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Diffusion Tensor Imaging Provides Evidence of
Possible Axonal Overconnectivity in Frontal
Lobes in Autism Spectrum Disorder Toddlers
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ABSTRACT
BACKGROUND: Theories of brain abnormality in autism spectrum disorder (ASD) have focused on under-
connectivity as an explanation for social, language, and behavioral deficits but are based mainly on studies of
older autistic children and adults.
METHODS: In 94 ASD and typical toddlers ages 1 to 4 years, we examined the microstructure (indexed by fractional
anisotropy) and volume of axon pathways using in vivo diffusion tensor imaging of fronto-frontal, fronto-temporal,
fronto-striatal, and fronto-amygdala axon pathways, as well as posterior contrast tracts. Differences between ASD
and typical toddlers in the nature of the relationship of age to these measures were tested.
RESULTS: Frontal tracts in ASD toddlers displayed abnormal age-related changes with greater fractional anisotropy
and volume than normal at younger ages but an overall slower than typical apparent rate of continued development
across the span of years. Posterior cortical contrast tracts had few significant abnormalities.
CONCLUSIONS: Frontal fiber tracts displayed deviant early development and age-related changes that could
underlie impaired brain functioning and impact social and communication behaviors in ASD.
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The first warning signs of autism spectrum disorder (ASD)
involve abnormal social, communication, language, and emo-
tional behavior (1–3). In typically developing infants and
toddlers, these higher order abilities depend on the normal
growth of long-distance connections and widely distributed
neural networks in the brain, especially fiber tracts between
frontal and temporal cortices, the amygdala, and the striatum
(4). Across the early years, tracts normally display robust
changes in microstructure, such as increases in axon size,
myelination, and overall volume, and diffusion tensor imaging
(DTI) measures of tract microstructure, such as fractional
anisotropy (FA) and volume, and index these robust changes
from fetal life through childhood (5), although DTI studies of
normal development between ages 1 to 4 years remain rare.
Whether these critical frontal, temporal, and limbic fiber tracts
display pathologic development by the ages when autistic
symptoms first begin has been studied little.

Almost 40 years ago, Damasio and Maurer (6) proposed
that autism was due to frontal-temporal-limbic disconnection
and dysfunction. The theory supposed ASD involved reduced
numbers of cortical neurons and underdevelopment of axons
and frontolimbic fiber tracts. This early speculation has been
further refined and elaborated and is a prevalent theory today:
namely, that disconnection or underconnectivity between
different brain regions underlies ASD (7,8), despite structural
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evidence that cerebral white and gray matter in ASD at young
ages may be increased (9–11). Reduced functional connectiv-
ity in functional magnetic resonance imaging (fMRI)-based
studies (8,12) and reduced fiber tract FA in the great majority
of DTI-based studies of older children (13–15), adolescents,
and adults with ASD (16,17) do seem to support the original
and prevalent view of structural/axonal, as well as functional,
underconnectivity.

While abnormally reduced FA is one of the most consistent
types of biological findings in ASD, few tracts have been
consistently reported as abnormal, study sample sizes are
typically small, volumes of specific tracts are seldom meas-
ured, and few studies have mapped and measured specific
tracts (as opposed to measuring voxels within regions of
interest) (17). Importantly, even though ASD is a disorder of
very early development (18–20), nearly all DTI studies have
been on older children, adolescents, and adults (17).

New fMRI and DTI data from the 1- to 4-year-old ASD brain
do not fit neatly into the structural/functional disconnection
model. Instead, new studies suggest a complex view of age-
related changes in pathologic circuitry across early develop-
ment in ASD. In toddlers with ASD, one fMRI study found
reduced left-right synchronous functional activity (21), but
another found hyperconnectivity of fronto-temporal-cerebellar
activity (JH Manning, unpublished data, February 28, 2014).
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In contrast to numerous DTI studies of ASD adults and older
ASD children that report decreased FA (e.g., decreased FA in
fronto-frontal short-range fibers) (16,17,22), the three DTI
studies of ASD infants and young children report the opposite:
increased FA (23–25), including increased FA in frontal, but not
posterior, regions of interest (23). In the only longitudinal DTI
study of young ASD toddlers, Wolff et al. (24) found increased
FA at 6 months of age but nonsignificant tendencies for
decreased FA at 24 months in several fiber tracts including
the left uncinate fasciculus, left inferior longitudinal fasciculus,
and body of the corpus callosum; the comparison subjects
were unaffected younger siblings of ASD children. In that
study, increased tract FA at young ages in ASD was inter-
preted as indicating more compact, dense tracts. Whether this
unexpected age-related change in FA in some tracts is general
to ASD or specific to the ASD versus siblings at-risk for ASD
comparison in Wolff et al. (24) remains untested and is an
important question, especially in light of studies showing that
behavior and neurobiology of unaffected siblings of children
with ASD lies somewhere between that of ASD groups and
typically developing infants and young children (26–28). None-
theless, Ben Bashat et al. (23) and Wolff et al. (24) raise novel
questions and possibilities about how fiber tracts develop in
early life in ASD as compared with typical toddlers.

