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a b s t r a c t

We present a hybrid optimization algorithm for mixed-integer linear programming,
embedding both heuristic and exact components. In order to validate it we use the periodic
vehicle routing problem (PVRP) as a case study. This problem consists of determining a
set of minimum cost routes for each day of a given planning horizon, with the constraints
that each customer must be visited a required number of times (chosen among a set of
valid day combinations), must receive every time the required quantity of product, and
that the number of routes per day (each respecting the capacity of the vehicle) does not
exceed the total number of available vehicles. This is a generalization of the well-known
vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP)
relaxation of a set-covering-like integer linear programming formulation of the problem,
with additional constraints. The LP-relaxation is solved by column generation, where
columns are generated heuristically by an iterated local search algorithm. The whole
solution method takes advantage of the LP-solution and applies techniques of fixing and
releasing of the columns as a local search, making use of a tabu list to avoid cycling. We
show the results of the proposed algorithm on benchmark instances from the literature
and compare them to the state-of-the-art algorithms, showing the effectiveness of our
approach in producing good quality solutions. In addition, we report the results on realistic
instances of the PVRP introduced in Pacheco et al. (2011) [24] and on benchmark instances
of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed
algorithm on these as well. Finally, we report the new best known solutions found for all
the tested problems.

© 2012 Elsevier B.V.

1. Introduction

Routing problems have been widely studied due to the economic importance of developing efficient techniques for
optimization in transportation. Many real-world applications in transportation systems require finding a set of minimum
cost routes to be performed by a fleet of vehicles, that satisfy orders of products requested by customers, over a given
planning horizon (e.g. one week). In some applications, it can be useful to visit customers a different number of times,
depending on the amount of products requested. In addition, certain days of the planning horizon can be specified by the
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customers as available for the delivery of the product. Taking into account several days of planning for routing problems is
an interesting variant of the classical vehicle routing problem (VRP), known as the periodic vehicle routing problem (PVRP).
This problem is very important in real-world applications such as distribution for bakery companies [24], or blood product
distribution [21].

In this work we propose a hybrid optimization heuristic algorithm that can be applied to mixed integer linear
programming problems. It is based on the solution of the linear programming (LP) relaxation of an integer linear
programming formulation of the problem. The LP-relaxation can be solved by a general purpose solver or by column
generation techniques, with exact or heuristic methods. The LP-solution can be then used to guide the heuristic algorithm
for obtaining an integer solution.

This heuristic algorithm iteratively fixes and releases variables from the LP. Variables are fixed when they are deemed
contextually promising, and released after some time in order to diversify the search. In the context of this paper, heuristic
column generation is used for obtaining an LP-solution: the subproblem is solved by an iterated local search (ILS) procedure.

In order to validate the proposed heuristic algorithm, we apply it to the periodic vehicle routing problem. This is a very
well-studied problem for which many heuristic algorithms and an exact approach have already been proposed. It is an
extension of thewell-knownVRP, and takes into account a given planning horizon. Each customermust be visited a required
number of times along the planning horizon. In particular, a set of valid day combinations is given for each customer. In
addition each customer has a given demand of product, thatmust be satisfied every timehe is visited. A fleet of homogeneous
vehicles is also given, each onewith the same capacity. The PVRP calls for determining a set of minimum cost routes for each
day of the planning horizon, satisfying the following constraints:

1. each customer is visited the required number of times, assigned a combination chosen among a set of appropriate day
combinations for this customer, and is delivered the required quantity of product

2. the number of routes on each day does not exceed the total number of available vehicles
3. the capacity of each vehicle is not exceeded.

The PVRP generalizes the VRP since it calls for determining an appropriate day combination for each customer and
simultaneously finding a set of minimum cost routes for each day.

The paper is organized as follows: in the next section,we briefly review themainworks on PVRP and on periodic traveling
salesman problem (PTSP), that is a special case of the PVRP where only one vehicle is available every day; in Section 3 we
present the formal description of the problem and provide an integer linear programming (ILP) formulation in a set-covering
form with additional constraints, together with the arising subproblem for the solution of the LP-relaxation of the model
by column generation; in Section 4 we present the solution method, which consists of solving the LP-relaxation of the
SC-formulation in a heuristic way, and of fixing and releasing variables, based on this solution. Experimental results are
presented in Section 5 and compared with the state-of-the-art algorithms. Finally, some conclusions are drawn in Section 6.

2. Related work

The PVRP has received much attention in the literature, since it also arises in many real-world applications. A relatively
recent survey on the PVRP and its extensions was written by Francis et al. [16]. Due to the difficulty of the problem, most
of the works present heuristic approaches, although recently an exact method has been proposed by Baldacci et al. [2]. It is
based on a set partitioning integer linear programming formulation of the problem and on three different relaxations used
to derive powerful lower bounds.

The first work on the PVRP is proposed by Beltrami and Bodin [3]. Then there are other works by Christofides and
Beasley [7], Tan and Beasley [31], Russel and Gribbin [28] and Gaudioso and Paletta [17]. Chao et al. [6] are the first to
provide a two-phase heuristic that allows escaping from local optima. They use an integer linear program to assign visit
day combinations to customers in order to initialize the system. Moreover, the capacity limit of the vehicles is temporarily
relaxed.

In [8] a tabu search (TS) heuristic is proposed that can solve the PVRP, the multi-depot vehicle routing problem (MDVRP)
and the periodic traveling salesman problem (PTSP). Two types of neighborhood operators are considered: the first one
considers moving a customer from one route to another route on the same day. The second one considers assigning a new
visit day combination to a customer. Insertions and removals of customers are performed with the generalized insertion
(GENI) operator [18]. Infeasibility with respect to capacity and tour length constraints is allowed during the search process
using an adaptive penalty function.

