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In this paper, we try to attack a conjecture of Araujo and Jarosz that every bijective linear
map θ between C∗-algebras, with both θ and its inverse θ−1 preserving zero products,
arises from an algebra isomorphism followed by a central multiplier. We show it is true
for CCR C∗-algebras with Hausdorff spectrum, and in general, some special C∗-algebras
associated to continuous fields of C∗-algebras.
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1. Introduction

The theory of general C∗-algebras is made easy by observing the interplay between their algebraic and analytical struc-
tures. For example, the norm structure can be recovered from the ∗-algebraic structure in a C∗-algebra. It is further shown
by Gardner [10] (see also [16, Theorem 4.1.20]) that two C∗-algebras are ∗-algebraic isomorphic if and only if they are
algebraic isomorphic.

Extending results in [18,17], they are shown in [6] for the unital case and in [19, Corollary 2.6] for the general case that
two C∗-algebras A, B are algebraic isomorphic if and only if there is a continuous bijective linear map θ between them
preserving zero products, that is,

θ(a)θ(b) = 0 in B whenever ab = 0 in A.

In this case,

θ = θ∗∗(1)Ψ, (1.1)

where θ∗∗ is the bidual map of θ , and θ∗∗(1) is an invertible central multiplier of B, while Ψ is an algebra isomorphism
form A onto B. Consequently, the topological, linear and zero product structures determine a C∗-algebra.

In [2], Araujo and Jarosz show that every bijective linear map θ between unital standard operator algebras on Banach
spaces, with both θ and its inverse θ−1 preserving zero products, carries the standard form (1.1). In particular, such maps
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are automatically bounded. Their results apply to those maps between standard C∗-algebras, i.e., those containing compact
operators. They state a conjecture in [2] to ask whether every such map between two arbitrary C∗-algebras carries the
standard form (1.1). In other words, they want to know whether the linear and the zero product structures suffice to
determine a C∗-algebra.

This might be a hard problem, as we do not have suitable functional calculus to use if we do not know in advance the
map is bounded. As a matter of facts, the structure of unbounded zero product preserving linear functionals of C∗-algebras
is quite complicated (see [4]). Furthermore, we know that Banach algebra homomorphisms can be unbounded (see, e.g., [7]).
One possible way to attack this problem is to decompose a general C∗-algebra into a family of simple C∗-algebras, e.g., the
ones consist of compact operators. Together with [13], this suggests us to study continuous fields of C∗-algebras whose
fibers are elementary C∗-algebras, which give rise to exactly all CCR C∗-algebras with Hausdorff spectrum.

In Section 2, we shall develop a structure theory of zero product preserving linear maps θ between two continuous fields
of C∗-algebras (X, {Ax},A) and (Y , {B y},B). These maps carry a standard form

θ( f )(y) = H y
(

f
(
ϕ(y)

))
, ∀ f ∈ A, ∀y ∈ Y , (1.2)

where ϕ is a map from Y into X , and each fiber linear map H y : Aϕ(y) → B y is zero product preserving. In Section 3, we
assume, in addition, θ is bijective and its inverse θ−1 also preserves zero products. Then, ϕ is a homeomorphism. Moreover,
all fiber linear maps H y are bounded whenever X (or Y ) contains no isolated points, or all the fiber C∗-algebras are standard
operator algebras. In these cases, θ is bounded and thus, by results in [6,19], carries the standard form (1.1). Eventually, we
solve the open problem in affirmative for the CCR C∗-algebra case; namely, two CCR C∗-algebras with Hausdorff spectrum
are ∗-isomorphic if and only if they have the same linear and zero product structures.

It might be worthwhile to mention that the group C∗-algebra of a compact group is a direct sum of matrix algebras, and
thus a CCR with Hausdorff spectrum (see, e.g., [8, 15.1]). Consequently, results in this paper can be applied. Of course, the
most interesting part is to characterize further the group structure through this kind of maps. We hope this will be achieved
in coming future.

Finally, we would like to express our deep gratitude to the referee for his/her careful reading and helpful comments.