Postmortem data from ASD children, genetic findings (e.g.,
CHD8, PTEN, EIF4A, WDFY3, KCTD13-CUL3-RHOA) (29–37),
and ASD animal models (31,28,39) point to disruption of cell
cycle in fetal development, excess neuron proliferation, and
brain overgrowth and call into question the anatomical under-
connectivity hypothesis. For instance, in young ASD children
with heavier than normal brain weight, prefrontal cortex has a
67% excess of neurons (40). This neuron excess predicts
greater, not reduced, axon numbers in prefrontal tracts at
young ages in ASD. Theoretical models predict doubling
neuron numbers could quadruple axon numbers (41). Such
postmortem data suggest that, at young ages, there should be
an increase in prefrontal axon numbers, which could increase
frontal tract volumes in ASD. If ASD does involve an excess of
axons in prefrontal tracts at young ages, then ASD might be
better modeled as a disorder of early overconnectivity, not
Table 1. Diagnostic and Clinical Characteristics of ASD and TD

Clinical Measurement ASD

Sex (M/F)

Age in Months 30.2

Mullen Subscale Scores

Receptive language (earliest) 29.8

Receptive language (recent) 33.0

Expressive language (earliest) 32.3

Expressive language (recent) 33.8

ADOS Communication and Social Total Score (recent) 14.2

ADOS Restricted and Repetitive Behavior Score (recent) 3.6

Values for age and Mullen Early Scales of Learning scores are presente
ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum

TD, typically developing.
aPearson’s chi-squared test.
bWelch’s t test.
cAccelerated failure time model.
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underconnectivity, of prefrontal axons. Additionally, these
frontal tracts might also display deviant growth trajectories
across the first years of life, because, at young ages, genes
and gene networks underlying cell differentiation and growth
are downregulated (42), and by later childhood and adulthood
in ASD, cell size in the cortex is reduced (40,43–44).

To test this general hypothesis of abnormal density, volume,
and/or growth of frontal tracts, we DTI imaged 94 ASD and
typically developing (TD) 1- to 4-year-olds and used proba-
bilistic atlas-based mapping of multiple frontal fiber tracts;
because ASD often displays an anterior to posterior gradient of
neural pathology and dysfunction, posterior tracts served as a
priori contrast tracts. Validation of this type of tractography
methodology comes from a study of showing high correlations
between anatomically dissected frontal tracts and DTI
tractography-based measures of frontal tracts (45). We also
examined the correlation between outcome ASD social and
communication symptom severity and FA and volume.

The corpus callosum was measured because decreased FA
in the callosum in older children, adolescents, and adults with
ASD is the most consistently reported DTI abnormality in the
literature (17); its measurement provides a strong test of the
nature of early callosal development in ASD relative to a large
literature on ASD at older ages.
METHODS AND MATERIALS

Subjects

Participants included 94 toddlers: 61 ASD and 33 TD toddlers
ranging in age between 12 and 48 months (Table 1). A
subsample of ASD (n 5 14) and TD (n 5 13) toddlers had a
second DTI scan at a follow-up assessment that took place
approximately 1 year after the initial scan. An additional 12
participants (7 ASD, 5 TD) were scanned but not included in
analyses (Supplement). This project was reviewed and
approved by the Human Subjects Protection Review Board
at University of California San Diego. Informed consent was
obtained from parents or guardians of toddlers.
Participants

