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1. INTRODUCTION 

In 1959, Palais [l] proved that the necessary and sufficient conditions for a 
function f : R” -+ R” to be a diffeomorphism of R” onto itself are 

(1) det Jf(x) # 0 and 

(2) liqzbm Ilf Wll = 00, 
where Rn denotes the Euclidean n-space, If(x) denotes the Jacobian matrix 
off, and j] x II2 = Cr=, Q. This powerful theorem has played a fundamental 
role in many recent research works in nonlinear network theory [2-91. On 
many occasions, however, Palais’ theorem is used only to show that a function 
possesses a continuous global inverse f-l, and the differentiability of the 
inverse map is not really essential. Since there exist many globally one-to-one 
functions which fail to satisfy condition (1) of Palais’ theorem, our objective 
in this paper is to derive weaker global inversion theorems which do not 
require the Jacobian to be nonzero everywhere. Since we will be concerned 
exclusively with functions from Rn into R n, the following classical theorem 
due to Brouwer shows that the class of globally one-to-one and continuous 
functions from Rn into Rn is identical to the class of globally homeomorphic 
functions from R” into Rn: 

THEOREM 1.1 (Invariance of Domain [lo]). If A is open in R” and 
f : A -+ R” is one-to-one and continuous, then f (A) is open and f is a homeo- 
morphism. 
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In view of this theorem, we will be concerned with theorems on global 
homeomorphisms in this paper. Unless otherwise stated, all functions are 
assumed to be from the Euclidean n-space R" into R" and are of class C’. 

Our main result in Section 2 consists of a weaker form of Palais’ Theorem 
for global homeomorphic onto functions which allows the Jacobian to vanish 
on a set of isolated points. In Section 3, we study the properties of a class of 
global homeomorphic functions which arise frequently in nonlinear network 
theory; namely, the class of “increasing functions.” Several theorems will 
be presented which guarantee that a vector-valued function is increasing. 
Iynlike the results in Section 2, most of the theorems in this section are valid 
not only for vector-valued functions from Rn into R", but also from an open 
convex subset KC R" into R". The hypothesis in these theorems clearb- 
reveals that the class of increasing functions is a natural generalization of the 
class of functions which are expressible as the gradient of a strictly convex 
scalar-potential function [I l-121. Th e main result in this section consists of a 
sufficient condition which replaces the requirement that the Jacobian matrix 
be positive definite by an “almost-positive definite” requirement to be 
defined in Section 3. Finally, in Section 4 we consider a class of “quasi- 
increasing” functions which need not be increasing or decreasing, but are 
nevertheless globally homeomorphic. 

2. SI:FFICIENT CONDITIONS FOR GLOBAL-H• MEOMORPHIC ONTO FIJNCTIONS 

A mapping f : X-t Y is called a “local homeomorphism” if for each 
s E X, a neighborhood of x is mapped homeomorphically byf onto a neigh- 
borhood off(x). In order to prove our main theorem on global homeomor- 
phism, it is convenient to introduce the notion of a covering map [I, 131: 

DEFINITION 2.1. Let X and Y be a connected and locally connected 
topological space. If f is a mapping of X onto Y with the property that each 
y E Y has a neighborhood I’ such that each component off-l(V) is mapped 
homeomorphically onto V by f, then f is called a “covering map” and (X,f) 
is called a “covering space” of the space Y. In this case, the cardinal number n 
of the set f -l(y) is the same for all y E Y. If n is a finite integer, then f is 
called a finite covering, or more specifically, an n-covering. 

