers (e.g. name).
The term language refers to abstraction λx ::α. b (where types are usually left
implicit thanks to type-inference), and curried function application as in f x
y. Functional update of f at position x with new value v is written f (x :=
v). The Isabelle framework expresses proof rules in Natural Deduction style,
using

∧
for quantification and =⇒ for implication.

4 http://www.verisoft.de
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Overview. In §2 we examine some expected requirements of state space
models. In §3 we discuss existing state space representations, covering func-
tions, tuples, records, and abstract types. In §4 we introduce our variant based
on locales in Isabelle, and report on its application in the context of a Hoare
logic.

2 Requirements of State Space Models

In principle, modelling state spaces for imperative programming languages is
trivial. In mathematics, a state may be seen as a function from a set of names
to a set of values, with range restrictions V n depending on field names n,
i.e. s : N ⇀ V where V =

⋃
n∈N V n and ∀ n ∈ N . s n ∈ V n. In an untyped

logic like set theory this is a reasonable approach [21,13]; the same idea may
be formalised in type-theory as a dependent function space. As we intend
to produce formal reasoning tools in the end, we now step back from purely
logical foundations and reconsider high-level requirements arising in practical
verification.

Lookup and update. The most basic features of a state space is the lookup
and update of a variable, as they appear in programming language expressions,
assertions, or in statements. To reason about a global state it is also crucial
to express so-called frame conditions, the parts of a state that do not change
during certain operations. Putting those aspects together we need means to
access an individual variable and also its complement (all other variables).

Typing. Typed programming languages structure the program state by
assigning different types to the variables. Programming language types can
either be mapped to HOL types or HOL terms (e.g. as sets). If the program-
ming language is type-safe and the HOL type system is expressive enough it
is desirable to map the program types directly to HOL types. Thus strong
typing of the underlying logic is directly employed to support verification of
imperative programs.

Modularity. When composing a system from several components the ques-
tion of modularity of the reasoning framework appears. Immediate composi-
tionality demands a uniform representation of the state space of the different
components. Otherwise intermediate steps may have to be introduced to lift
a component and a property to the combined state space. If components are
replicated, renaming may also become important for compositionality. E.g.
consider a library for linked heap lists that regards only a next pointer for op-
erations like append, reverse, etc. This basic structure may appear in various
kinds of lists, like strings or queues. Then it is desirable to verify the library
only once for an abstract next-field, and instantiate it later for various kinds
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of lists present in the application.

Scalability. We want to handle non-trivial programs, say with hundreds
of global variables (e.g. a compiler for C0 written in C0). The state space
model needs to support this, despite the resource limitations of contemporary
computers.

3 Existing Models

3.1 State as Function

The first attempt to embed a programming logic into HOL is the work of
Gordon [8]. He represents the state as function from names to values: name
⇒ value. Variable names are first-class objects of HOL, which means that we
can quantify over them. For example, the frame condition ∀ x . x �= y −→ s1

x = s2 x expresses that states s1 and s2 may only be different for variable
y. The domain of all variables is represented by the same HOL type, namely
value. Gordon and later Homeier [11] only consider programs with variables
ranging over numbers. Treating variables of different types or even composite
types like arrays requires a more complex representation of values. In his
formalisation of Dijkstra, Harrison [9] uses an inductive datatype to address
this problem, e.g.:

datatype value = Intg int | Bool bool | Array value list.

The different representations for integers (int), Booleans (bool) and arrays
(value list) are injected into the type value by the constructors Intg, Bool
and Array. By modelling arrays as lists of values also nested arrays can be
expressed. An example array of array of integers is Array [Array [Intg 1,
Intg 2], Array [Intg 3, Intg 4]]. A drawback of this approach is that a mixed
array like Array [Intg 1, Bool b] is a perfectly legal value but is typically ruled
out by the type system of the programming language. This issue carries on
to expressions, where we have to explicitly deal with programming language
typing within HOL. Consider the simple statement x := y + 1. Such an
assignment boils down to a function update in our state space. To handle the
addition we somehow have to lift the HOL addition that is defined for type
int to type value. There are two possibilities: project the arguments or lift the
operation. Even in case of a deep embedding of the expression and statement
language the evaluation function implements one of those two possibilities (or
maybe a mixture of both of them).