(n 5 61) TD (n 5 33) p Value

48/13 20/13 .103a

(8.4); 12–48 25.9 (11.1); 13–46 .056b

(10.8); 20–62 52.7 (8.8); 39–72 #.001c

(11.6); 20–58 55.7 (8.3); 42–72 #.001c

(10.0); 20–62 55.3 (10.0); 38–75 #.001c

(12.0); 20–60 58.1 (9.9); 41–80 #.001c

(3.9); 7-20 1.7 (1.5); 0–5 #.001b

(1.4); 1-6 .2 (.5); 0–2 #.001b

d as mean (SD) and range.
disorder; F, female; M, male; Mullen, Mullen Early Scales of Learning;
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Cingulum

Uncinate

Figure 1. Atlas-based tract reconstructions for a representative single
subject showing all primary and contrast tracts examined in the study.
fSCS, frontal projection of the superior corticostriatal tract; IFOF, inferior
frontal occipital fasciculus; IFSF, inferior frontal superior frontal tract; ILF,
inferior longitudinal fasciculus; pSCS, parietal projection of the superior
corticostriatal tract; pSLF, parietal portion of the superior longitudinal
fasciculus.
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Subject Recruitment

Toddlers were recruited through community referral and a
population-based screening method, the 1-Year Well-Baby
Check-Up Approach, by the University of California San Diego
Autism Center of Excellence (46) (Supplement). Because
clinical signs of risk for ASD in general pediatric settings
naturally begin at diverse ages from infancy to 3 years of age,
these recruitment strategies enabled us to detect individuals at
the age when they first showed clinical risk signs, namely at
any age from 12 months to 3 years.

Diagnostic and Developmental Evaluations

Toddlers were clinically diagnosed, evaluated, and tracked
every 6 months until they reached at least 3 years of age,
when a final diagnosis was made (Table 1; Supplement).
Evaluations included the Autism Diagnostic Observation
Schedule (47); Vineland-II Adaptive Behavior Scales, Second
Edition (48); and Mullen Scales of Early Learning (49).

Image Acquisition and Processing

Natural sleep magnetic resonance imaging scanning (50–52)
was used to maximize success rates and to ensure that
findings generalized to all toddlers from both study groups.
Imaging was performed on a GE 1.5T scanner (General Electric
High-Definition 1.5T twin-speed EXCITE scanner, Bucking-
hamshire, United Kingdom) and T1-weighted three-dimen-
sional structural scans and 51-direction diffusion-weighted
sequences were collected (Supplement). Images were
inspected to exclude data with scanner artifacts or head
motion; processing was via a published automated method
(53), and conventional DTI methods calculated FA and the
principal orientation of diffusion at each voxel (54,55).

Fiber Tracts and Primary and Secondary Outcome
Measures of Interest

Primary outcome measures of interest were FA and volume of
forceps minor, inferior frontal-superior frontal tract (IFSF),
uncinate tract, frontal projection of the superior corticostriatal
tract (fSCS), and the arcuate fasciculus division of the superior
longitudinal fasciculus (Figure 1; Supplemental Table S1) (45).
FA and volume measures were obtained independent of each
other as described below and elsewhere (56).

Contrast tracts were forceps major of the corpus callosum,
parietal projection of the superior corticostriatal tract, parietal
portion of the superior longitudinal fasciculus, cingulate portion
of the cingulum, parahippocampal portion of the cingulum,
inferior occipital-frontal fasciculus, and inferior longitudinal
fasciculus (Figure 1). FA and volume were obtained from each.

The same measures were also obtained from the corpus
callosum as a whole (including the forceps minor, body of the
callosum, and forceps major).