Alegre et al. [1] consider a real world application that arises in periodic pick-up of raw materials for a manufacturer of
automobile parts. They propose a Scatter Search to solve this problem and the standard benchmark instances available in
the literature. The algorithm is based on a two-phase approach, that first assigns orders to days and then constructs routes
for each day.

Furthermore, special implementations for real-world problems are provided byHadjiconstantinou and Baldacci [19]who
propose a heuristic for a multi-depot period vehicle routing problem that arises in the utility sector. Francis et al. [15] solve
the PVRP with service choice, where service frequency is a decision of the model. They propose an exact solution method
and heuristic variations of it for larger instances. Hemmelmayr et al. [20] propose a variable neighborhood search (VNS)
algorithm using three neighborhood structures. Those aremoving a sequence of customers from one route to another route,



V. Cacchiani et al. / Discrete Applied Mathematics 163 (2014) 53–64 55

crossing sequences of customers between routes and changing the visit day combination of one or more customers. For a
local search 3-opt is used and the solution acceptance is based on simulated annealing (SA).

Very recently, Vidal et al. [32] propose a hybrid genetic algorithm: the population consists of individuals representing
feasible and infeasible solutions; the population evolves by applying different operators with the aim of having high quality
solutions while maintaining diversity. They test the algorithm on benchmark instances for the PVRP and the MDVRP and on
a new set of instances for the multi-depot periodic vehicle routing problem (MDPVRP), providing very good solutions.

Another very recent approach is proposed in [24]: the authors study the real problem of a bakery company in northern
Spain. In order to minimize the total distance traveled for the daily routes over the week, the bakery company allows some
flexibility in the dates of delivery. The authors propose a mixed-integer linear model and solve the problem through a two-
phase algorithm. In the first phase, a set of good and diverse solutions is generated, based on GRASP. In the second phase,
path-relinking is applied in order to improve the solutions. Computational experiments are performed on real-data-based
instances. In addition, the authors apply the necessary modifications to treat the problem as a PVRP, in order to compare
their algorithm with state-of-the-art algorithms for the PVRP.

The periodic traveling salesman problem (PTSP) is a special case of the PVRP where only one vehicle is available every
day. A mathematical formulation of the PTSP can be found in [8]. Heuristic algorithms were proposed in [25,5]. The tabu
search by Cordeau et al. [8] and the VNS approach by Hemmelmayr et al. [20], previously described, are very effective for
the PTSP as well. In [4], a heuristic algorithm is proposed for the PTSP, that contains an improved version of the algorithm
by Paletta [25].

3. Problem description

We consider the following input:

• T , the total number of days in the planning horizon,
• m, the number of vehicles available every day, each one with capacity K ,
• n, the total number of customers to visit,
• Ci, the set of valid day combinations for customer i ∈ {1, . . . , n}
• G = (V ′, E), an undirected graph with a set of vertices V ′ = {0} ∪ V , where 0 is the depot and V corresponds to the set

of customers, with cost dtij of traversing edge (i, j) ∈ E on day t ∈ {1, . . . , T }.

Let Ω be the set of all feasible routes, and dtr the cost of route r ∈ Ω when performed on day t . Let also air be equal to 1 if
customer i is visited by route r , 0 otherwise (i ∈ {1, . . . , n}, r ∈ Ω). Finally, let btp be equal to 1 if day t is in combination p,
0 otherwise (t ∈ {1, . . . , T }, p ∈ Ci, i ∈ {1, . . . , n}).

We present a set-covering-like ILP formulation for the problem, with additional constraints. We introduce two sets of
binary variables, xtr equal to 1 if and only if route r is performed on day t , and yip equal to 1 if and only if combination p is
selected for customer i. A SC-formulation for the problem reads as follows:

min

r∈Ω

T
t=1

xtrd
t
r (1)

s.t. 
p∈Ci

yip > 1 i ∈ {1, . . . , n} (2)


r∈Ω

xtrair −

p∈Ci

yipbtp > 0 i ∈ {1, . . . , n}, t ∈ {1, . . . , T } (3)


r∈Ω

xtr 6 m t ∈ {1, . . . , T } (4)

xtr ∈ {0, 1}, r ∈ Ω, t ∈ {1, . . . , T } (5)

yip ∈ {0, 1}, p ∈ Ci, i ∈ {1, . . . , n}. (6)

The objective function aims at minimizing the overall cost of the selected routes. Constraints (2) guarantee that at least
one combination is selected for each customer. Constraints (3) ensure that every customer is visited by at least one route on
each day belonging to its selected combination. Constraints (4) guarantee that the fleet size limit is respected for every day
in the planning horizon. The proposed formulation is similar to the one presented in [2], that however is a set-partitioning-
like model, i.e. constraints (2) and (3) are equality constraints. The same sets of variables are introduced and constraints (4)
are expressed in the same way. Constraints (2) are expressed by considering the frequency of visit of the customers instead
of the set of day combinations.

One of the main ingredients of the proposed heuristic approach lies on the solution of the LP-relaxation of the SC-
formulation (1)–(6). We adopt column generation techniques for solving the LP-relaxation. In the next section, we will
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first describe the arising subproblem and a metaheuristic algorithm that we developed for solving it. The proposed SC-
heur algorithmmakes use of the heuristic LP-solution and applies iteratively fixing and releasing of route variables. A more
detailed description of SC-heur will be given in the next section.