Projecting arguments (aggressive evaluation): For each variable type
we define a projection function. E.g. the function the-Intg for type int :
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the-Intg :: value ⇒ int

the-Intg (Intg i) = i

Since HOL functions are total the term the-Intg (Bool b) is legal, but results
in an unspecified int. The assignment x := y + 1 is modelled as:

s(x := Intg (the-Intg (s y) + 1)).

Here s is the current state, which is updated at position x. We have to
insert projections and injections into the original expression, which carries
on to assertions about the program and therefore clutters up the verification
task, unless we find some means to hide these indirections.

Lifting operations (type-sensitive evaluation): In this approach we ex-
plicitly fix the binary operations and define their evaluation for values:

datatype bop = Add | And

eval :: (bop × value × value) ⇒ value

eval (Add , Intg n, Intg m) = Intg (n + m)

eval (And , Bool b, Bool c) = Bool (b ∧ c)

Again eval is under-specified, if the arguments have different types. In this
setting our assignment x := y + 1 becomes s(x := eval (Add , s y , Intg
1)).

Since the set of possible operations is made explicit by the datatype bop,
the evaluation function eval can take care of typing issues and implicitly
perform the projections from value. However, primitive values like 1 have to
be injected into type value now. Moreover, basic properties of the operations
only hold for correctly typed expressions. E.g. commutativity of addition:
eval (Add , n, m) = eval (Add , m, n) only holds, if we know that both
arguments are of the form Intg i. In this case we can reduce the addition on
type value to the ordinary integer addition and inherit its properties. We
need to insert those explicit type constraints into the assertions about the
program to be able to lift the logical properties of the operations for types
int or bool to type value. This basically means that we prove type safety of
evaluation every time we reason about expressions. This is annoying, since
for a type-safe programming language this can be shown once and for all.

Comparing the two approaches, the first works well when type-safety is
already guaranteed by the programming language. Then it is sufficient to
use the aggressive evaluation strategy for expressions and assertions. Type-
safety is naturally reflected in the logical representation in the sense that the
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projections and injections cancel each other in individual programs. E.g. if
variable i is supposed to store an int, every update introduces the constructor
Intg and a lookup (as it may appear in an assertion) uses the corresponding
destructor the-Intg, but not the-Bool etc. The abstraction level on which
assertions are formulated is the-Intg (s i) and not something like s i = Intg
n. This uniform view on a state as holding atomic entities in the projected
form the-Intg (s i) avoids implicit type constraints that would have to be
discharged later. This is exactly the same view as provided by the other state
space representations discussed below.

The second approach demands explicit typing constraints in assertions.
This only makes sense if type-safe execution is not guaranteed and is therefore
an essential part of the verification or if the type-system of the programming
language cannot easily be mapped to the simple types of HOL.

In general, representing the state as a function leads to a uniform rep-
resentation for all components and thus the components can be developed
independently of each other. To achieve compositionality the tool only has to
ensure that the names used in different components are distinct. Using strings
as names and some kind of name mangling seem to be appealing at first sight.
However, strings in Isabelle/HOL are implemented as lists of characters and
are rather heavyweight objects in this setting, where the only required prop-
erty is to check whether names are different. Renaming of variables is not
easily achieved, since it demands an explicit transformation of the program
and the assertions.

The restriction to one common universal type of values is another (the-
oretical) burden. We need to know in advance which values are embedded.
This contradicts the very idea of truly modular development of components.
However, as long as all the different values of the programming language can
be embedded into an inductive datatype once and for all, this is not a practical
issue.