2. Zero product preservers between continuous fields of Banach algebras

We shall follow [9,8] for notations. Let T be a locally compact Hausdorff space, called base space. For each t in T there is
a (complex) Banach space Et . A vector field x is an element in the product space

∏
t∈T Et , that is, x(t) ∈ Et , ∀t ∈ T .

Definition 2.1. A continuous field E = (T , {Et},A) of Banach spaces over a locally compact space T is a family {Et}t∈T of Banach
spaces, with a set A of vector fields such that

(i) A is a (complex) vector subspace of
∏

t∈T Et .
(ii) For every t in T , the set of all x(t) with x in A is dense in Et .

(iii) For every x in A, the function t �→ ‖x(t)‖ is continuous on T and vanishes at infinity.
(iv) Let x be a vector field. Suppose for every t in T and every ε > 0, there is a neighborhood U of t and a y in A such

that ‖x(t) − y(t)‖ < ε for all t in U . Then x ∈ A.

Elements in A are called continuous vector fields.

It is not difficult to see that A becomes a Banach space under the norm ‖x‖ = supt∈T ‖x(t)‖. If g is in Cb(T ), i.e., g is
a bounded continuous complex-valued function on T , and x is in A then t �→ g(t)x(t) defines a continuous vector field gx
on T . The set {x(t): x ∈ A} coincides with Et for every t in T . Moreover, for any distinct points s, t in T and any α in Es
and β in Et , there is a continuous vector field x such that x(s) = α and x(t) = β (see, e.g., [9,14]).

Definition 2.2. A continuous field of Banach algebras (resp. C∗-algebras) (X, {Ax}, A) is a continuous field of Banach spaces with
Banach algebra (resp. C∗-algebra) fibres Ax such that A becomes a Banach algebra (resp. C∗-algebra) under the pointwise
algebraic (resp. ∗-algebraic) operations and norm ‖ f ‖ = sup‖ f (x)‖.

Example 2.3. Recall that a C∗-algebra A is called a CCR if every irreducible representation of A consists of compact operators.
The spectrum Â of A is the family of unitary equivalence classes of nonzero irreducible representations under the hull-
kernel topology. This topology is always locally compact, and the spectrum of a CCR C∗-algebra is T1. Let A be a CCR
C∗-algebras with Hausdorff spectrum X = Â. According to [8, Theorem 10.5.4], we can represent A as a continuous field of
C∗-algebras (X, {Ax},A), where Ax consists of compact linear operators on a Hilbert space Hx for each x in X .

Let (X, {Ax},A) and (Y , {B y},B) be two continuous fields of C∗-algebras, and let θ : A → B be a zero product preserving
linear map. Denote by X∞ = X ∪ {∞} and Y∞ = Y ∪ {∞} the one-point compactifications of X and Y , respectively. Note
that the point ∞ at infinity will be isolated in X∞ if X is already compact. Set for each x in X the sets
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Ix = { f ∈ A: f vanishes in a neighborhood in X∞ of x},
Mx = {

f ∈ A: f (x) = 0
}
.

In particular,

I∞ = { f ∈ A: f has a compact support},
M∞ = A.

Similar conventions are also made for each y in Y . Furthermore, denote by δy the evaluation map at y in Y , i.e.,

δy(g) = g(y) ∈ B y, ∀g ∈ B.

We call a Banach algebra A primitive if it has an (isometric) faithful irreducible representation π : A → B(E) into the
Banach algebra of all bounded linear operators on a Banach space E . We call a linear map between Banach algebras has a
primitive range if the Banach algebra generated by its range is primitive.

Theorem 2.4. Let (X, {Ax},A), (Y , {B y},B) be continuous fields of Banach algebras over locally compact Hausdorff spaces X, Y ,
respectively. Let θ : A → B be a zero product preserving linear map such that δy ◦ θ : A → B y has primitive range for every y in Y .

If we set

Y0 = {y ∈ Y∞: δy ◦ θ = 0},
then there is a unique continuous map ϕ : Y \ Y0 → X∞ satisfying the condition that

θ(Iϕ(y)) ⊆ M y .

Set

Y1 = {
y ∈ Y \ Y0: θ(Mϕ(y)) ⊆ M y

}
,

Y2 = {
y ∈ Y \ Y0: θ(Mϕ(y)) � M y

}
.