3.1. Subproblem generation

We focus on the LP-relaxation of model (1)–(6) and we use a column generation approach to solve it. The arising
subproblem consists of the so-called elementary shortest path problem with resource constraints (ESPPRC). The objective
is to minimize the arc costs, that besides the original costs take into account a prize given by the dual variables associated
to constraints (3) for each visited customer. The constraints of ESPPRC impose to have a path without cycles, going from the
depot to a copy of it added for convenience (i.e. going back to the depot), taking into account the limit on the maximum
available capacity of the vehicle. For further details on the derivation of the ESPPRC see e.g. [10,30]. ESPPRC is NP-hard
(see [11]), when the underlying graph may have negative cost cycles (as in the studied case). Many works have proposed
methods for dealing with ESPPRC (see e.g. [13,26,27]). In this paper, we propose a heuristic algorithm based on iterated local
search, that will be described in the next section.

4. Solution method

As already mentioned, we propose a heuristic algorithm (SC-heur) based on the LP-relaxation of the model (1)–(6). The
LP-relaxation is solved (in a heuristic way) by applying a column generation approach, where the subproblem consists of
an ESPPRC and CPLEX is used as general purpose solver. The subproblem is solved heuristically by means of an iterated local
search (ILS) method. ILS is a metaheuristic consisting in generating a sequence of local optima. In the last decades, it has
proved to be quite effective for solving a variety of problems, including routing problems. A good introduction to ILS is that
of Lourenço et al. [23]. It is an iterativemethod, working on an incumbent solution, say x, and considering a neighborhood of
such a solution. The goal in ESPPRC is to find the shortest path between two nodes (start and finish that represent two copies
of the depot), which is achieved by going through negative cost arcs. Since the dual variables from LP (1)–(6) are associated
to nodes, it is quite clear that if a node is associated with a high dual variable, then all arcs entering this node are likely to
have a negative cost. Therefore, all the neighborhoods we take into account are based on node operations. In particular we
consider the following possible neighborhoods:

1. Insertion consists in adding a new node to the path.
2. Removal consists in removing a node from the path.
3. Moving consists in removing a node from the path, then inserting it at another position.
4. Replacing consists in removing a node from the path, then inserting another one, previously absent from the path, at the

same position.
5. Swapping consists in swapping the respective positions of two different nodes in the path.

One iteration of ILS consists of the following 3 steps:

1. x′ ← Perturbation(x)
2. x′′ ← LocalSearch(x′)
3. x← AcceptanceDecision(x, x′′).

In particular, we consider the neighborhood obtained by insertion and removal of nodes (neighborhoods 1 and 2) in
the LocalSearch phase and all the moves in the Perturbation phase. For the local search we adopt a steepest descent on
the neighborhoods, i.e. at every iteration we perform the move bringing the most significant improvement on the path
cost, be it an insertion or a removal. The acceptance criterion is the so-called random walk, where a new local optimum
is systematically accepted as new incumbent solution. After a certain stopping criterion (to be described in the following)
is met, the search is stopped. The method uses a fixed number k of random moves for the perturbation phase (in practice
k = 10). Additionally, at each iteration we check if the current incumbent is better than the best solution found so far, and
update it if necessary.

Concerning stopping criteria, we introduce an original mechanism to adapt automatically the number of iterations to the
difficulty of the problem. Using a fixed number of iterations leads to a non-negligible problem: if the number of iterations
is high then the heuristic provides good-quality solutions, but takes more time. Typically, at the beginning of the column
generation process, it is useless to allow a lot of iterations, since optimal solutions to the ESPPRC can be found very quickly.
So for those instances, it is not a good idea to have a lot of iterations; on the other hand, at the end of the column generation
process, a lot of iterations can be required, since the ESPPRC instances generated by the master problem are much harder.
We therefore propose an adaptive stopping criterion: if after a certain number of iterations a negative cost path has been
found, then the procedure exits; else, the total number of iterations is increased, to allocate more time to the heuristic. A
total limit on the number of iterations, that can never be exceeded, is also necessary. Algorithm 1 gives an overview of how
the ILS algorithm works.
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Algorithm 1 ILS algorithm for the ESPRRC.
1: iter ← 0
2: x← (start, finish)
3: x∗ ← x
4: while iter < iterMax do
5: x← Perturbation(x)
6: x← LocalSearch(x)
7: if cost(x) < cost(x∗) then
8: x∗ ← x
9: end if

10: if cost(x∗) ≥ 0 ∧ iterMax < maxIterMax then
11: iterMax← 10.iterMax
12: end if
13: iter ← iter + 1
14: end while

The set of columns is initialized by applying the variable neighborhood search algorithm by Hemmelmayr et al. [20]
(described in Section 1). However, we only want a starting solution so we use a limited number of iterations in order to
provide good feasible solutions in a few seconds.

In order to produce an integer solution to the PVRP, we propose a constructive procedure which consists in heuristically
fixing the value of selected xtr variables to 1. Fixing a variable is performed by setting its lower bound to 1, and it has an impact
on the restricted master problem and on the dual variables, therefore on the subproblem. Hence, after fixing variables it
makes sense to generate new columns taking into account these new dual values, rather than directly fixing more variables.
In this context, a first solution approach consists in iteratively repeating the following two steps:

1. Heuristically solve the linear relaxation of the restricted master problem with ILS.
2. Fix a set of variables.

The algorithm then simply consists in repeating these two steps until an integer solution is found. Step 1 can be interrupted
prematurely in order to accelerate the search:we generate columns atmost 1000 times every time step 1 is called. In practice
this condition is only matched in a few special cases.

