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ABSTRACT 

The incidence matrix of a (u, k, X)-design is a (0, 1)-matrix A of order u that 
satisfies the matrix equation AAT =( k-h)l+ XJ, where A’ denotes the transpose of 
the matrix A, 1 is the identity matrix of order o, J is the matrix of l’s of order u, and 
u, k, X are integers such that 0 < A < k < u - 1. This matrix equation along with various 
modifications and generalizations has been extensively studied over many years. The 
theory presents an intriguing joining together of combinatorics, number theory, and 
matrix theory. We survey a portion of the recent literature. We discuss such varied 
topics as integral solutions, completion theorems, and X-designs. We also discuss 
related topics such as Hadamard matrices and finite projective planes. Throughout the 
discussion we mention a number of basic problems that remain unsolved. 

1. INTRODUCTION 

Let X=(x,,..., xn} be an n-set (a set of n elements), and let X,, . . . , X, 

be m not necessarily distinct subsets of X. We set aii = 1 if xi EX,, and we set 

aii =O if xi @Xi. The resulting (O,l>matrix 

A=[aij] (i=l,..., m; i=l,..., 72) (I.11 

of size m by n is the incidence matrix for the subsets X,, . . . , X, of X. Row i of 
A displays the subset Xi, and column j of A displays the occurrences of the 
element xi among the subsets. Thus A gives us a complete description of the 
subsets and the occurrences of the elements within the subsets. 
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We now form the matrix equation 

AAT=B, (1.2) 

where AT denotes the transpose of the matrix A. The matrix B is symmetric of 
order m, and B has in its (i, i) position the cardinality of the set intersection 
xi nx,. 

The matrix equation (1.2) is of fundamental importance. But it is difficult 
to deal with this matrix equation in its full generality. Nevertheless, two 
fundamental problems emerge that are already evident in the writings of 
Boole [l, 121. 

PROBLEM 1. Let B=[bii] be a symmetric matrix of order m with 
nonnegative integral elements. Determine necessary and sufficient conditions 
on B in order that there exist subsets X,, . . . , X, of some n-set X such that 

lxi nxj(=bij (i,i=l,..., m). 0.3) 

If such subsets exist, then we say that B is realizable. The problem of 
realizability is an exceedingly difficult one and is largely unsolved. 

The second fundamental problem is the following. 

PROBLEM 2. Let B be realizable. Then determine the minimal value of n 
for which B is realizable. 

This minimal integer n is called the content of B. Even in very special 
situations the content of B is often unknown. 

2. SYMMETRIC BLOCK DESIGNS 

We now look at a very special case of the fundamental matrix equation 
(1.2), but one that is of considerable significance in its own right. We begin 
with the following definition. The subsets X,, . . . , X, of a v-set X = {x1,. . . , x0} 
are called a (v, k, h)design (symmetric block design) provided they satisfy 
the following three postulates: 

Each Xi is a k-subset of X. (2.1) 

Each Xi nx, for i#i is a h-subset of X. (2.2) 

The integers v, k, X satisfy O<htktv-1. (2.3) 
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The above postulates imply that the incidence matrix A of a (u, k, X)-design 
is a (0, l>matrix of order u that satisfies the matrix equation 

AA*=(k-A)Z+XJ, (2.4) 

where I is the identity matrix of order u, and J is the matrix of l’s of order u. 
Conversely, if 0th <k< u - 1 and if A is a (0, l)-matrix of order u that 

satisfies the matrix equation (2.4), then we are assured of the existence of a 
(u, k, h)-design. 

Symmetric block designs have been extensively studied, and summaries of 
their basic properties are available in [7, 151. One proves without difficulty 
that the incidence matrix of a (u, k, X)-design is normal, namely, 

AAT = ATA. (2.5) 

It also follows that the parameters u, k, A must satisfy the relationship 

k-X=k2 -Xv. (2.6) 

Thus it is already clear that the parameters U, k, h are far from arbitrary, 
because they must satisfy the relations (2.3) and (2.6). The only other known 
necessary conditions on the parameters are those given by the following 
Bruck-Ryser-Chowla theorem on the existence of (u, k, X)-designs [7, 151. 

THEOREM 2.1. Suppose that v, k, X are integers for which there exists a 
(v, k, h)design. Zf u is even, then the integer k-h is equal to a square. lf v is 
odd, then the LIiophantine equation 

x2 =(k-A)y2 +( - l)‘“-“/2~z2 (2.7) 

has a solution in integers x, y, x not all zero. 