Then ∞ ∈ Y0 and Y0 is compact,

θ( f )|Y0 = 0, ∀ f ∈ A,

and Y2 is open in Y∞ . Moreover, there is a linear map H y : Aϕ(y) → B y for each y in Y1 such that

θ( f )(y) = H y
(

f
(
ϕ(y)

))
, ∀ f ∈ A, ∀y ∈ Y1. (2.1)

The exceptional set ϕ(Y2) consists of finitely many non-isolated points in X∞ . Furthermore, θ is bounded if and only if Y2 = ∅ and all
H y are bounded. In this case,

‖θ‖ = sup
y

‖H y‖.

Finally, the fiber maps H y are zero product preserving if (X, {Ax},A) is a continuous field of C∗-algebras.

Composing δy ◦ θ with a faithful irreducible representation of the Banach algebra generated by {θ( f )(y) ∈ B y: f ∈ A},
we can assume that B y is an irreducible subalgebra of the algebra B(E y) of all bounded linear operators on some Banach
space E y and δy ◦ θ is again zero-product preserving with range generating B y .

It is clear that Y0 is compact, contains the point at infinity, and

θ( f )|Y0 = 0, ∀ f ∈ A.

On the other hand, for each y ∈ Y \ Y0, the range θ(A) is not trivial at y. For every open subset U of X , denote by AU the
subalgebra of all f in A vanishing outside a compact subset of U . For each y in Y \ Y0, denote by

S y = {
x ∈ X∞: for every open neighborhood U of x, there is an f in AU such that θ( f )(y) 
= 0

}
.

We divide the proof of Theorem 2.4 into several lemmas.

Lemma 2.5. The set S y is nonempty for each y in Y \ Y0 .
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Proof. Suppose on the contrary that for each x in X∞ there is an open neighborhood Ux of x in X∞ such that θ( f )(y) = 0
for all f in AUx . Let V x be an open neighborhood of x with compact closure V ⊆ U . By compactness,

X∞ = V x0 ∪ V x1 ∪ · · · ∪ V xn

for some points x0 = ∞, x1, . . . , xn in X∞ . Let

1 = h0 + h1 + · · · + hn

be a continuous partition of unity such that hi vanishes outside V xi for i = 0,1, . . . ,n. For any g in A, observe that

(hi g) ∈ AUxi
implies θ(hi g)(y) = 0,

and then θ(g)(y) = 0, ∀g ∈ A. This gives a contradiction y ∈ Y0. �
Lemma 2.6. S y consists of exactly one point for all y in Y \ Y0 .

Proof. We shall verify that x1, x2 ∈ S y implies x1 = x2. Suppose x2 
= x1. Let U1 and U2 be disjoint open neighborhoods of
x1 and x2, respectively. Since

f1 f2 = f2 f1 = 0 for all f i in AUi , i = 1,2,

we have

θ( f1)θ( f2) = θ( f2)θ( f1) = 0 in B.

Let E1 be the intersection of the kernels of all θ( f1)(y) with f1 in AU1 . Because both θ |AU1
and θ |AU2

are not trivial at y,
we see that E1 is a proper nontrivial subspace of E y , that is, {0} 
= E1 
= E y .

Let V be a nonempty open set in Y such that the compact closure V ⊆ U1. For any h in AV , let g be in C(X∞) such
that g = 1 on the support of h and g vanishes outside V . Then for each f in A, since f g vanishes outside V , we have
θ( f g)(y)|E1 = 0. On the other hand, we have h( f (1 − g)) = 0. This implies θ(h)(y)θ( f )(y)|E1 = θ(h)(y)θ( f g)(y)|E1 = 0,
∀ f ∈ A. Since V is an arbitrary nonempty open set with compact closure contained in U1, we have θ(h)(y)θ( f )(y)|E1 = 0
for all f ∈ A and for all h ∈ AU1 . Therefore, θ(A)(y)(E1) ⊆ E1. Since θ(A)(y) generates the irreducible algebra B y , we see
that E1 could not be proper. This is a contradiction. �

Define a map ϕ from Y \ Y0 into X∞ by S y = {ϕ(y)}.