Regarding the selection of variables to fix, we use a simple rule: fix all those variables equal to 1 in the solution, plus the
fractional variable of highest value. One should note that fixing a route also has consequences on the available combinations
for the customers visited by the chosen route. In particular, some days for a visited customer can become infeasible, due
to the choice we made; this also means that combinations using these days become infeasible. Thus, we forbid the routes
that are visiting customers on forbidden days, and we also prevent the use of forbidden combinations. Finally, we avoid
generating new routes that visit a customer on a forbidden day. This is done by using a list of forbidden customers for each
day in the ILS algorithm for the subproblem.

This heuristic framework allows to quickly find integer solutions, but might suffer from too restrictive heuristic choices,
in the absence of a mechanism to cancel previous decisions: it is a direct rush to a local optimum. We therefore introduce
a second mechanism in order to escape such local optima: previously fixed variables can also be released. This offers new
possibilities, for instancemoving from an integer solution to a fractional solution, then generating columns again. Regarding
the selection of variables to release, we make use of the search history by systematically choosing the one variable that has
been fixed for the longest time. Another possibilitywould be to select themost recently fixed variable,whichwould intensify
the search around the same local optimum; we rather decide to diversify it, considering that the intensification aspect is
already provided by generating columns every time a variable is fixed.

When an integer solution is found during the fixing phase, the best solution found (UB) is updated accordingly. The
releasing phase starts when in the fixing phase the value of the LP objective function returned by CPLEX gets larger than UB.
The releasing phase is executed until the LP-solution gets below the value of the best solution found. The list of forbidden
customers, routes and combinations is also updated when releasing variables. In order to avoid cycling between the fixing
and releasing phases, we use a tabu list (TL) that does not allow fixing of a variable that was released recently (i.e. in the last
40 variables that have been released).

The whole fixing–releasing heuristic stops after a stopping criterion is met: either a maximum number of iterations (of
fixing and releasing) or a time limit is reached. In our experiments we fixed a time limit as stopping criterion. Algorithm
2 gives an overview of how this algorithm works. The proposed algorithm corresponds to a diving heuristic that includes
backtracking, applied through releasing of some variables, and adopts a tabu list for avoiding cycling. Recently, some work
has been done on primal heuristic algorithms based on column generation (see e.g. [22]). As also mentioned in the latter
paper, setting bounds on column values is involved in the context of column generation: indeed this means to include
additional constraints in the pricing problem which make it harder. Thus, effective primal heuristics such as Relaxation
Induced Neighborhood Search by Danna et al. [9] or Local Branching by Fischetti and Lodi [14], developed in the context of
general MIP solvers, cannot be easily extended to the Branch-and-Price setting.
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Algorithm 2 Hybrid tabu search for the PVRP (SC-heur).
1: initialize the UB
2: TL← ∅
3: while stopping criterion not reached do
4: LB,UB← SolveRestrictedMasterProblem()
5: if LB < UB then
6: for all x do
7: if x /∈ TL ∧ x = 1 then
8: fix x to 1
9: propagate forbidden routes and combinations

10: end if
11: end for
12: fix the highest non-tabu fractional x to 1
13: propagate forbidden routes and combinations
14: else
15: release the oldest fixed x
16: update TL
17: end if
18: end while

5. Experimental results

In this section, we present computational experiments on benchmark instances of the PVRP and the PTSP from the
literature, as well as on realistic instances presented in [24]. All the tests were performed on an Intel Xeon 2.67 GHz CPU.
SC-heur was executed with a time limit of 2 h.

5.1. PVRP instances

We used a set of instances provided in the literature. Instances p1–p10 were proposed by Eilon et al. [12] for the VRP and
adapted to the PVRP by Christofides and Beasley [7]. Russel and Igo [29] provided instance p11. Instance p12 and p13 are
taken from [28]. Instances p14–p32 were introduced by Chao et al. [6].

In Table 1 we present a comparison of SC-heur with a heuristic algorithm (NoRel) which does not allow releasing route
variables, but only consists of the fixing phase, that is repeated until an integer solution is found. The aim is to show that
releasing of variables is a fundamental component of the proposed algorithm. We present the average objective value and
computing time to reach the best solution (inmin) over 10 runs. It can be easily seen that removing the releasing component
leads to worse results.

In Table 2, we compare our approachwith state-of-the-art algorithms andwith a very recent approach by Vidal et al. [32].
The first column represents the instance name, then we show the results obtained by the tabu search of Cordeau et al. [8]
(CGL), by the scatter search of Alegre et al. [1] (ALP), by the variable neighborhood search of Hemmelmayr et al. [20] (HDH),
by the hybrid genetic algorithm of Vidal et al. [32] (HGSADC) and by our SC-heur. These are average results over 10 runs
for SC-heur, as well as for HDH and HGSADC. We mark in boldface the best results. In the last row we show the average
percentage gap between SC-heur and each of the other algorithms. As it can be seen from the results in Table 2, SC-heur
brings an improvement over previous state-of-the-art algorithms (i.e. CGL, ALP and HDH) and obtains comparable results
with the very recent approachHGSADC [32]. Finally, the last two columns show the previous best known solutions (prev BKS)
and the ones (SC-heur BKS) found by our algorithm among all the experiments. We mark with an asterisk ‘*’ the solutions
that are optimal as proved in [2], and in boldface the best results. SC-heur was able to find 3 new best solutions and to find
the best known solution 14 times.

Table 3 shows the computing times in minutes of each algorithm. ALP is run on a Pentium III, 600MHz, CGL and HDH are
run on a 3.2 GHz pc, and HGSADC is run on a 2.4 GHz AMDOpteron 250 CPUworkstation but they report only the computing
time converted to a 3.0 GHz Pentium IV by using the Dongarra factor. We report the time to reach the best solution for SC-
heur and the total run time for CGL, ALP, HDH and HGSADC. The total run time for SC-heur is 2 h. The computing times of
SC-heur are larger than those in the previous approaches (i.e. CGL, ALP and HDH), however we obtain better solutions on
average. Compared to HGSADC, it should be noted that SC-heur uses the same parameter setting for all instances, while in
HGSADC larger time limits are used for the larger instances.