3.2 State as Tuple

As alternative to states as functions, Wright et al. [22] propose tuples. Vari-
ables are identified by position in the tuple rather than by name. E.g. the
tuple int × int × bool represents a state space with three variables of type
int, int, and bool, respectively. Each variable thereby has an individual HOL
type. The typing issues of the “state as function” approach are eliminated
since the artificial super-type for all variables is avoided. Variable types are
identified with HOL types, and type inference ensures well-typed expressions.

By choosing the names of bound variables when abstracting over the state
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space, one can even annotate expressions with the programming language
variables. Abstraction naturally occurs in assertions, if they are represented
as predicates state ⇒ bool, or in update functions state ⇒ state. E.g. the state
update of our running example x := y + 1 can be encoded in the following
function:

λ(x , y , b). (y + 1, y , b)

Using λ-abstraction the variables of the tuple are named x, y and b. If all
variables are known, this translation from the assignment to the state update
can be handled by a mere syntactic translation. However, great care has to be
taken, since those translations have to account for all variable names and their
order in the tuple. Moreover, names of bound variables can only be considered
as comments for the reader. Due to α-conversion there is no logical difference
between λ(x , y , b). (y + 1, y , b) and λ(n, m, k). (m + 1, m, k). Note that
a one-to-one translation between the input and output syntax is not always
possible. Consider the two assignments x := x and y := y. Both would be
mapped to the same internal form: λ(x , y , b). (x , y , b), the identity function.

Since variables lack proper names, we cannot quantify over them. Fortu-
nately, typical assertions do not quantify over variables, but merely refer to
their values within the state. This works in the same fashion as the state
update above. How can we express frame conditions? To specify that only
the value of y may change, one can list all other variables: x 1 = x 2 ∧ b1 = b2.
This is how frame conditions work out in principle, but the main drawback is
poor modularity. Every time we add a new variable to the program, we have
to adapt those specifications.

Poor compositionality is also caused by the lack of a uniform state for all
components. If we attempt to combine two components we can first build
the Cartesian product of the underlying state spaces and try to rerun the old
proofs. However, this will only work if the variable names occurring in the
proofs are distinct to begin with. Elsewise we could try to come up with a
calculus for composition, that lifts components to the Cartesian products.

Scalability of the tuple approach is limited in Isabelle/HOL. The problem
is that the state tuple is explicitly split in every expression like λ(x , y , b). (x ′,
y ′, b ′). The type information stored in such a split tuple grows quadratically
with the size of the tuple: the underlying Pair constructor is polymorphic:
Pair ::α ⇒ β ⇒ α × β. Every constructor application is fully annotated
with its type and a tuple (x 1, x 2,. . .) is internally Pair x 1 (Pair x 2 . . .). The
situation is similar for tuple abstraction, which is based on split :: (α ⇒ β ⇒
γ) ⇒ α × β ⇒ γ.
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3.3 State as Record

Records are similar to tuples, but additionally allow us to give proper names
to variables. They were proposed by Wenzel [23] as state space representation
and successfully used by Prensa [19] for the verification of parallel programs
and by Paulson [18] for the formalisation of UNITY. Records enhance tuples
by supplying selection and update functions for each constituent. For example,

record state =
x ::int
y ::int
b::bool

yields the selectors x :: state ⇒ int, y :: state ⇒ int and b :: state ⇒ bool,
and update functions x-update :: int ⇒ state ⇒ state, y-update :: int ⇒ state
⇒ state and b-update :: bool ⇒ state ⇒ state. A record update x-update i s
is written as s(|x := i |). Then x := y + 1 becomes s(|x := y s + 1|).

With selectors and updates as explicit functions, it is also easy to provide
notation for program expressions, commands and annotations [23], closely
resembling informal presentations. For example, the assertion {s . y s = x s
+ a} (a set-comprehension over states) may then be written as {|y = x + a|}.