It is well known that every homeomorphic onto function f : X+ I- is a 
covering map and every covering map is a local homeomorphism [ 131. 
However, the converse is not true: A local homeomorphism need not be a 
covering map and a covering map need not be a homeomorphic onto function. 
Hence, an n-covering map lies somewhere in between a local homeomorphism 
and a global homeomorphism. A l-covering map, of course, must necessarily 
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be a global homeomorphic onto function. The following standard results on 
covering maps will be needed in the proof of our global inversion theorem and 
are reproduced here for handy reference: 

LEMMA 2.1 [l]. Let f : X + Y, X = Y = Rn, be a local homeomorphism. 
A necessary and suficient condition that f be a finite covering is that 

,,gm llf @>I1 = cQ* 

Furthermore, ;f f is a finite covering, then the set 

Y, = {y E Y : f-'(y) contains at least m distinct points) 

is either empty or equal to Y for each positive integer m. 

LEMMA 2.2 [ 131. Let f : X + Y, X = Y = Rn, be a covering map. If A 
is any component off-“(Y), then A is open andf restricted to A is a l-covering of 
Y, i.e., f : A --f Y is bijective. 

We are now ready to state the main result in this section. 

THEOREM~.~. Letf:X+Y, X=Y=Rn,n#2,beaC1map.Let 
S = {x E R” : det Jf(x) = 0} and T = {x E R” : x $ S}. Then the following 
conditions are sujkient for f to be a homeomorphism of R” onto Rn: 

(1) det Jf(x) > 0 for all x E T and S is at most a set of isolated points. 

(2) liqolbm llf(x)ll = 00. 

Proof. Consider first the case n = 1. Suppose f : R1 + Ii1 is not one-to- 
one. Then there exist two distinct points x1 and x2 such that f(xr) =f(xJ. 
Let x1 < x2 . Condition (1) implies that there exists an interval (a, 6) with 
x1 < a < b < xa such that f ‘(x) > 0 on (a, b). Since f is Cl, we can write 

f (4 - f (x1) = j;;f ‘(4 dx > s:f ‘(4 dx > 0, 

which is a contradiction. Hence, f is one-to-one. By Theorem 1.1, f is a 
homeomorphism on RI. Moreover, in view of Condition (2) and Lemma 2.1, 
f is a homeomorphism of R1 onto RI. 

It remains to consider n > 3. Let p be a point in 5’. There exists an open 
neighborhood U, aboutp in R” such that U, n S = {p}: Since det Jf(x) > 0 
on U, except at the isolated point p where det Jf(x) = 0, it follows from a 
recent result by Church and Hemmingsen [14] that f is a local homeomor- 
phism on UP, for each p E S. Since det J,(x) > 0 for each x E T, f is a local 
homeomorphism on R” for all n 3 3. In view of Lemma 2.1, we know f is a 
finite covering. Let A be any component of f-l(Y). Then it follows from 
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Lemma 2.2 that A is open in R” and f restricted to A is a bijective map onto 
R”. By Theorem 1.1, f restricted to A is a homeomorphism of iz onto I-. 
Hence, if we can show that A = X, then we would have completed the proof 
of this theorem. 

Suppose =2 is a proper subset of X. Since --Z is open in S, 21 is an open 
proper subset of X. Let b E S be a boundary point of ,4 and let :lZ, be an 
open connected neighborhood off(b). Sincef is a finite covering map on -1, 
f-~l(MJ has a finite and nonzero number of components. Let %, be a compo- 
nent off -‘(Mb) that contains the point b. Let N,,” = -4 nfmi(lMh). Since ,f 
is continuous,f-l is open. Hence, both Nb and iv,,* arc open and connected. 
Also note that f maps both N, and AT,* topologicallp onto M(, . Since -y-f, 
is an open set that contains 6, the set :Vb n -4 is not empty. It follows that 
N, n :%‘[,* is not empty, for otherwise there will be at least one point xi in 
N,, n 4 and a point r, in N,* such thatf(x,) =.=f(xJ E Mti and f restricted 
to =1 will not be one-to-one on A, which is a contradiction. Since both N, and 
il;, * are connected, we have iVb = N,*. Hence, b is in i\7,,* and, therefore, is 
in dl. This implies that A cannot be an open proper subset of S. That is, *4 is 
closed in .Y. We have A is both open and closed in S, and ;3 is nonempty. 
Therefore, we can conclude that A == S. This completes the proof of Theo- 
rem 2.1. 