Lemma 2.7. The point ϕ(y) is the unique point in X∞ satisfying the condition that

θ(Iϕ(y)) ⊆ M y, ∀y ∈ Y \ Y0. (2.2)

Proof. Let f ∈ Iϕ(y) vanish in an open neighborhood U of ϕ(y). For all x /∈ U , by the definition of S y there is an open
neighborhood V x of x such that θ(AV x)(y) = {0}. By compactness, we can write X∞ = U ∪ V x1 ∪· · ·∪ V xn for some x1, . . . , xn

in X∞ \ U . Let 1 = h + h1 + · · · + hn be a corresponding continuous partition of unity. Note that θ(hi g)(y) = 0 for all g in A

and i = 1, . . . ,n. Hence, θ(g)(y) = θ(hg)(y) for all g in A. As f (hg) = 0, we see that θ( f )(y)θ(g)(y) = θ( f )(y)θ(hg)(y) = 0.
Since δy ◦ θ has a primitive range, θ( f )(y) = 0, or θ( f ) ∈ M y . Finally, the uniqueness assertion follows from the definition
of S y . �

It is clear that the map ϕ is uniquely characterized by (2.2). Now the definitions of the sets Y1 and Y2 make sense.

Lemma 2.8. ϕ : Y \ Y0 → X∞ is continuous.

Proof. Suppose yλ → y in Y \ Y0, but xλ = ϕ(yλ) → x 
= ϕ(y). By Lemma 2.7, θ(Ix) � M y . Let Ux , Uϕ(y) be disjoint compact
neighborhoods of x,ϕ(y), respectively. Let g ∈ C(X∞) such that g = 1 on Ux and g = 0 on Uϕ(y) . Since xλ → x, (1− g) f ∈ Ixλ

eventually. Thus, θ((1 − g) f ) ∈ M yλ eventually. By the continuity of the norm function, θ((1 − g) f )(y) = 0. On the other
hand, g f ∈ Iϕ(y) implies θ(g f ) ∈ M y . Hence, θ( f )(y) = 0, ∀ f ∈ A. This gives y ∈ Y0, a contradiction. �
Lemma 2.9. Let {yn} be an infinite sequence in Y \ Y0 such that ϕ(yn) are distinct points in X∞ . Then

lim sup ‖δyn ◦ θ‖ < +∞.
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Proof. Suppose not, by passing to a subsequence if necessary, we can assume that ‖δyn ◦ θ‖ > n4, and there is an element
fn in A such that ‖ fn‖ � 1 and ‖θ( fn)(yn)‖ > n3, for n = 1,2, . . . . Let Vn, Un be compact neighborhoods of xn in X∞ such
that Vn is contained in the interior of Un , and Un ∩ Um = ∅, for distinct n,m = 1,2, . . . . Let gn ∈ C(X∞) such that gn = 1 on
Vn and gn = 0 outside Un for n = 1,2, . . . . Observe

θ( fn)(yn) = θ(gn f )(yn) + θ
(
(1 − gn) f

)
(yn)

= θ(gn f )(yn), as (1 − gn) f ∈ Ixn .

So we can assume fn is supported in Un , for n = 1,2, . . . . Let

f =
∞∑

n=1

1

n2
fn ∈ A.

Since n2 f − fn ∈ Ixn , we have n2θ( f )(yn) = θ( fn)(yn) by (2.2), and thus ‖θ( f )(yn)‖ > n, for n = 1,2, . . . . As θ( f ) in B has
a bounded norm, we arrive at a contradiction. �
Lemma 2.10. ϕ(Y2) is a finite set of non-isolated points in X∞ .

Proof. Let x = ϕ(y) with y in Y2. Then by (2.2) we have

θ(Ix) ⊆ M y but θ(Mx) � M y .