Automated, Atlas-Based Tract Identification

A probabilistic atlas by Hagler et al. (53) containing information
about the locations and orientations of fiber tracts was used to
estimate the a posteriori probability that a voxel belonged to
one of the primary or contrast fiber tracts of interest. During
the course of this study, we additionally developed an infant/
678 Biological Psychiatry April 15, 2016; 79:676–684 www.sobp.org/j
toddler DTI atlas from 23 of the study subjects using exactly
the same approach as Hagler et al. (53) and found very similar
performance (Supplemental Figure S1). Results reported
herein are from the validated and published Hagler et al. (53)
atlas, but our pediatric probabilistic atlas is available upon
request (Supplement). Voxels containing primarily gray matter
or cerebral spinal fluid—identified using FreeSurfer’s auto-
mated brain segmentation—were excluded from analyses
(FreeSurfer 5.2; http://surfer.nmr.mgh.harvard.edu) (57). Aver-
age FA values were calculated for each fiber tract, weighted by
the fiber probability at each voxel. Fiber tract volumes were
calculated as the number of voxels with fiber probability
greater than .15, the value that provided optimal correspond-
ence in volume between atlas-derived tracts and manually
traced fiber tracts. No FA threshold was used in the determi-
nation of tract volume. For bilateral tracts, FA and volume were
averaged across left and right sides. For each individual, tract
FA and volume were calculated separately and derived in an
unbiased, consistent manner.

Statistical Analysis Methods

Gender and age were compared between ASD and TD
subjects with Pearson’s test and Welch’s two-sample t test,
respectively. Clinical variables that had censored values were
compared between groups with a parametric survival model
(accelerated failure time model), assuming an underlying
normal distribution.

For each of the primary tracts (forceps minor, IFSF,
uncinate, fSCS, and arcuate), FA, volume, and age-related
changes were compared between ASD and TD. The design of
our study allowed us to make use of both cross-sectional and
longitudinal data in estimating group age-related changes.

Linear mixed effects models were used with group, age,
gender, and a group 3 age interaction as independent
variables and tract volume or FA as dependent variables. A
random intercept was included to account for repeated
ournal
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measures. We included a measure of the coefficient of
determination (R2) (58) to assess model fit and to examine
how well DTI measures at early ages predict the same
measures at later ages in the context of the overall model.
To account for multiple testing of the age 3 group effect, we
used the Benjamini-Hochberg (59) correction for multiple
comparisons and report unadjusted p values but only interpret
those findings with significant q value for the tracts included in
the primary analysis.

Post hoc analyses were carried out to better understand
observed differences in age-related changes in FA and volume
in ASD relative to TD groups. First, for those tracts with
significant group 3 age interactions for FA, we conducted the
same analysis for three other diffusion measures, namely the
apparent diffusion coefficient, the longitudinal diffusion coef-
ficient, and the transverse diffusion coefficient. Second, for
both FA and volume, we examined how measures with
significant group 3 age interactions related to clinical severity
measured at the age of final diagnosis. Measures of clinical
severity at older ages are expected to be more stable (60)
compared with evaluations at a younger age. Given the nature
of the group 3 age interaction, we examined the clinical
relationships separately in two subgroups of ASD children: the
youngest subgroup (ages 12 to 28 months, n 5 25) and the
oldest subgroup (ages 37 to 48 months, n 5 25). We
calculated the Pearson’s correlation between Autism Diag-
nostic Observation Schedule communication and social total
score and both FA and volume of the primary tracts that
showed significant age 3 group interactions.

Analyses of the effect of group and group 3 age interaction
were undertaken for volume and FA of contrast tracts (listed
above) and the corpus callosum. We did not employ correction
for multiple tests among the contrast tracts to be more lenient
in allowing for discovery of group differences in the nature of
the association with age in these nonfrontal tracts.
RESULTS

Frontal Tract Differences Between TD and ASD
Toddlers

Fractional Anisotropy and Volume of Frontal Tracts.
After Benjamini-Hochberg correction for multiple (10) compar-
isons, mixed effects models showed significant ASD versus
TD group 3 age effects for FA and volume for multiple frontal
tracts. For FA, significant effects were in forceps minor, IFSF,
uncinate, and arcuate tracts (p 5 .019, .039, .001, and .04,
respectively, for all q , .05; Supplemental Table S2). For
volume, significant effects were in forceps minor, IFSF, fSCS,
and uncinate (p 5 .024, .02, .031, and .038, respectively, for all
q , .05; Supplemental Table S4).