We remark that Condition 1 of Theorem 2.1 is not necessary for f to be a 
homeomorphism on R”. However, the following lemma shows that 
(‘ondition 2 of Theorem 2.1 is also a necessary condition: 

LEMMA 2.3. Let f : X - Y, X = Y = R”. Iff is a homeomorphic function 

of R’” onto R’“, then 

Proof. We first note that if f is a homeomorphic onto function, then f l 

is also a homeomorphic onto function from Y to X. Let y be an arbitrary 
point in Y and I/ C Y be an open connected set containingy. Let U == f -‘( V). 

Since f -l is continuous and V is connected, it follows that U is connected. 
Sincef l is a homeomorphism on Y, f -1 is open on Y, hence 11 is open in X. 
It is well known that the restriction of a continuous function to an open 
connected set is continuous. Hence, f and f -l are continuous mappings on i 1 
and V, respectively. In order to show that f maps U onto I’ homeomorphi- 
tally, we only need to show that f maps U univalently onto V. But this is 
trivial because (1) f is one-to-one on X, so f is one-to-one on CT, (2) in view 
of our definition for U, corresponding to each point v in I’, there is a u in Id7 
such thatf(u) = n, where u = f -r(u). Since y is an arbitrary point in Y, we 
have shown that f has the property that for each y in Y, there is a neighbor- 
hood V about y such that f maps f -l(V) onto V homeomorphically. This 
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implies that f is a covering map. Moreover, f is a l-covering map since f is a 
homeomorphism on X. By Lemma 2.1, we have the conclusion of this 
lemma. 

An immediate consequence of Theorem 2.1 is the following global implicit 
function theorem: 

COROLLARY 2.1. Let f : X x Z---f Y, i.e., f (x, z) = y where x E X = R”, 
.zEZ=R”, ~EY=R~, n 2 1 and n + m # 2. Suppose f satisfies the 
following two conditions : 

(1) det af/ax > 0 f or all x and x and det afjiax = 0 on at most a set of 
isolated points in X x 2. 

(2) liqzli+m Ilf (x, z)ll = co for all z. 

Then there exists a unique continuous function g such that x = g(y, z) for all 
(y, z) in Y X 2. 

Proof. The following proof is virtually identical to that given by Kuh and 
Hajj [7] for their version of the global inversion theorem which is based upon 
Palais’ theorem. Let us define the following vectors: 

$= X [I z ’ j(9) =3(x, z) = [ f(; “‘I = [‘,I = 9. 

Then 

af af 
ji(q = zii G I 1 0 1 

and det Jr(a) = det af/ax. N ow conditions (1) and (2) imply the following: 

(1)’ det Ii(a) 3 0 for all .G and det Jf(G) = 0 on at most a set of isolated 
points in X X 2. 

(2)’ liql~ll+m Ilf(W = 00. 

It follows from Theorem 2.1 that 3 is a homeomorphism of R” x Rn onto 
itself, and hence we have a unique, continuous function g = 3-l such that 
g(p) = R; i.e., 

for all 9 = (y, Z) in R” x Rn”. Consequently, we obtain the first n components 
as x = g(y, z) for all x and x, and g is a unique, continuous function for all 
(y, z) in R” x R”. This completes the proof. 
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By requiring the function f in Theorem 2.1 to be of class C”, n > 3, it 
is possible to allow det Jf(x) = 0 on a somewhat larger set which we define 
next [15]: 

DEFINITION 2.2. Let U be a nonempty subset of R”. Then C is said to be 
of dimension zero if and only if U is a totally disconnected set. The empty set 
and only the empty set has dimension - 1. 

THEOREM 2.2. Let f : X + Y, X = Y = R”, n # 2, be Q C1’ map. Let 
5’ = {x F R” : det If(x) = 0} and T = (x E R” : x E 5’1. Then the following 
conditions are suficient for f to be a homeomorphism of Rn onto Rn: 

(1) det If(x) > 0 for all x E T and S is a set qf dimension 0 or -- 1. 