As with tuples we still cannot quantify over variable names, since record
field names are not first-class objects of HOL. A field is merely characterised
by its selection and update functions. However, due to extensional equality
we can now specify that only y may change, without having to mention the
other variables: ∃ i . s2 = s1(|y := i |). Both in this specification and the as-
signment above, only the relevant portions of the state space occur. This
improves modularity compared to tuples. If the framework takes care to as-
sign distinct variable names to different components, we can replace the record
of a component with the record containing all variable names of all compo-
nents and the proofs still remain valid when we rerun them. Even better, we
can avoid rerunning the session by exploiting the extensibility of records in
Isabelle/HOL [16,17]. Every record has an extension field “. . .” of arbitrary
type. By instantiating this slot with a new chunk of record-fields the record
can be extended. This new chunk again contains a polymorphic “. . .” field
for further extensions. Thanks to this structural sub-typing, we get linear
extensions of records essentially for free. Brucker and Wolff [6] handle sin-
gle inheritance of object oriented programs by adding another dimension to
this construction, employing a polymorphic sum. This allows to add various
subclasses on the same level.

To get beyond a linear development of component states, we can develop
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a calculus for record composition, by defining an operator that transforms the
state space by lifting all operations and assertions from a component state
to the compound state. This approach is implemented and elaborated for
a Hoare logic [20], but it gets technically tedious to implement in the tool
and is rather heavyweight. Paulson [18] has developed a theory of program
composition for UNITY, experiencing similar inconveniences.

Scalability of records is better than for raw tuples. By using lookup and up-
date functions the record is not explicitly split in every expression. Moreover,
the representing type for records may be grouped according to the structure
of record extensions, not individual record fields. This reduces the number
of nested tuple constructions. However, the 2008/2009 version of the record
package in Isabelle/HOL still decomposes records internally to prove some
auxiliary theorems, e.g. in the simplification procedure that proves that an
update of a field x does not affect the value of another field y. Hence the
performance of records also suffers from their size. In Isabelle/HOL records
are defined as an abstraction on tuples nested to the right. Better results may
be achieved by balanced nesting of tuples as a binary tree, as for example
implemented in HOL4. 5

3.4 State as Abstract Type

Merz [15] aims at a uniform global state representation combined with strong
typing of variables. The idea is to regard the state as an abstract type state
with a co-algebraic structure imposed by inspectors like N :: state ⇒ nat and
B :: state ⇒ bool to represent the variables. Rather than defining the type
and the inspector functions, their behaviour is characterised axiomatically.
Update functions are not directly supported but in a relational framework the
effect can be described with the inspector functions alone, e.g. {(s1, s2). N
s2 = N s1 + 1}. The axioms basically need to ensure that variables can be
updated independently, which requires all variables to be known in advance.
So modularity is limited to addition of new variables without old proof scripts
breaking. Similarly, Back and von Wright [2] axiomatise both the lookup and
update functions.

Without having to rely on global axioms, Heyd and Crégut [10] employ
the section-concept of Coq to declare only the parts of the state that are used
by a component within their formalisation of UNITY. The state is not com-
pletely abstract, but modelled as a dependent function from variable names
to the domain of each variable. The sections maintain the assumptions on
the distinctness of variables and their types and provide projection and injec-

5 Personal communication with Michael Norrish.
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tions similar to the “state as function” approach. Given a compound state,
which holds all variables of all components, the assumptions of the individual
components can be discharged. The individual correctness results for each
component are transferred to the compound state. However, Coq sections
cannot be easily reassembled after being closed. So incremental development
of libraries building on each other demands a lot of manual work. Heyd and
Crégut also request better tool support to handle notation that hides the
projections and injections.

4 The Locale Way

Let us briefly reconsider the particular benefits of the different approaches
discussed so far. State as a tuple gives us strong typing for the variables,
and records provide a convenient view on the state, by providing dedicated
lookup and update functions for variables. Regarding compositionality, the
clear winner is the “state as function” approach, for the following intuitive
reason: imperative programs and the typical specifications we intend to prove
only require the state to have at least a particular set of distinct variables.
This idea is directly captured in a function with an infinite domain of names.
Whereas tuples and records are overly specific in the sense that they restrict
the state to exactly these variables.