As shown in Figure 2, there was a slower apparent rate of
change with age in both FA and volume in ASD as compared
with TD subjects: very young ASD toddlers began with higher
tract FA and volume than TD toddlers, but by 3 to 4 years of
age, this effect for FA and volume had disappeared in ASD.
Comparable group 3 age effects for FA and volume in each
tract were present in male and female subjects (Supplemental
Figures S2 and S3). Coefficients of determination in frontal
tracts were very high, ranging from .63 to .81 for partial R2 for
Biological P
FA (Supplemental Table S2) and from .37 to .66 for R2 for
volume (Supplemental Table S4), indicating very high ability of
the model to predict a second FA measurement or volume
measurement given group, age, sex, and the first observed
measurement. Post hoc analyses of hemisphere effects were
nonsignificant and similar effects were seen in each hemi-
sphere for FA (Supplemental Table S6) and volume
(Supplemental Table S7).

Significant main effects of group were seen for FA in all five
frontal tracts (p 5 .001 to .032; Supplemental Table S2) and for
volume in forceps minor, IFSF, and fSCS (p 5 .005, .009, and
.011, respectively; Supplemental Table S4) with higher FA and
volume at early ages but not at all ages, as indicated by the
significant group 3 age effects (Figure 2). This main effect
should be interpreted, therefore, in light of the significant
group 3 age interactions, which indicate that higher FA in the
ASD group is not observed at older ages.

We followed up these results with a post hoc analysis of
apparent diffusion coefficient, longitudinal diffusion coefficient,
and transverse diffusion coefficient within the four significant
tracts (Supplemental Table S3). There were no significant
group 3 age effects for these other tract-based diffusion
measures.

Clinical Relationships With Frontal Tract FA and
Volume. Within the frontal tracts that showed significant
group 3 age interactions, we examined whether severity of
communication and social deficits at the age of final diagnosis
were related to FA or volume among a subgroup of ASD
children who were younger (12 to 28 months, n 5 25) and
older (37 to 48 months, n 5 25) at the time of DTI scanning.
Among the younger group, all of the observed correlations
were positive for both FA (range of rs: .23 to .41) and volume
(range of rs: .07 to .30) such that children with the largest FA
and volume when scanned before 28 months of age tended to
be those with the greatest severity at their final evaluation.
Correlations were significant for arcuate FA (r23 5 .41, p 5 .04)
and at trend level for FA of the forceps minor (r23 5 .37,
p 5 .07) and uncinate (r23 5 .36, p 5 .08). In contrast, among
the subgroup of ASD children who were older than 37 months
when scanned, all observed correlations were negative,
although none were significant at p , .05 in this subsample.
There was a trend-level correlation (r23 5 2.34, p 5 .096)
observed for the volume of the IFSF. Thus, the general pattern
observed was that higher FA and volume in the first 2 years of
life predicted greater autism severity at the age of final
diagnosis, but the brain-behavior correlation was somewhat
reversed among older children, in whom lower FA and volume
tended to relate to greater severity.

Posterior Comparison Tracts in TD and ASD Toddlers

Mixed effects models showed no significant group 3 age (or
group) effects for FA in any contrast tract or for volume in most
contrast tracts, the exceptions being group 3 age effects for
volume for inferior longitudinal fasciculus (uncorrected
p 5 .028) and inferior occipital-frontal fasciculus (uncorrected
p 5 .012; Supplemental Table S5). Findings were generally
consistent across left and right hemispheres for bilateral tracts
(Supplemental Tables S8 and S9). The frontal and contrast
sychiatry April 15, 2016; 79:676–684 www.sobp.org/journal 679
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Figure 2. Fractional anisotropy (FA)
(left panel) and volume (right panel)
measures for forceps minor, inferior
frontal superior frontal tract (IFSF),
uncinate, frontal projection of the
superior corticostriatal tract (fSCS),
and arcuate fasciculus portion of the
superior longitudinal fasciculus by
age for male participants (for female
participants, see Supplemental
Figures S1 and S2). Blue squares
and red diamonds represent typically
developing and autism spectrum dis-
order subjects, respectively. The solid
blue and red lines in each plot repre-
sent model fits for typically develop-
ing and autism spectrum disorder
subjects; dotted lines connect long-
itudinal measures for individual
participants.
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tracts with significant group 3 age effects for FA or volume
are summarized in Figure 3.