This implies the linear operator δy ◦ θ is unbounded, since Ix is dense in Mx by Urysohn’s Lemma. By Lemma 2.9, we can
have only finitely many of such x’s. So ϕ(Y2) is a finite set. Moreover, if x is an isolated point in X∞ then Ix = Mx , and thus
x /∈ ϕ(Y2). �
Proof of Theorem 2.4. Let y ∈ Y1, we have θ(Mϕ(y)) ⊆ M y . Hence, there is a linear operator H y : Eϕ(y) → F y such that

θ( f )(y) = H y
(

f
(
ϕ(y)

))
, ∀ f ∈ A. (2.3)

Next we want to see that Y2 is open, or equivalently, Y0 ∪ Y1 is closed in Y∞ . Let yλ → y with yλ in Y0 ∪ Y1. We want
to show that y ∈ Y0 ∪ Y1. Since Y0 is compact, we may assume yλ ∈ Y1 for all λ. Suppose y /∈ Y0. By Lemma 2.8, we see that
ϕ(yλ) → ϕ(y). In the case there is a subnet of {ϕ(yλ)} consisting of only finitely many points, we can assume ϕ(yλ) = ϕ(y)

for all λ. Then for all f in A, f (ϕ(y)) = 0 implies f (ϕ(yλ)) = 0, and thus θ( f )(yλ) = 0 for all λ by (2.3). By continuity,
θ( f )(y) = 0. Consequently, θ(Mϕ(y)) ⊆ M y , and thus y ∈ Y1. In the other case, every subnet of {ϕ(yλ)} contains infinitely
many points. Lemma 2.9 asserts that M = lim sup ‖H yλ‖ < +∞. This gives

∥∥θ( f )(y)
∥∥ = lim

∥∥θ( f )(yλ)
∥∥ = lim

∥∥H yλ

(
f
(
ϕ(yλ)

))∥∥ � M
∥∥ f

(
ϕ(y)

)∥∥.

Thus, if f (ϕ(y)) = 0 we have θ( f )(y) = 0. Consequently, y ∈ Y1.
Now observe that the boundedness of θ implies Y2 = ∅. Moreover,

‖θ‖ = sup
{∥∥θ( f )

∥∥: f ∈ A with ‖ f ‖ = 1
}

= sup
{∥∥H y

(
f
(
ϕ(y)

))∥∥: f ∈ A with ‖ f ‖ = 1, y ∈ Y1
}

� sup
{‖H y‖: y ∈ Y1

}
. (2.4)

The reverse inequality is plain. Conversely, we suppose Y2 = ∅ and all H y are bounded. We claim that sup ‖H y‖ < +∞. For
else, there is a sequence {yn} in Y1 such that limn→∞ ‖H yn ‖ = +∞. By Lemma 2.9, we can assume all ϕ(yn) = x in X . Let
e ∈ Ax and f ∈ A such that f (x) = e. Then

∥∥H yn(e)
∥∥ = ∥∥θ( f )(yn)

∥∥ �
∥∥θ( f )

∥∥, n = 1,2, . . . .

It follows from the uniform boundedness principle that sup‖H yn ‖ < +∞, a contradiction. It then follows from (2.4) that θ

is bounded.
Finally, suppose (X, {Ax},A) is a continuous field of C∗-algebras, and in particular, A is a C∗-algebra. Let αβ = 0 in Ax

for some x in ϕ(Y1). Consider the closed two-sided ideal I = {c ∈ A: c(x) = 0} of A. Let a, b in A be such that a(x) = α,
b(x) = β . Then ab ∈ I . By a result of Akemann and Pedersen [1] (see also [6, Lemma 4.14]), we shall have a′,b′ in A such
that a′(x) = α, b(x′) = β and a′b′ = 0. Now θ(a′)θ(b′) = 0 implies H y(α)H y(β) = 0. So each H y preserves zero products. �
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3. Zero product preservers between CCR C∗-algebras

Recall that an algebra A of continuous linear operators on some locally convex space E is called standard if A contains
all finite rank operators. Note that we do not assume A contains the identity map on E or A is closed under any topology.
The following result belongs to Araujo and Jarosz [2, Theorem 1]. They verify the case of unital standard operator algebras
on Banach spaces. The arguments below slightly simplify theirs.

Proposition 3.1. (See [2].) Let θ : A → B be a bijective linear map between standard operator algebras A, B on locally convex spaces
M, N, respectively, such that both θ and its inverse θ−1 preserve zero products. Then there is a nonzero scalar λ and a weak–weak
bi-continuous invertible linear map S : M → N such that

θ(a) = λSaS−1, ∀a ∈ A.