The problems described with the “state as function” approach essentially
boil down to the need to make everything concrete, such as concrete names
for variables and a concrete universal type for all possible values. This makes
it hard for the tool implementor to provide a modular framework for the
independent development of different components.

We now employ Isabelle locales [12,3,4], to make everything abstract.
Names are represented by a type variable ′name and we assume all free vari-
ables, of that type, which are used in the component, to be distinct. Similarly,
values are of type ′value and we assume the presence of injection and projec-
tion functions that we need for a concrete component. All reasoning about
programs is carried out abstractly relative to these assumptions. Locales en-
able rename, merge and addition of state space components as we compose
our program segments. When the main program (or procedure) is assembled
we can discharge the accumulated assumptions by providing distinct names
and a value type that is big enough to hold all the types occurring in the
program (e.g. a suitable sum type). In analogy to a compiler, reasoning first
proceeds in an abstract, symbolic state space; then we “link” the whole pro-
gram by assigning concrete names. The resulting theorems no longer mention
any hypotheses about the state space construction.
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4.1 Proof Contexts and Locales

Every proof in Isabelle depends on a background data structure called proof
context, which was originally introduced by Wenzel [24,25] to support struc-
tured proof texts written in the Isar language. In a sense, a proof context is
just “abstract nonsense” that helps to organise formal reasoning; a context
may hold arbitrary data that can be declared at compile-time in a type-safe
manner.

The original model for this notion of context stems from certain aspects
of the underlying logical calculus of Isabelle (and the HOL family in general):
here the main judgement Γ 	 B means that proposition B is derivable within
an environment Γ = α1, . . ., αl, x 1, . . ., xm, A1, . . ., An consisting of fixed type
variables, term variables, and hypotheses. Isabelle provides explicit notation
to establish theorems within a local context, for example:

lemma fixes x ::α assumes a: A x shows b: B x 〈proof 〉
The proof may refer to a fixed parameter x ::α and local fact a: A x, while the
final result is exported from that context as a rule b:

∧
x . A x =⇒ B x. Note

that types are usually left implicit, any type variable occurring in a statement
is implicitly fixed according to schematic polymorphism. At the outer level,
term parameters may be fixed automatically as well, i.e. the above fixes is
optional.

Apart from such purely logical assumptions and conclusions, the context
may also hold additional non-logical information (type constraints, concrete
syntax, hints for proof tools etc.). Thus the content of a context may be
understood as arbitrary data that is abstracted over logical entities (types,
terms, theorems).

The locale mechanism [12] of Isabelle manages high-level composition of
contexts, supporting incremental additions of conclusions later on. For exam-
ple:

locale loc = fixes x ::α assumes a: A x
lemma (in loc) b: B x 〈proof 〉
lemma (in loc) c: C x 〈proof 〉
The annotation “(in loc)” causes the context of locale loc to be reconstructed,
such that its content is available during the proof; the local result is stored
within that context for later use in further conclusions; a global version is ex-
ported to the toplevel as in the immediate version of fixes/assumes/shows
above. Additional contextual hints may be given using attributes (written as
postfix application), e.g. the following command declares rules to the simpli-
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fier:

declare (in loc) b [simp] and c [simp]

The simp declaration is essentially a function thm → context → context that
adds a given theorem to the simpset maintained as context data.

Locale expressions [3] compose existing locales via merge and rename op-
erations. Multiple inheritance between locales can be expressed here. A new
locale definition may add assumptions to a locale expression. Locale inter-
pretation [4] transfers results stemming from one locale into another context.
Interpretation works between locales, within a proof body, or at the outer
theory level.