(2) limiizii+a IIfWll = *. 

Proof. We first show the theorem is true for the case n = 1. From Condi- 
tion (I), S is a set of dimension 0 or -1, hence, for any two distinct points a 
and b in R1, say a < b, there is some point c, a < c < b, such thatf’(c) > 0. 
Since f is Cl, we have f' is continuous. Hence, there is a neighborhood :\i’, 
about the point c scuh that for any x in N, , we havef’(x) > 0. 

Suppose f is not one-to-one. Then there exists at least two distinct points xi 
and x2 such that f (x1) = f (x2). From the preceding paragraph, we know that 
there is an interval (dl , d,), x1 ,( dl < dz < x2 such that ,f’(x) > 0 for all 
x in (d, , d,). But 

f(xJ - f (x1) = i=” f ‘(x) dx 3 l;fl(x) dx > 0. 
21 1 

This is absurd. Hence, f is one-to-one on X. Theorem 1.1 says that f is a 
homeomorphism. In view of Condition (2) and Lemma 2.1, f is a homeomor- 
phism of R1 onto itself. For the case n 3 3, it suffices to prove thatf is a local 
homeomorphism on R” because the remaining proof then follows exactly 
that of Theorem 2.1. In this case, the fact that f is a local homeomorphism 
follows from another recent result by Church [16-171, provided that n 3 3. 
This completes the proof of Theorem 2.2. 

We remark that the first part of Condition (1) of Theorems 2.1 and 2.2 can 
obviously be replaced by det If(x) < 0. We also remark that the converse of 
Theorem 2.2 is true for the case n = 1, i.e., Conditions (1) and (2) are both 
necessary and sufficient for the function f in Theorem 2.2 to be a homeomor- 
phism of R1 onto Rl. For otherwise, S must have dimension > 0 and hence 
must contain a nonempty open interval (a, b). This would imply 

f(x) = f (4 + Jzf’(~) dr = f(a), Vx E (a, b), 
a 

40913913-e 
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which is absurd. For the case n > 3, the converse of Theorem 2.2, and for that 
matter, Theorem 2.1, is obviously not true since Condition (1) of both 
theorems is not necessary. There are many homeomorphic onto mappings 
with their Jacobian vanishing on an (n - I)-dimensional set. The following 
simple example is a case in point: 

Let f : R3 - R3 be defined by 

Yl =f&) = X13Y 
Yz =f&) = %i3, 
Y3=f&)=%+x2+x3. 

This function f has a global inverse on R3; namely, 

113 
xl=Yl 3 

l/3 
x2 =Yz 9 

x3 = y3 - yy3 - yy3. 

Hence, f : R3 + R3 is a homeomorphic onto mapping. But det Jf(x) = 9x12xa2 
vanishes on two 2-dimensional hyperplanes: one defined by x1 = 0 and the 
other defined by x2 = 0. However, the following theorem gives a partial 
converse to both Theorems 2.1 and 2.2: 

THEOREM 2.3. Let f : X + Y, X = Y = R” be a Cn map. If f is a homeo- 
morphism of Rn onto itself, then 

(1) either det JY(x) > 0 or det Jr(x) < 0, and there does not exist an 
n-dimensional open set NC X such that det Jf(x) = 0 Vx E N. 

(2) limiizli+m Ilf Ml = a. 
Proof. It suffices to prove only Property (1) because Property (2) follows 

immediately from Lemma 2.3. Since f is a homeomorphism of R” onto itself, it 
is one-to-one and open on X. This implies that f is a light and open map [18]. 
Moreover, since f is C”, it follows from Corollary 1.7 in Church [17] that 
either det Jr(x) 3 0 or det Jf(x) < 0. 

S uppose there is an n-dimensional open set NC X such that det Jf(x) = 0 
for all x in N. 