In case both M, N are Frechet spaces, S is bi-continuous in the metric topologies. In particular, θ is bounded if both M, N are Banach
spaces.

Proof. Put

a⊥ = {c ∈ A: ca = 0}, for all nonzero a in A.

We see that a⊥ ⊆ b⊥ if and only if the closure of the range space of a contains that of b. Consequently, a⊥ is maximum
among all b⊥ if and only if a is of rank one. By the zero product preserving property of θ and θ−1, we see that θ preserves
the order of a⊥ ’s, and thus sends the maxima onto the maxima. In other words, θ sends rank one operators onto rank one
operators. It then follows from the Fundamental Theorem of Affine Geometry that there exist linear maps S : M → N and
T : N → M such that

θ(a) = SaT , ∀a ∈ F(M),

where F(M) is the algebra of all continuous finite rank operators on M . In particular,

θ(x ⊗ y′) = Sx ⊗ T ′ y′,
for every rank one operator x ⊗ y′ with x in M , y′ in the topological dual space M ′ of M . Here, T ′ is the (algebraic) dual
map of T , and (x ⊗ y′)(z) = y′(z)x defines a rank at most one continuous operator on M . Consequently, T ′M ′ ⊆ N ′ and thus
T is weak–weak continuous. Dealing with the inverse θ−1, we see that T −1 is also weak–weak continuous. Moreover, if
y′

2(x1) = 0 then (x2 ⊗ y′
2)(x1 ⊗ y′

1) = 0. Thus, θ(x2 ⊗ y′
2)θ(x1 ⊗ y′

1) = 0. In other words,

y′
2(x1) = 0 implies

(
T ′ y′

2

)
(Sx1)

(
Sx2 ⊗ T ′ y′

1

) = 0, ∀x1, x2 ∈ M, y′
1, y′

2 ∈ M ′

implies y′
2(T Sx1) = 0, ∀x1 ∈ M, y′

2 ∈ M ′.
By linearity, T = λS−1 for some nonzero scalar λ, and

θ(a) = λSaS−1, ∀a ∈ F(M).

In general, let a ∈ A. For any x 
= 0 in M , let x′ ∈ M ′ such that x′(x) = 1. Set b = a − (ax ⊗ x′). Observe b(x ⊗ x′) = 0. Thus,

θ(b)θ(x ⊗ x′) = λ
(
θ(b)Sx

) ⊗ (
S−1)′

x′ = 0.

This implies

θ(a)Sx = λ
(

Sax ⊗ (
S−1)′

x′)(Sx) = λSax, ∀x ∈ M.

Hence,

θ(a) = λSaS−1, ∀a ∈ A.

In case M , N are Frechet spaces, the Closed Graph Theorem ensures that both S , S−1 are continuous in the metric
topology. If they are Banach spaces, then θ is automatically bounded. �
Theorem 3.2. Let (X, {Ax},A), (Y , {B y},B) be continuous fields of primitive Banach algebras over locally compact base spaces. Let
θ : A → B be a bijective linear map such that both θ , θ−1 preserve zero products. Suppose, in addition, at least one of the following
conditions hold.

(1) X (or Y ) contains no isolated points.
(2) All fibers Ax and B y are standard operator algebras.
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Then θ is automatically bounded and X, Y are homeomorphic. Indeed, θ assumes the standard form (1.2) with all fiber linear maps
being bounded.

If the case (2) holds, and A (resp. B) is a continuous field of standard C∗-algebras Ax (resp. B y) on Hilbert spaces Hx (resp. K y),
then there exist a homeomorphism ϕ : Y → X, a bounded and away from zero continuous scalar function λ on Y , a bounded invertible
linear map S y from Hϕ(y) onto K y for each y in Y such that

θ( f )(y) = λ(y)S y f
(
ϕ(y)

)
S−1

y , ∀ f ∈ A, y ∈ Y .