A morphism formalises the idea of moving results between contexts, adapt-
ing logical dependencies accordingly. Hence a morphism ϕ may be represented
as a tuple (ϕtype, ϕterm, ϕthm) of mappings on those formal categories. This
is further abstract nonsense to organise logical reasoning systematically. E.g.
an export morphism between contexts Γ1 ⊆ Γ2 imposes the difference of as-
sumptions on resulting theorems, by discharging hypotheses and introducing
=⇒ etc. This is how the above rules b and c are exported into the global
theory environment. Another important special case is an interpretation mor-
phism: given concrete types and terms for fixed variables, and theorems for
hypotheses, the corresponding substitution operation transforms a result from
an abstract theory into a concrete situation. Thus locale interpretation can
be explained succinctly.

With the help of explicit morphisms, we can easily generalise the idea
of declaring theorems to the context (cf. the simp attribute above) towards
arbitrary data that may be re-interpreted in different situations. A declaration
is any function of type morphism → context → context that augments a
context in a monotonic fashion. Declarations may be added to a locale using
the command declaration (in loc). The locale infrastructure maintains a
canonical order of declarations d1, . . ., dn. Whenever the locale context is re-
entered in a situation described by a morphism ϕ, the context is augmented
to become the collective declaration dn ϕ (. . .(d1 ϕ Γ). . .). This means that
every time a locale context is reconstructed, all the data will be back in its
proper place, as the effect of invoking the collection of declarations. Here the
morphism tells how to interpret abstract concepts in the present situation.
This facility can be used in numerous ways, such as maintaining information
about state space field names and types.

N. Schirmer, M. Wenzel / Electronic Notes in Theoretical Computer Science 254 (2009) 161–179172



4.2 Abstract State Spaces as Locales

Isabelle allows to add new top-level commands to the system. Building on the
locale infrastructure, we provide a command statespace 6 like this:

statespace vars =
n::nat
b::bool

This resembles a record definition (§3.3), but introduces sophisticated locale
infrastructure instead of HOL type schemes. The resulting context postulates
two distinct names n and b and projection / injection functions that convert
from abstract values to nat and bool. The logical content of the locale is:

locale vars ′ =
fixes n:: ′name and b:: ′name
assumes distinct [n, b]

fixes project-nat :: ′value ⇒ nat and inject-nat ::nat ⇒ ′value
assumes

∧
n. project-nat (inject-nat n) = n

fixes project-bool :: ′value ⇒ bool and inject-bool ::bool ⇒ ′value
assumes

∧
b. project-bool (inject-bool b) = b

The HOL predicate distinct describes distinctness of all names in the context.
Locale vars ′ defines the raw logical content that is defined in the state space
locale. We also maintain non-logical context information to support the user:

• Syntax for state lookup and updates that automatically inserts the corre-
sponding projection and injection functions.

• Setup for the proof tools that exploit the distinctness information and the
cancellation of projections and injections in deductions and simplifications.

This extra-logical information is added to the locale in form of declara-
tions, which associate the name of a variable to the corresponding projection
and injection functions to handle the syntax transformations, and a link from
the variable name to the corresponding distinctness theorem. As state spaces
are merged or extended there are multiple distinctness theorems in the con-
text. Our declarations take care that the link always points to the strongest
distinctness assumption. With these declarations in place, a lookup can be
written as s·n, which is translated to project-nat (s n), and an update as s〈n
:= 2〉, which is translated to s(n := inject-nat 2). We can now establish the
following lemma:

6 This is part of the Isabelle distribution since Isabelle2008; the subsequent examples use
Isabelle2009.
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lemma (in vars) foo: s〈n := 2〉·b = s·b by simp

Here the simplifier was able to refer to distinctness of b and n to solve the
equation. The resulting lemma is also recorded in locale vars for later use
and is automatically propagated to all its interpretations. Here is another
example:

statespace α varsX = vars [n=N , b=B ] + vars + x ::α

The state space varsX imports two copies of the state space vars, where one
has the variables renamed to upper-case letters, and adds another variable x
of type α. This type is fixed inside the state space but may get instantiated
later on, analogous to type parameters of an ML-functor. The distinctness as-
sumption is now distinct [N , B , n, b, x ], from this we can derive both distinct
[N , B ] and distinct [n, b], the distinction assumptions for the two versions
of locale vars above. Moreover we have all necessary projection and injec-
tion assumptions available. These assumptions together allow us to establish
state space varsX as an interpretation of both instances of locale vars. Hence
we inherit both variants of theorem foo: s〈N := 2〉·B = s·B as well as s〈n
:= 2〉·b = s·b. These are immediate consequences of performing the locale
interpretation.