Corpus Callosum

There were significant group 3 age (and group) effects
for FA and volume for the corpus callosum (FA: p 5 .036;
volume: p 5 .036; Supplemental Table S5), likely driven
by significantly greater forceps minor FA (Supplemental
680 Biological Psychiatry April 15, 2016; 79:676–684 www.sobp.org/j
Table S2) and volume (Supplemental Table S4) in ASD as
compared with TD in early ages, as well as significantly
flatter slope of apparent age-related change in ASD in this
frontal portion of the callosum (Figure 2). Since group
differences were not seen for the posterior forceps major
(Supplemental Table S5), the group results for the whole
callosum may be relatively uninfluenced by the posterior
portion.
ournal
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Uncinate

fSCS
Arcuate

IFOF
ILF

FA VOLUME

TRACTS WITH ABNORMAL GROWTH
IN ASD INFANTS & TODDLERS

White = Tracts not different in ASD

Figure 3. Atlas-based tract reconstructions for a representative single
subject showing all tracts with abnormal age-related trajectories for frac-
tional anisotropy (FA) (left) and/or volume (right). fSCS, frontal projection of
the superior corticostriatal tract; IFOF, inferior frontal occipital fasciculus;
IFSF, inferior frontal superior frontal tract; ILF, inferior longitudinal fasciculus.
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DISCUSSION

Abnormalities of multiple frontal axon pathways were present
at the age of first clinical signs of ASD. Abnormal FA and
volume were found for intrafrontal and interfrontal pathways
involved in higher order social, language communication,
speech, cognition, and behavior control. These abnormalities
may impede integration of neural activity within and between
different subregions in left and right frontal lobes. They were
also found for frontal projections to important subcortical and
cortical structures involved in social, emotional, language, and
behavioral control functions (61–70). The nature of the ASD
versus TD group difference varied by age, such that younger
ASD infants had abnormally higher FA and volume, whereas
this was no longer the case in older ASD children who tended
to have slightly lower FA and volume, suggesting an altered
white-matter developmental trajectory in ASD. Wolff et al. (24)
reported a similar abnormal trajectory for several of the fiber
tracts studied here. We did not observe group differences in
age-related change in other diffusion measures, perhaps due
to lower reliability of these indices. The relationship between
FA and volume measures and severity of social and commu-
nication symptoms seemed to differ depending on age at the
DTI measurement: higher FA and volume of frontal tracts at
the youngest ages tended to predict greater symptom severity
at final evaluation, whereas a trend toward the opposite
relationship (lower FA and volume related to greater severity)
was seen for frontal tracts measured at older ages, suggesting
that greater early growth abnormality may be associated with
greater later symptom severity.

Early developmental changes in tract volume and FA are
affected by many factors, including number of axons, growth
in axon caliber, increases in myelination, changes in the
packing density of axons, and coherence of axon orientation.
Multiple lines of evidence support the view that several
pathologies—excess neurons and axons, reduced cell and
axon growth, and reduced myelination—likely underlie the
abnormal volume and FA trajectories we describe here. First,
Biological P
postmortem, genetic, genomic, and animal and cell model
studies of ASD (18,31,33–35,38–40,42,43) collectively point to
increased prenatal excess of prefrontal neurons, and therefore
axons, in enlarged ASD brains. Many high-confidence ASD
gene defects are associated with excess neuron proliferation
and brain overgrowth (e.g., CHD8, PTEN, EIF4A, WDFY3,
KCTD13-CUL3-RHOA) (29–36). CHD8, a gene of high impor-
tance in ASD, targets cell cycle networks (37) and is asso-
ciated with excess neurons and brain overgrowth (34,35).
Computational data (41) indicate increases in neuron numbers
can quadruple axon numbers, and an excess of short and
medium distance prefrontal axons has been reported post-
mortem in ASD (71). We therefore hypothesize that early but
transient increased frontal tract volume and FA are a result of
prenatal prefrontal axon excess due to prenatal neuron
excess. Aberrant connectivity could also ensue from abnormal
early developmental spine and synapse formation and func-
tion, which can be a direct result of a prenatal excess of layer 2
and 3 neurons according to a novel mouse model of ASD (71).
In that model of ASD, prenatal neuron excess produces a
developmentally transient excess of spines, reduction in
excitatory synapses and altered excitatory/inhibitory ratio, all
of which reverse with age (i.e., decreased spines, reduction in
excitatory synapses and reversed excitatory/inhibitory ratio).
Much evidence also points to genetic factors in synapse
functioning in ASD (72,73). Thus, we view early overconnec-
tivity in ASD as having a prenatal origin likely due to neuron
excess. Second, postmortem studies of ASD point to 1)
dysregulation of gene expression and gene networks that
affect cell differentiation and growth (71); 2) reduction in cell
and minicolumn size that would be expected to affect axon
caliber (40,74–76); 3) reduction in very large caliber long-
distance axons in ASD adults (71); and 4) presence of thin
short and medium distance prefrontal axons (71). Third,
postmortem studies of ASD adults find decreased myelination
of axons in some prefrontal regions (71). In sum, postmortem
and genomic evidence support the conclusions of Zikopoulos
and Barbas (71), Casanova and Trippe (76), and Courchesne
and Pierce (77) that there is an early excess of axons and
overconnectivity in autism but later underdevelopment of
axons in multiple prefrontal regions. Here, we propose that
different neural developmental pathologies—excess axons
and misconnectivity, axon underdevelopment, and develop-
mental dysmyelination—acting at different ages underlie the
changing FA and volume patterns seen during early develop-
ment in ASD. Ultimately, these lead to reduced volume and FA
as reported in most DTI studies of ASD adolescents and
adults.