In other words, the standard form (1.1) holds:

θ = θ∗∗(1)Ψ,

where the invertible central multiplier θ∗∗(1) of B is represented by the operator field y �→ λ(y)I y with I y being the identity map on
each fiber Hilbert space K y , and the algebra isomorphism Ψ is given by Ψ ( f )(y) = S y f (ϕ(y))S−1

y .

Proof. We first note that Y0 = {∞}. Moreover, it follows from (2.2) that ϕ(Y ) = ϕ(Y1) ∪ ϕ(Y2) is dense in X . Since ϕ(Y2)

is a finite set of non-isolated points in X , we see that ϕ(Y1) alone is dense in X . On the other hand, let y ∈ Y1 with
ϕ(y) = x in X , and ψ(x) = z in Y∞ . Here, the map ψ : X → Y∞ , and the decomposition X = X1 ∪ X2 is induced by θ−1 in
an analogous way. In particular, we have

θ(Mx) ⊆ M y and θ−1(Iz) ⊆ Mx.

Consequently, Iz ⊆ θ(Mx) ⊆ M y gives y = z ∈ ψ(X). In case y ∈ ψ(X1), we have θ(Mx) = M y . Since ψ(X2) is a finite set of
non-isolated points in Y , we have θ(Mϕ(y)) = M y for all but at most finitely many y in Y1. Therefore, the linear map H y is
bijective for all but at most finitely many y in Y1, which are non-isolated points in Y . Hence, if θ( f ) vanishes on Y1 then f
vanishes on the dense set ϕ(Y1) by (2.1), and thus f = 0. Therefore, Y1 is dense in Y by the surjectivity of θ . The openness
of Y2 forces itself to be empty.

Now, Y = Y1 and X = X1 imply that both θ and θ−1 can be written as weighted composition operators:

θ( f )(y) = H y
(

f
(
ϕ(y)

))
, ∀ f ∈ A, ∀y ∈ Y ,

θ−1(g)(x) = Tx
(

g
(
ψ(x)

))
, ∀g ∈ B, ∀x ∈ X .

It is easy to see that the linear map H y : Eϕ(y) → F y has T y as the inverse for every y in Y , and thus it is bijective. By
Lemma 2.9, at most finitely many H y are unbounded.

Let y be a non-isolated point in Y . We shall show that the linear map H y is bounded. Suppose not, then for each
n = 1,2, . . . there is an fn in A of norm one such that ‖θ( fn)(y)‖ = ‖H y( fn(ϕ(y)))‖ > n4. By the continuity of the norm
of θ( fn), there are all distinct points yn in Y nearby y such that ‖θ( fn)(yn)‖ > n3. Let xn = ϕ(yn) in X for n = 1,2, . . . .

Since ϕ is a homeomorphism, we can assume also that all xn are distinct with disjoint compact neighborhoods Un . By
multiplying with a norm one continuous scalar function, we can assume each fn is supported in Un . Let f = ∑

n
1

n2 fn in A.

Since n2 f − fn ∈ Ixn , we have n2θ( f )(yn) = θ( fn)(yn) and thus ‖θ( f )(yn)‖ > n for n = 1,2, . . . . This absurdity tells us that
H y is bounded for all non-isolated y in Y1.

For the case (1), if Y (or equivalently, its homeomorphic image X ) contains no isolated points then all fiber linear maps
H y are bounded. By Theorem 2.4, we have ‖θ‖ = sup ‖H y‖ < +∞.

Suppose now the case (2) holds. By Proposition 3.1, each fiber linear map assumes the form H y(a) = λ(y)S yaS−1
y , and

θ is uniformly bounded. To see that λ is continuous on Y , we make use of a result of Lee [14, Lemma 2] which asserts
that the multiplier algebras M(A) and M(B) can be represented as families of bounded operator fields in (X, {M(Ax)}) and
(Y , {M(Bx)}), respectively. By restricting the double dual map of θ to M(A), we see that the invertible central multiplier
θ∗∗(1)(y) = λ(y)I y . It follows from the Dauns–Hofmann Theorem (see, e.g., [15, Theorem A.34]) that λ is a continuous
function on X . Since θ∗∗(1) is invertible, we see that λ is bounded and away from zero. It is also plain that the algebra
isomorphism Ψ = θ∗∗(1)−1θ is given by sending a continuous operator field { f (y)} to {S y f (ϕ(y))S−1

y }. �
As a special case of Theorem 3.2(2), here comes

Theorem 3.3. Let A and B be CCR C∗-algebras with Hausdorff spectrum X = Â and Y = B̂, respectively. Let θ : A → B be a bijective
linear map such that

ab = 0 in A if and only if θ(a)θ(b) = 0 in B. (3.1)

Then θ is automatically bounded. Indeed, θ = mΨ where m = θ∗∗(1) is an invertible central multiplier of B and Ψ is an algebra
isomorphism from A onto B.