5.2. Instances by Pacheco et al. [24]

Another set of experiments is performed on instances presented in [24], described in Section 1. These are realistic
instances, provided by a bakery company.
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Table 1
Comparison with a variant of our approach, not allowing for releasing of variables.

Instance NoRel SC-heur % Dev
Value T ∗ (min) Value T ∗ (min)

p01 524.61 0.00 524.61 0.00 0.00
p02 1333.44 0.00 1326.16 35.18 −0.55
p03 525.67 0.32 524.61 3.54 −0.20
p04 845.92 0.00 837.04 33.88 −1.05
p05 2090.17 0.72 2048.29 32.52 −2.00
p06 894.52 0.53 841.96 47.00 −5.88
p07 834.14 0.00 834.14 0.00 0.00
p08 2045.87 0.00 2042.02 16.63 −0.19
p09 847.38 2.08 847.03 8.71 −0.04
p10 1698.57 0.47 1664.9 61.72 −1.98
p11 805.14 4.95 790.77 84.57 −1.78
p12 1258.57 12.14 1228.14 97.45 −2.42
p13 3540.78 84.37 3549.3 79.28 0.24
p14 954.81 0.00 954.81 0.00 0.00
p15 1862.63 0.00 1862.63 0.00 0.00
p16 2875.24 0.00 2875.24 0.00 0.00
p17 1597.75 0.03 1597.75 0.03 0.00
p18 3155.41 0.01 3149.09 49.68 −0.20
p19 4843.79 5.38 4839.87 29.15 −0.08
p20 8367.40 0.01 8367.4 0.01 0.00
p21 2187.67 0.23 2170.8 17.73 −0.77
p22 4265.28 2.71 4232.5 81.50 −0.77
p23 6633.36 6.50 6573.33 57.86 −0.90
p24 3693.50 0.00 3687.46 6.27 −0.16
p25 3781.33 0.04 3777.15 5.49 −0.11
p26 3798.43 0.00 3795.32 0.27 −0.08
p27 22008.86 1.56 21963.23 53.67 −0.21
p28 22372.24 1.69 22271.91 84.07 −0.45
p29 22654.80 1.22 22564.8 80.30 −0.40
p30 75470.31 6.10 75193.09 75.27 −0.37
p31 77068.45 4.04 76496.67 93.26 −0.74
p32 78916.65 4.11 78065.24 86.22 −1.08

Average 11367.27 4.35 11296.79 38.16 −0.69

The authors made the necessary modifications to treat the problem as a classical PVRP, in order to be able to compare
their algorithm with the state-of-the-art algorithms for the PVRP.

In Table 4, we present a comparison of SC-heur with state-of-the-art algorithms on these realistic instances. In particular,
we consider the following algorithms, as in [24]: the tabu search of Cordeau et al. [8] (CGL), the scatter search of Alegre
et al. [1] (ALP), the variable neighborhood search of Hemmelmayr et al. [20] (HDH), and the GRASP algorithm of Pacheco
et al. [24] (GRASP). We show in boldface the best results. In the last row we show the average percentage gap between
SC-heur and each of the other algorithms. In this case, we initialized the set of columns in the set-covering-like model for
SC-heur with dummy routes, one for each customer. As one can see, SC-heur obtains on average an improvement over all
the state-of-the-art algorithms. Finally, in the last two columns, we show the previous best known solutions (prev BKS) and
the ones (SC-heur BKS) found by our algorithm among all the experiments. SC-heur finds 9 new best solutions, and finds the
best known solution for all the other instances.

Table 5 shows the computing times inminutes.We report the computing times as in [24]: CGLwas run on a Dell Precision
T7400 with four processors at 3.0 GHz CPU (a single processor was used to run the tests), ALP was run on a Corel 8400 PC
at 2.66 GHz, HDH algorithm was run on a 64 bits dual core PC, at 3.2 GHz, and GRASP was run on a Corel 8400 PC with a
2.66 GHz CPU.

5.3. PTSP instances

A last set of experiments was conducted on instances of the PTSP from the literature. Instances p1–p10 were given by
Eilon et al. [12] for the VRP and adapted to the PTSP by Christofides and Beasley [7]. Instances p11–p23 were introduced by
Chao et al. [5] and instances pr1–pr10 are taken from [8].

In Table 6, we present a comparison of SC-heur with state-of-the-art algorithms on PTSP instances. In particular, we
consider the following algorithms: the heuristic algorithms of Chao et al. [5] (CGW) and of Paletta [25] (P), the tabu search of
Cordeau et al. [8] (CGL), the heuristic algorithm of Bertazzi et al. [4] (BPS) and the VNS approach of Hemmelmayr et al. [20]
(HDH). We show in boldface the best results. In the last row we show the average percentage gap between SC-heur and
each of the other algorithms. We wish to mention that we have not considered the additional constraint that at least one
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Table 2
Comparison of SC-heur with state-of-the-art algorithms on PVRP instances.