Let f be a point in N and let r be small enough so that B(G, r), an open 
ball centered at 2 with radius r, is contained in N. Then (2 + rx) is in N 
for all z in B(0, 1) C R”. Hence, det J,(G + rz) = 0 whenever j] .a 11 < 1. 

Let us define a mapping f” : B(0, 1) C R” + R” by 3(z) = f(G + rz) for z 
in B(0, 1). 3 is C” since f is and det Jf(z) = 0 on B(0, 1). It had been shown 
in [6] that if an n-dimensional vector-valued function h is a homeomorphism 
on an n-dimensional open ball B, then det I(x) + 0 on B. Hencefcannot be 
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a homeomorphism on B(0, 1) C R”. In view of Theorem 1.1, f is not one-to- 
one on B(0, 1). That is, there exists at least a pair of distinct points zr and zz 
in B(0, 1) such thati -f(za). This implies thatf(i + rzr) --:f(Z -+ Y+), 
or that f is not one-to-one on X. This is a contradiction. Hence, our conclu- 
sion follows. 

We remark that although Theorem 2.3 is only a partial converse to Theo- 
rems 2.1 and 2.2, it is as far as one can go because there exist many homeo- 
morphic onto functions whose Jacobians vanish on an (n I)-dimensional 
set. 

As a consequence of Theorem 2.3, the following partial converse to the 
global implicit function theorem in Corollary 2.1 can be given: 

COROLLARY 2.2. Let f : X x Z - Y, i.e., f (x, a) = y, where x E X = R”, 
z E Z = R”” and y E Y = R”, be a CO map. If there exisfs a unique Co mapping 
g : I7 :: Z-t X, i.e., g(y, 2) = x, then 

1. linril,rll+z, iif(x, a)11 = co for all z in 2. 

2. limll,il+a // g( y, z)l/ = co for all z in 2. 

If, in addition, f is C”, then either det(af/ax) 3 0 OY det(af/ax) < 0 for all 
(x, 2). Moreover, there does not exist an (n T m)-dimensional open set 
;V C X il % such that det[af (x, z)/ax] = 0 for all (x, .z) in N. 

Proof. Let 

Then, 

Hence, we have jj : P + 2 and f^ : 2 --f ?? such that f^ 0 k(j) -=j for all -$ 
in R”-+“’ and d of(G) = .G for all 2 in R n+m. This implies that 1 = f*-l and 
.{ = 6-l on R 7r+n1. Hence, j and fare both one-to-one and onto. Since they are 
CO maps, Theorem 1.1 indicates that both f and $ are homeomorphisms on 
Rn+m. Hence, they are homeomorphism of Rn+m onto itself. By Lemma 2.3, 
we have 

and 

(2.2) 
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But (2.1) implies that 

Let z be an arbitrary point in 2 with [I z Ij < 03. Then (2.3) implies that 

(2.4) 

Hence, (2.4) is true for all x in 2. Similarly, we can show that 

If f is C”, then f^ is C” also. Since 

det]i(z)=det [ afy) afy ] zdet!?&g, 
our conclusion follows from Theorem 2.3. 

On first thought, one might be tempted to surmise that Theorems 2.1 and 
2.2 might also hold for the case n = 2. Unfortunately, the following counter- 
example shows that this is not possible. 

COUNTEREXAMPLE. Let f : R2 --f R2 be defined by 

f&4 = Xl2 - x22, 

f2W = 2w2 * 

It can be easily verified that det If(x) = 0 only at the origin. Hence, S is 
isolated and of dimension 0. Moreover, limllzil+m i/f(x)ll = co. However, the 
function f is not one-to-one for the two points (1, 1) and (- 1, - 1) both 
map to the same point (0,2). 

The fact that Theorems 2.1 and 2.2 are not valid for n = 2 and yet are 
true for n > 3 is somewhat surprising. This unexpected result has its origin 
in a recent result by Church and Hemmingsen [14] to the effect that the 
branch points of a mapping from R” to Rn for n 3 3 form a perfect set. 