The declarations for syntax and the distinctness theorems also observe the
morphisms generated by the locale package due to the renaming n = N :

lemma (in varsX ) foo: s〈N := 2〉·x = s·x by simp

To assure scalability towards many distinct names, the distinctness predi-
cate is refined to operate on balanced trees. Thus we get logarithmic certifi-
cates for the distinctness of two names by the distinctness of the paths in the
tree. Asked for the distinctness of two names, our tool produces the paths
of the variables in the tree (this is implemented in SML, outside the logic)
and returns a certificate corresponding to the different paths. Merging state
spaces requires to prove that the combined distinctness assumption implies
the distinctness assumptions of the components. Such a proof is of the order
m · log n, where n and m are the number of nodes in the larger and smaller
tree, respectively.
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4.3 Integration into the Hoare Logic Environment

We now examine the integration of the new state space implementation into
the Hoare logic environment [20] and see how it benefits from it. 7 The un-
derlying programming language model is generic wrt. the state space repre-
sentation. In the current implementation the verification is partitioned on the
granularity of procedures. To properly handle procedure calls the framework
represents the state as a polymorphic pair where one component stores the
local variables and the other the global ones (including the heap). On re-
turn of a procedure call the global variables of the callee are passed back to
the caller, whereas the local variables of the caller are restored. With this
mechanism the framework handles the scoping correctly without depending
on any further details of the concrete representation for local and global vari-
ables. Previously, records were used for state spaces. Although the scoping
is already handled by the Hoare logic, the usage of records to represent local
variables has the odd effect that the local variables of different procedures
appear side-by-side in the record, blowing up its size. It is however possible to
share local variables of the same name and the same HOL type. Besides this
inconvenience of local variables, the Hoare logic inherits the same advantages
and disadvantages from the underlying record representation as discussed be-
fore (§3.3). Now records are replaced by state spaces, which we explain by the
example of list reversal.

The heap may hold structured values (e.g. struct in C). Our heap
model follows Bornat [5]: instead of a single heap of structured compo-
nents there is a separate heap for each field. Type ref is an abstract
type for references. A structure to represent a linked list in the heap is
struct list {struct list *next;}. The structure contains only the com-
ponent next. So we get one heap variable next of type ref ⇒ ref in the global
state space:

statespace globals-list =
next ::ref ⇒ ref

procedures (imports globals-list) Rev(p::ref |q ::ref )
where r ::ref
in q := Null ; WHILE p �= Null DO r := p; p := p→next; r→next := q; q :=
r OD

The procedures command defines the new procedure Rev importing the
global state space. The input parameter p, the output parameter q as well as

7 Available from the Archive of Formal Proofs: http://afp.sourceforge.net/entries/
Simpl.shtml.
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the local variable r together define a separate local state space (which does
not have to be merged with the global state space, as the Hoare logic already
distinguishes local and global variables). The syntax for statements and as-
sertions builds on the infrastructure of the state spaces so that the user is not
bothered with projections and injections into the value type. The notation
x→f mimics composition of dereferencing a pointer with field selection in C
and is translated to function lookup or update, depending on its occurrence
as value or left-value.

Whenever we refer to a variable of the state space it is typeset in a sans-
serif font. So p expands to s·p for some bound state s that is introduced
by the surrounding syntax. For example, the loop condition above formally
is a state set. The expanded version reads like {s . s·p �= Null} in Isabelle’s
set-comprehension notation combined with the lookup syntax of state spaces.
Similarly the assertions in the following lemma are translated to Isabelle’s
set-comprehension.