Instance CGL ALP HDH HGSADC SC-heur prev BKS SC-heur BKS

p01 524.61 531.02 524.61 524.61 524.61 524.61∗ 524.61∗
p02 1330.09 1324.74 1332.01 1322.87 1326.16 1322.87 1322.87
p03 524.61 537.37 528.97 524.61 524.61 524.61∗ 524.61∗
p04 837.93 845.97 847.48 836.59 837.04 835.26∗ 835.43
p05 2061.36 2043.75 2059.74 2033.72 2048.29 2024.96 2031.49
p06 840.3 840.1 884.69 842.48 841.96 835.26∗ 835.41
p07 829.37 829.65 829.92 827.02 834.14 826.14 829.63
p08 2054.9 2052.21 2058.36 2022.85 2042.02 2022.47 2027.35
p09 829.45 829.65 834.92 826.94 847.03 826.14 833.83
p10 1629.96 1621.21 1629.76 1605.22 1664.9 1593.43 1619.52
p11 817.56 782.17 791.18 775.84 790.77 770.89 781.75
p12 1239.58 1230.95 1258.46 1195.29 1228.14 1186.47 1198.79
p13 3602.76 – 3835.9 3599.86 3549.3 3492.89 3483.24
p14 954.81 954.81 954.81 954.81 954.81 954.81∗ 954.81∗
p15 1862.63 1862.63 1862.63 1862.63 1862.63 1862.63∗ 1862.63∗
p16 2875.24 2875.24 2875.24 2875.24 2875.24 2875.24∗ 2875.24∗
p17 1597.75 1597.75 1601.75 1597.75 1597.75 1597.75∗ 1597.75∗
p18 3159.22 3157 3147.91 3131.09 3149.09 3131.09 3134.19
p19 4902.64 4846.49 4851.41 4834.50 4839.87 4834.34 4834.34
p20 8367.40 8412.02 8367.40 8367.40 8367.40 8367.40 8367.40
p21 2184.04 2173.58 2180.33 2170.61 2170.61 2170.61∗ 2170.61∗
p22 4307.19 4330.59 4218.46 4194.23 4232.5 4193.95 4195.66
p23 6620.5 6813.45 6644.93 6434.10 6573.33 6420.71 6432.26
p24 3704.11 3702.02 3704.6 3687.46 3687.46 3687.46∗ 3687.46∗
p25 3781.38 3781.38 3781.38 3777.15 3777.15 3777.15∗ 3777.15∗
p26 3795.32 3795.33 3795.32 3795.32 3795.32 3795.32∗ 3795.32∗
p27 23017.45 22561.33 22153.31 21885.70 21963.23 21833.87 21899.10
p28 22569.4 22562.44 22418.52 22272.6 22271.91 22242.51∗ 22244.60
p29 24012.92 23752.15 22864.23 22564.05 22564.8 22543.76∗ 22543.76∗
p30 77179.33 76793.99 75579.23 74534.38 75193.09 73875.19 74358.60
p31 79382.35 77944.79 77459.14 76686.65 76496.67 76001.57 75957.62
p32 80908.95 81055.52 79487.97 78168.82 78065.24 77598.00 77591.23

SC-heur vs. CGL vs. ALP vs. HDH vs. HGSADC
Av. gap% −0.91 −0.72 −0.72 0.53

customer has to be visited every day. This constraint was introduced by Chao et al. [5]. As shown in [20], this constraint leads
to best known solutions with a route visiting many customers plus one single-customer route on each day of the horizon.
We believe that these kinds of solutions are not useful in practice, so we decide to neglect this additional constraint. Thus,
the SC-heur results for instances p03, p06 and p09 are not feasible with respect to this constraint. We mark the results we
found for these instances with an asterisk ‘*’. For a fair comparison, we did not consider these instances in the computation
of the average percentage gap. As one can see, SC-heur is competitive compared to HDH and improves the results obtained
by the other algorithms. Finally, in the last two columns, we show the previous best known solutions (prev BKS) and the
ones (SC-heur BKS) found by our algorithm among all the experiments. Without considering the instances for which the
additional constraint that at least one customer has to be visited every day is not taken into account, SC-heur finds 2 new
best solutions, and finds the best known solution for 10 instances.

In Table 7, we report the run times in minutes executed on a Sun 4/370 (CGW), on a Sun Sparcstation 10 (CGL), on a
Sun Sparcclassic (P), and on a 3.2 Dual Core (HDH). For all the algorithms we report the total run time for each instance,
while for SC-heur we report the time to reach the best solution. The total run time for SC-heur is 2 h. For BPS we do not
report the running time since it is not available; quoting the authors, their ‘‘algorithm is able to tackle the test instances in
an acceptable computational time (about 0.05 min on average)’’.

6. Discussion

In this paper we have proposed a new heuristic algorithm based on the linear programming relaxation of a set-covering-
like model with additional constraints for the periodic vehicle routing problem. The proposed algorithm can be generalized
in order to solve mixed integer linear programming problems. Column generation is applied in order to solve the linear
programming relaxation. In particular, we solve it in a heuristic way, by means of an iterated local search algorithm. In
order to obtain a feasible solution to the periodic vehicle routing problem, fixing and releasing of the route variables is
performed. The developed algorithm has been tested on benchmark instances from the literature and on realistic instances
of the PVRP. In addition, benchmark instances of the periodic traveling salesman problem have been solved. The comparison
with state-of-the-art algorithms shows that the proposed heuristic algorithm is effective and competitive. In addition, some
new best known solutions have been obtained.



V. Cacchiani et al. / Discrete Applied Mathematics 163 (2014) 53–64 61

Table 3
Computing times in minutes for the PVRP instances. T refers to the total
time used to execute the algorithm and T ∗ is the time needed to obtain
the best solution during search process.