The case of u even in Theorem 2.1 follows at once by applying determi- 
nants to the matrix equation (2.4). Thus in this case we obtain 

(2.8) 

and the conclusion follows. But the case of v odd is harder and requires the 
study of matrix congruences over the field of rational numbers Q. 
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PROBLEM 3. Determine the precise range of values of v, k, h for which 
(0, k, h )-designs exist. 

Certain special parameter sets v, k, X are of great importance in their own 
right. A finite projective plane of order n is a (v, k, X)design on the 
parameters 

o=n2+n+1, k=n+l, X=1 (na2). (2.9) 

The first undecided order for the existence of a finite projective plane is 
n= 10. The construction of a plane of order 10 is equivalent to finding a 
(0, l>matrix A of order 111 that satisfies the matrix equation 

AAT = lOI+J. (2.10) 

This problem is perhaps the most famous unsolved problem that is of a purely 
finite character. 

Another important class of (v, k, h)designs is associated with the parame- 
ters v =4t - 1, k=2t - 1, X= t - 1, t 2 2. These designs are called Hadamard 

designs and are easily seen to be equivalent to Hadamard matrices of order 
41. We recall that a Hadamurd matrix of order n is a (1, - 1)-matrix of order n 
that satisfies the matrix equation 

HHT =nI. (2.11) 

It is elementary to verify that a Hadamard matrix must have orders n = 1,2, or 
else n-0 (mod 4). 

PROBLEM 4. Show that Hadamard matrices exist for all orders nr0 

(mod 4). 

We next mention a theorem of Ryser [7, 8, 14, 151 that shows that under 
certain conditions the existence of (v, k, A)-designs reduces to a classical 
problem involving matrices with integral elements. 

THEOREM 2.2. Let A be a matrix of order v with integral elements such 
that 

AAT=(k-h)I+XJ, (2.12) 

where OtXtk<v- 1 and k-A=k2 -Xv. We agree to write A so that all of 

the column sums ci of A satisfy ci 20. Suppose further that (k, X) is 
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square-free and that k-X is odd. Then A is a (0, I>matrix and hence the 
incidence matrix of a (v, k, A )-design. 

We remark that Hadamard matrices are easily constructed for orders that 
are a power of 2 and that the direct product of Hadamard matrices is 
Hadamard. Hence it suffices to deal with Problem 4 on the existence of 
Hadamard matrices of order n for the case n =4t, where t is odd. But then the 
corresponding Hadamard designs are covered by Theorem 2.2, so that 
Problem 4 may actually be regarded as a difficult unsettled question dealing 
with integral matrices. 

We next mention a recent deep theorem of Verheiden [21] that concerns 
completions of Hadamard matrices and extends the earlier investigations of 
Hall [9]. 

THEOREM 2.3. Let X be a (1, - l)-matrix of size n-r by n with nr0 
(mod 4). Suppose that X satisfies the matrix equation 

XXT=nZ,_,, (2.13) 

where I,_, is the identity matrix of order n-r. Then if r G 7, there exists a 
Hadamard matrix of order n with X as its first n-r rows. 

The result is best possible in the sense that the following matrix of size 4 
by 12 cannot be completed to a Hadamard matrix [9]: 

111111111111 
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 
1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 . 
1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 I 

(2.14) 

Completion theorems for (0, k, X)-designs have also been extensively 
studied [lo, 11, 221. The following theorem of Verheiden [22] establishes the 
existence of highly restricted rational solutions of the matrix equation (2.4). 

THEOREM 2.4. Suppose that v, k, X satisfy the known necessary condi- 
tions for the existence of a (v, k, Awesign. Then there exists a rational and 
normal matrix A of order v such that 

AAT=(k-A)Z+XJ, (2.15) 

where 2”A is integral for e sufficiently large. 
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3. VARIANTS OF SYMMETRIC BLOCK DESIGNS 

In recent years there have been important investigations that deal with 
variants of (v, k, X)-designs. We begin with the following theorem of Ryser 
[ 161 and Woodall [23]. 