The frontal tracts that develop abnormally in ASD—fronto-
amygdala, fronto-temporal, fronto-frontal, and fronto-striatal—
are important in social, emotion, language, and behavior
control functions (61–70). For example, the uncinate fasciculus
is a key pathway connecting frontal and amygdala regions.
Frontal and amygdala structures are strongly and interactively
involved in complex social behavior (4,78) and the evolution of
social behavior (68). In a literature review on how and where
social knowledge is represented, Olson et al. (61) concluded
that orbital frontal and amygdala regions are key sites and
hypothesized the uncinate fasciculus is a principal intercon-
necting pathway. Recently, Oishi et al. (62) examined fiber
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tracts in adults with lesions and found that of eight different
tracts studied, lesions of only the uncinate significantly altered
emotional empathy. In the present study, uncinate fasciculus
FA and volume in ASD toddlers, in whom social and emotion
functions are significantly impaired, were highly significantly
abnormal at early ages and showed a much shallower slope of
age-related change. In magnetic resonance imaging studies at
young ages in ASD, overgrowth of amygdala volume is
correlated with variation in deficits in joint attention and social
behavior (79–81). Early abnormalities in fronto-amygdala
growth and uncinate connectivity undoubtedly play key roles
in disturbances in early autism social behavior. As a second
example, the arcuate is critically involved with human language
and its size and broad temporal and frontal projection regions
are unique in humans, being much smaller and narrowly
restricted in apes and monkeys (82). The expanded arcuate
pathway in humans underlies transmission of word-meaning
information stored in temporal cortices to several frontal
regions for sentence comprehension and sentence construc-
tion during spontaneous speech (82). Frontal callosal axons
within the forceps minor enable integration of higher order
language and prosodic information. Microstructural develop-
ment of arcuate and forceps minor pathways is abnormal in
ASD toddlers in the present study as well as in Wolff et al. (24).
These defects in language pathways are accompanied at
young ages in ASD by failure of language to normally activate
temporal cortices, especially in ASD toddlers who later have
poor language and communication abilities (51,83,84), and by
abnormal brain-language relationships (83). Furthermore, in our
study, young ASD children with higher FA in these pathways
(i.e., who were more abnormal) had poorer social and commu-
nication symptoms at their final evaluation. Thus, critical
language cortical regions and pathways are already aberrant
in ASD at the very earliest ages, and this may be an important
characteristic of ASD, as it occurs in the general pediatric
population (the present study) and in multiplex families (24).

We conclude that at the age of first clinical signs of ASD, the
frontal lobes in a majority of individuals already display axonal
overconnectivity and growth pathology that are likely due to
neuron excess and lead to underfunctional connectivity and
impaired social and communication behavior. Further imaging
and postmortem studies of early structural hyperconnectivity in
ASD (such as frontal u-fibers) will be important in formulating
computational models of connectivity development in ASD,
interpreting functional overconnectivity and underconnectivity
data at young ages and guiding the development of accurate
cellular and animal models of the disorder. Potentially, a combi-
nation of measures of axon development, cortical growth
trajectories, and clinical abnormalities (83) may lead to biosigna-
tures of early risk for autism.
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