Corollary 3.4. Two CCR C∗-algebras with Hausdorff spectrum are isomorphic as C∗-algebras if and only if they have the same linear
and zero product structures.
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Proof. It follows from Theorem 3.3 that if there is a bijective linear map θ : A → B between two CCR C∗-algebras with
Hausdorff spectrum, then A and B are algebraically isomorphic (via the map Ψ = θ∗∗(1)−1θ ). As shown in [10] (see also
[16, Theorem 4.1.20]), A and B are also ∗-isomorphic. On the other hand, the norm of an element a of a C∗-algebra equals
the square root of the spectral radius of a∗a, which is a ∗-algebraic property. So A and B are isometrically ∗-isomorphic. �
Remark 3.5. (a) The two way zero product preserving assumption (3.1) in Theorem 3.3 cannot be dropped easily. For
example, abelian C∗-algebras C0(X) are CCR. In [4], there are many examples of unbounded zero product preserving lin-
ear functionals of C0(X), provided X is an infinite set. In [12], an unbounded zero product preserving linear map from
c onto �∞ is given, where both c, the C∗-algebra of convergent scalar sequences, and �∞ are CCR with Hausdorff spec-
trum.

(b) In [9], Fell defines the notion of a full algebra of operator fields A as those satisfying conditions (i), (ii), (iii) in Defini-
tion 2.1 and A becomes a C∗-algebra in Definition 2.2. Fell calls those satisfied in addition condition (iv) in Definition 2.1
a maximal full algebra of operator fields. He has pointed out that A is maximal if and only if for all αx in a fiber algebra
Ax and βy in another fiber A y there is a continuous field a in A such that a(x) = αx and a(y) = βy . This is also equiv-
alent to saying that for all a in A, and for all bounded complex scalar continuous function g on X , we have ga ∈ A. In
our discussion, we follow the usage of notations of Dixmier [8] and simply assume that all continuous fields are maxi-
mal.

(c) We note that every C∗-algebra with Hausdorff spectrum can be represented as a continuous field of primitive C∗-
algebras over the spectrum [15, §5.1]. Hence, Theorems 2.4 and 3.2 apply to every zero product preserving linear map
between two C∗-algebras with Hausdorff spectrum.

(d) It is pointed out by Fell in [9, p. 243] that a CCR C∗-algebra has Hausdorff spectrum if and only if it can
be represented as a (maximal) continuous field of primitive C∗-algebras over some locally compact Hausdorff base
space.

(e) One might observe that Theorem 3.3 can be extended to GCR C∗-algebras. However, for a GCR C∗-algebra A with
Hausdorff spectrum, A is automatically a CCR, and thus nothing new can be achieved in this plausible generality. Indeed,
a separable C∗-algebra is a GCR (resp. CCR) if and only if its spectrum is T0 (resp. T1); see, e.g., [5]. In general, a GCR
C∗-algebra is a CCR if and only if its spectrum is T1 [11, Theorem 4].

To end the paper we present an other example as an evident to support our general conjecture that linear and zero
product structures suffice to determine a C∗-algebra.

Example 3.6. (See [6].) Let M be a properly infinite W ∗-algebra and θ a zero product preserving linear map from M onto a
unital algebra N. Then

θ(a) = θ(1)Ψ (a), for all a in M,

where θ(1) is an invertible element in the center of N and Ψ is an algebra homomorphism from M onto N. In particular,
if N is a semi-simple Banach algebra then θ is automatically bounded, by, e.g., a result of Aupetit [3] which ensures that
every surjective algebra homomorphism between semi-simple Banach algebras is bounded.
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