THEOREM 3.1. Let A be a (O,l)-matrix of order n> 1 that satisfies the 
matrix equation 

AAT=diag[k,-_,...,k,-_]+hJ. (3.1) 

Suppose that not all of the ki are equal and that OcXc k,. Then A has 
exactly two distinct column sums cl and c,, and these numbers satisfy 

c,+c,=n+l. (3.2) 

The configurations associated with the incidence matrix A of this theorem 
are variants of symmetric block designs called Adesigns on n elements. The 
h-designs with A= 1 have an especially simple structure. The de Bruijn-Erdijs 
theorem [6] asserts that for each n> 3 there exists a unique h-design with 
A=l: 

X,=(2,3 ,..., n), 

x,=W~, x,={1,3},..., Xn={l,n}. 

This is in sharp contrast to the state of affairs for a finite projective plane. 
One may judiciously modify symmetric block designs in an elementary 

manner and thereby construct X-designs [2, 231. All of the Xdesigns con- 
structed by this procedure (including the X-designs with X= 1) are called 
h-designs of type 1. 

PROBLEM 5. Show that all X-designs are of type 1. 

The combined efforts of Bridges and Kramer [2, 3, 131 have verified this 
conjecture for X<9, and a theorem of Singhi and Shrikhande [20] solves this 
problem for the case of X equal to a prime number. But the possibility of the 
existence of exotic hdesigns remains open. 

The following theorem on A-designs has been established by Woodall 1231. 
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THEOREM 3.2. The number of hdesigns f6r each fixed value of h > 1 is 

finite. 

The corresponding result for (0, k, X)-designs is far from resolved. 

PROBLEM 6. Show that the number of (v, k, h)designs for each fixed 
value of X> 1 is finite. 

Many other variants of (v, k, X)-designs are now being studied. We 
mention in particular the concept of a multiplicative design [17]. Such a 
design is characterized by a (0, l>matrix A of order n that satisfies a matrix 
equation of the form 

AAr=diag[k,-Xi,..., k, -A,] +[&I%$ (3.3) 

In these designs the symmetric matrix hJ of the (v, k, X)-design and the 
Xdesign is replaced by the more general situation of a symmetric matrix of 
rank 1. These designs are under intensive investigation by Bridges and Mena 
[4, 51 and have many remarkable properties. 

Now let Z be a matrix of order n, and suppose that the elements of Z 
consist of only two elements x and y, which are elements of a field F. We call 
Z an (x, y)-matrix over F. The following theorem deals with this concept [ 191. 

THEOREM 3.3. Let Z be a nonsingular (x, y)-matrix of order n > 1 over F, 
and suppose that Z satisfies the matrix equation 

ZEZT=D+hJ, (3.4) 

where the diagonal matrices 

D=diag[d,,...,d,], E=diag[e,,...,e,] (3.5) 

are nonsingular over F. Then if c, denotes the sum of column i of Z, it follows 

that 

x(l+xw)[c, -(x+y)]2-t(l+hw)(x+y)[ci -(x+y)] 

+t+yw+~)=O, (3.6) 
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l+hu;#O, (3.7) 

WI-l_+ 
dl 

. ..+f. 
n 

(3.8) 

t=X(n-1)-(er+ -..+e,)xy. (3.9) 

We remark that this theorem has a number of applications. In particular, 
it implies that the column sums of a hdesign satisfy (3.2). 

The following corollary is immediate [18]. 

COROLLARY 3.4. Let Z be a (0,1)-m&k of order n over the rational 

field Q, and suppose that Z satisfies the matrix equation 

ZEZT=D, (3.10) 

where D and E are diagonal muttices of order n over Q, and D is nonsingular. 

Then Z is a permutation matrix. 

An interesting analogous result holds for (1, - 1)-matrices over Q. 

COROLLARY 3.5. Let Z be a (1, - 1)-matrix of order n over the rational 

field Q, and suppose that Z satisfies the matrix equation 

ZEZT=D, (3.11) 

where D and E are diagonal matrices of o&r n over Q, and D is nonsingular. 

Then Z is a Hadamard matrix. 

We remark that these corollaries are not difficult to establish from first 
principles. 

The preceding discussion suggests the following two problems. 

PROBLEM 7. Extend Theorem 3.3 so that the matrix 2 is an (x, y, z)- 
matrix over F, and, in particular, find such an extension for Z a (O,l, - l)- 
matrix over the rational field Q. 

PROBLEM 8. Classify the (0, 1, - l)-matrices Z of order n over the 
rational field Q that satisfy the matrix equation 

ZEZT=D, (3.12) 

where D and E are diagonal matrices of order n over Q, and D is nonsingular. 
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