Instance CGL T ALP T HDH T HGSADC T SC-heurT ∗

p01 0.49 4.47 1.64 0.22 0.00
p02 0.59 8.23 1.36 0.44 35.18
p03 0.54 0.75 1.68 0.18 3.54
p04 0.78 23.77 1.12 1.05 33.88
p05 0.88 21.33 1.13 2.27 32.52
p06 0.95 29.95 1.27 0.89 47.00
p07 1.28 3.32 3.05 0.88 0.00
p08 2.06 59.73 2.38 2.54 16.63
p09 1.59 16.17 3.22 1.01 8.71
p10 2.06 157.78 2.83 1.80 61.72
p11 3.44 108.20 4.23 4.60 84.57
p12 3.94 8.58 5.91 5.34 97.45
p13 24.86 – 2.13 40.00 79.28
p14 0.16 0.08 0.62 0.08 0.00
p15 0.39 0.02 1.57 0.17 0.00
p16 0.69 0.03 3.63 0.32 0.00
p17 0.37 1.60 0.95 0.27 0.03
p18 1.07 6.68 2.38 0.89 49.68
p19 2.26 0.33 4.31 2.26 29.15
p20 3.87 1.00 14.82 4.01 0.01
p21 0.55 6.22 1.21 0.90 17.73
p22 2.20 8.80 2.83 4.27 81.50
p23 5.70 0.70 5.69 4.29 57.86
p24 0.53 1.91 0.87 0.32 6.27
p25 0.52 1.15 0.78 0.59 5.49
p26 0.52 0.13 0.75 0.33 0.27
p27 1.38 3.65 1.10 3.52 53.67
p28 1.34 7.25 1.08 4.67 84.07
p29 1.27 0.32 0.99 3.86 80.30
p30 2.85 0.33 1.30 9.99 75.27
p31 2.68 127.50 1.29 10.00 93.26
p32 2.43 138.60 1.17 10.00 86.22

Table 4
Comparison of SC-heur with state-of-the-art algorithms for instances by Pacheco et al. [24].

Instance CGL ALP HDH GRASP SC-heur prev BKS SC-heur BKS

41-1 6425.17 6425.17 6425.17 6425.17 6425.17 6425.17 6425.17
41-2 6173.31 6314.66 6176.67 6173.31 6173.31 6173.31 6173.31
41-3 6355.62 6355.62 6355.62 6355.62 6355.62 6355.62 6355.62
41-4 6902.71 6902.71 6921.95 6902.71 6903.83 6902.71 6902.71
41-5 6832.63 6832.63 6832.63 6832.63 6832.63 6832.63 6832.63
62-1 9298.06 9317.89 9335.90 9297.57 9296.86 9297.57 9296.55
62-2 8765.20 8823.87 8785.07 8867.92 8765.35 8765.20 8765.20
62-3 8833.46 8885.98 8849.44 8813.65 8829.99 8813.65 8813.65
62-4 9089.24 9089.24 9089.24 9089.24 9089.24 9089.24 9089.24
62-5 8838.03 8851.54 8878.02 8838.03 8849.65 8838.03 8838.03
82-1 10779.09 10912.78 10826.58 11180.33 10755.29 10779.09 10697.73
82-2 10459.80 10480.60 10501.43 10430.65 10430.43 10430.65 10388.92
82-3 10147.79 10075.53 10138.96 10128.56 10082.58 10075.53 10075.53
82-4 10555.07 10550.06 10619.69 10550.06 10568.74 10550.06 10550.06
82-5 10611.28 10592.93 10618.36 10631.00 10576.08 10592.93 10562.74
102-1 13312.92 13285.43 13191.64 13125.98 13119.16 13125.98 13077.15
102-2 13887.50 13834.50 13893.59 13827.75 13825.63 13827.75 13790.06
102-3 11920.98 11957.09 11981.48 11898.51 11896.05 11898.51 11869.85
102-4 12515.18 12423.94 12482.99 12415.18 12336.89 12415.18 12303.52
102-5 12591.00 12573.39 12640.49 12534.88 12536.88 12534.88 12468.84

SC-heur vs. CGL vs. ALP vs. HDH vs. GRASP
Av. gap% −0.26 −0.42 −0.40 −0.31

Acknowledgments

Financial support from the Austrian Science Fund (FWF), by grant #P20342, as well as from the Austrian Research
Promotion Agency (FFG), by grant #822739, is gratefully acknowledged. The authors would also like to thank Karl F. Doerner



62 V. Cacchiani et al. / Discrete Applied Mathematics 163 (2014) 53–64

Table 5
Computing times in minutes for the instances by Pacheco et al. [24]. T
refers to the total time used to execute the algorithm and T ∗ is the time
needed to obtain the best solution during search process.

Instance CGL T ALP T HDH T GRASP T SC-heurT ∗

41-1 0.60 0.55 1.33 0.49 2.36
41-2 0.61 0.52 1.38 0.48 1.08
41-3 0.68 0.54 1.36 0.49 0.02
41-4 0.58 0.58 1.40 0.45 7.61
41-5 0.49 0.51 1.44 0.40 0.17
62-1 0.96 1.63 2.77 1.36 13.25
62-2 1.03 1.52 2.86 1.35 21.45
62-3 0.97 1.58 2.95 1.18 22.47
62-4 0.68 1.29 2.90 1.20 10.70
62-5 1.14 1.95 2.71 1.60 42.46
82-1 1.49 3.43 4.61 2.72 33.02
82-2 1.55 3.62 4.72 3.39 54.54
82-3 1.64 3.50 4.78 3.32 26.24
82-4 1.20 3.89 4.82 2.95 31.92
82-5 1.52 3.62 5.12 3.49 47.36
102-1 1.86 6.28 7.24 5.82 41.93
102-2 1.53 6.48 7.75 5.42 30.82
102-3 1.95 7.80 7.59 6.49 79.46
102-4 2.10 7.57 7.30 6.70 63.76
102-5 2.13 8.65 7.32 6.94 54.65

Table 6
Comparison of SC-heur with state-of-the-art algorithms for PTSP instances.