The procedures command combines the state space locales in a new lo-
cale named Rev-impl. To be able to rename procedures, e.g. to use several
instantiations simultaneously, this locale also contains the procedure name
Rev as a parameter and the assumption that in the procedure environment
Γ (function from procedure names to bodies) at the position Rev the corre-
sponding body is found. Within this locale we can prove the following lemma
for list reversal:

lemma (in Rev-impl) shows
Rev-spec: ∀Ps . Γ	 {|List p next Ps|} q := PROC Rev(p) {|List q next (rev

Ps)|}
This specification of procedures on heap lists follows Mehta and Nipkow

[14]. From the pointer structure in the heap we (relationally) abstract to HOL
lists of references. The predicate List p next Ps expresses that we obtain the
(HOL) list of references Ps by starting at reference p and following the next
heap.

This specification of list reversal is quite abstract and conceptually works
for any structure that contains some kind of “next” pointer. Consider, for
example a program that implements strings and queues as linked lists.

struct string {

char chr;

struct string *strnext;};

struct queue {

int cont;

struct queue *qnext;};

We can define this extended state space by importing two copies of the list
state and adding the new components:
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statespace globals-compose =
globals-list [next=strnext ] + globals-list [next=qnext ] +
chr :: ref ⇒ char
cont :: ref ⇒ int

We can now use ordinary locale operations to merge and rename locales
to create two instances of the list reversal procedure. One for strings, named
RevS and one for queues named RevQ. The only thing we have to do is to
rename the next component and the procedure name accordingly. This can
be done with the following locale operations (new parameters are listed after
for):

locale RevS-impl = globals-compose +
Rev-impl where next = strnext and Rev = RevS for RevS

locale RevQ-impl = globals-compose +
Rev-impl where next = qnext and Rev = RevQ for RevQ

The aforementioned procedures command ensures, that any procedure
using one of the procedures RevS or RevQ imports the locales RevS-impl or
RevQ-impl, respectively. Within this setup both instances of the procedure
specification are immediately available for the further program verification.
E.g.

∀Ps . Γ	 {|List p strnext Ps|} q := PROC RevS (p) {|List q strnext (rev Ps)|}
Since we may use Isabelle’s type variables or type classes to specify abstract

program variables we can also develop abstract procedures, like a generic
sorting algorithm that can be instantiated later. Regardless of whether the
underlying model of the programming language supports features like generics,
we can employ the Isabelle/HOL infrastructure to reason abstractly about
these procedures and specialise them to the different instances.

5 Conclusion

Our approach of representing state spaces for imperative programs is a com-
bination of basic logical concepts with an extra-logical layer for type-checking
and notation. The latter is based on existing locale infrastructure in Isabelle,
which happily supports arbitrary declarations in proof contexts (such as pro-
gram variables with their types). This careful arrangement in different layers
allows to return to a simple logical model of states spaces as functions (as
already seen in early experiments in HOL and in informal mathematics).

Strong typing for state spaces is essentially achieved by coercions (the
projections and injections from an abstract value type) that are inserted au-
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tomatically by our syntax layer. We did not need to consider the more complex
notion of dependent function types, which are beyond HOL anyway. Instead,
the Isabelle infrastructure is able to support a kind of user space type system
outside the logic.

Logical simplicity is an important prerequisite for scalability and modular-
ity: our motivation stems from non-trivial specification and verification tasks
in the Verisoft project (C compiler, OS components, email client etc.). On
the other hand, there is extra complexity in the design and implementation
of the overall verification environment.

Here Isabelle locales have shown a great potential to model advanced con-
cepts on top of the existing framework (and HOL object-logic). This flexibility
is not accidental, but a consequence of the very design of Isabelle: foundations
are frugal, but there are powerful mechanisms to implement add-on tools as
user libraries. While the implementation of the latter is not trivial, it can be
done with reasonable effort by experienced users, as has been demonstrated
here.
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