Instance CGW P CGL BPS HDH SC-heur prev BKS SC-heur BKS

p01 442.1 436.50 439.02 436.50 432.10 432.10 432.10 432.10
p02 1106.7 1122.44 1111.93 1122.44 1106.84 1105.81 1105.81 1105.81
p03 474.0 469.16 469.69 469.64 467.42 446.17∗ 466.71 440.62∗
p04 554.2 559.68 556.21 559.49 552.39 550.07 549.05 550.07
p05 1394.0 1387.90 1389.54 1384.75 1384.58 1384.15 1382.33 1384.15
p06 657.3 643.59 651.28 655.06 652.65 581.94∗ 643.50 572.16∗
p07 662.4 – 660.41 646.65 649.17 658.09 643.80 658.09
p08 1635.2 – 1634.68 1633.92 1615.51 1612.60 1611.96 1612.60
p09 735.3 – 734.16 733.13 729.33 698.04∗ 720.72 684.26∗
p10 1248.8 – 1240.01 1249.15 1237.72 1239.96 1233.53 1239.96
p11 491.0 490.97 490.97 490.97 490.97 490.97 490.97 490.97
p12 664.1 664.10 664.10 664.10 664.10 664.10 664.10 664.10
p13 830.8 830.80 830.80 830.80 830.80 830.80 830.80 830.80
p14 994.6 994.60 994.60 994.60 994.60 994.60 994.60 994.60
p15 1157.1 1157.07 1157.07 1157.07 1157.07 1157.12 1157.07 1157.07
p16 726.8 660.12 660.12 660.12 660.12 649.96 660.12 643.42
p17 776.5 776.43 776.43 776.43 776.71 774.54 776.43 774.54
p18 873.7 876.44 873.73 876.44 875.82 887.05 873.73 887.05
p19 974.6 958.51 958.88 958.51 965.54 974.60 958.51 974.60
p20 1053.6 1033.58 1034.51 1033.58 1035.51 1053.59 1033.58 1053.59
p21 1379.1 – 1375.08 1375.07 1375.07 1375.08 1375.07 1375.07
p22 4323.6 – 4319.72 4323.49 4312.31 4312.32 4312.31 4312.31
p23 8753.3 8390.53 8553.10 8498.00 8349.26 8405.10 8308.48 8405.10
pr01 – 2064.84 2068.46 2064.84 2064.84 2064.84 2064.84 2064.84
pr02 – 3232.72 3293.50 3231.50 3208.49 3208.22 3205.94 3208.22
pr03 – 4084.75 4106.72 4118.63 4045.73 4065.15 4027.71 4065.15
pr04 – 4636.67 4661.97 4621.36 4547.77 4557.92 4538.19 4557.92
pr05 – 4757.90 4698.83 4682.54 4628.24 4623.86 4613.58 4623.86
pr06 – 5688.42 5699.96 5595.45 5529.68 5559.11 5521.24 5559.11
pr07 – 4479.65 4453.15 4474.17 4436.31 4446.60 4435.39 4446.60
pr08 – – 5405.40 5475.70 5370.59 5383.44 5366.53 5383.44
pr09 – 7405.52 7469.73 7346.32 7244.02 7256.65 7234.35 7256.65
pr10 – 8394.52 8493.74 8415.31 8216.48 8243.32 8199.55 8243.32

SC-heur vs. CGW vs. P vs. CGL vs. BPS vs. HDH
Av. gap% −1.02 −0.58 −0.68 −0.46 0.19
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Table 7
Computing times in minutes for PTSP instances. T refers to the total
time used to execute the algorithm and T ∗ is the time needed to obtain
the best solution during search process.

Instance CGW T P T CGL T HDH T SC-heurT ∗

p01 0.03 0.04 4.04 2.30 0.00
p02 1.56 0.05 4.57 2.10 0.00
p03 0.27 0.11 4.45 1.30 25.47
p04 0.76 0.14 7.33 3.50 0.00
p05 5.22 0.16 8.72 3.70 0.00
p06 0.66 0.64 9.91 1.40 54.03
p07 1.75 – 12.32 5.10 0.00
p08 12.41 – 14.14 5.70 0.00
p09 0.69 – 13.48 2.00 33.44
p10 2.68 – 14.13 6.90 0.00
p11 0.46 0.05 5.6 1.70 0.00
p12 1.3 0.12 8.88 2.70 0.00
p13 2.43 0.23 12.46 3.70 0.00
p14 3.05 0.4 17.63 5.10 0.01
p15 7.41 0.62 24.06 6.70 0.01
p16 0.2 0.06 3.88 1.70 50.32
p17 0.2 0.15 6.18 3.20 0.15
p18 1.87 0.31 9.17 4.70 0.00
p19 1.52 0.55 12.85 6.80 0.00
p20 2.97 0.88 16.87 8.40 0.00
p21 1.26 – 7.29 2.30 0.01
p22 11.67 – 25.2 7.60 0.00
p23 47.59 2.14 56.31 19.60 0.00
pr01 – 0.04 3.69 2.20 0.16
pr02 – 0.35 11.83 6.70 0.00
pr03 – 1.14 24.42 14.90 0.00
pr04 – 2.75 41.31 27.50 0.00
pr05 – 5.62 65.66 48.70 0.02
pr06 – 9.86 92.48 81.10 0.03
pr07 – 0.28 9.26 5.70 0.00
pr08 – – 29.72 19.90 0.00
pr09 – 8.18 65.77 50.80 0.00
pr10 – 19.05 113.72 112.70 0.04
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