Both Theorems 2.1 and 2.2 require a norm condition on the function f. 
Our next theorem replaces this with a condition on the inverse map. 

THEOREM 2.4. Let f : X - Y, X = Y = R”, be a one-to-one and continu- 
ous map. Suppose that given any E > 0, there exists a 6 > 0 such that 
/I x2 - xl /I < E for every 11 f (x2) -f (x1)1/ < 6. Then f is a homeomorphism of 
Rn onto itself. 
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Proof. f is one-to-one on X implies f p1 exists on f (X). Moreover, f r 
is uniformly continuous on f(X) because given any E > 0, there exists a 
6 > 0 such that \lfpl(yJ - f-l(yl)ii == :/ x2 ~ xl 1~ < E whenever 
/Iy2 -- y1 jj = Ilf (x2) -f(x& < 6, where we have let yi -f(.xJ, i = 1, 2. 

Let (~~1 be a sequence in X such that 11 xk Ii ---, x as k + =o and consider 
the sequence {yk =f(z+)>. Suppose the sequence (ykS is bounded, i.e.. 
I'yk ,, =: lif (xlc)ii < B < 00 for all k. Then there exists a Cauchy subse- 
quence {ylc,} which converges to a point y. , where iiyO :j < B. From a 
standard result in analysis [19], we know that the image of a Cauchy sequence 
under a uniformly continuous mapping is Cauchy. Hence, the subsequence 
{.Y,~ -=f --l(yk.,)) is also a Cauchy sequence, and lim, ,m ‘i xizi j F m, which 
is a contradiciion. Therefore, the sequence {yk = ,f(xk)} cannot be bounded. 
This implies that lim,,,,,+~ Ilf(x)/ = co. Moreover, since f is one-to-one 
and continuous, it follows again from Theorem 1. I and Lemma 2.1 that f is a 
homeomorphism of R” onto R”. This completes the proof. 

Remark. Let f : R” + R”. Iff-’ exists on,f(Rn) d an 1s uniformlv continu- . 
ous, then we have 

3. PROPERTIES AND CHARACTERIZATIONS OF INCREASING FUNCTIONS 

Our objective in this section is to characterize an important class of homeo- 
morphic vector-valued functions in Euclidean n-space which are frequentl! 
encountered in the physical sciences [20, 211. These functions are usually 
called “monotone operators” and have been treated extensively in more 
general spaces by Minty [22] and Browder [23]. Since the term monotone 
operator or monotone function has been used in the literature under various 
different definitions [18, 22-261 which, unfortunately, are not consistent 
with one another, we have adopted the following concise and unambiguous 
terminologies: 

DEFINITION 3.1. Let f : X---f I;, XC RTL, 1’ = R”. Let the following 
inner product be denoted by 

(f (Xl) -f (x,), x1 - .x2> :EE a(.q , x2). 

Then f is said to be: 

(4 increasing on X, or simply an increasing function if and only if 

a(x1 , x2) > 0, vx, , x, E x and 
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(b) nondecreasing on X, or simply a nondecreasing function if and only if 

(c) decreasing on X, or simply a decreasing function if and only if 

vx, ) x2 E x and Xl #x2; 

(d) nonincreasing on X, or simply a nonincreasing function if and only if 

“(Xl , x2) < 0, vxx, , x2 E x. 

Since each property in this section concerning an increasing (nondecreasing) 
function has an obvious corresponding property concerning a decreasing 
(nonincreasing) function, all results will be stated only in terms of increasing 
or nondecreasing functions. 

LEMMA 3.1. Let f : U--f Rn, where U is an open convex subset of Rn. 

(a) If f is increasing on U, then f is one-to-one on U. 

(b) If f is continuous and increasing on U, then f is a homeomorphism on U 
and its inverse function f -l : f (U) -+ U is also increasing on f (U). 

l’roofS To prove (a), suppose the contrary. Then there exists two distinct 
points x and y in U such that f(x) = f (y). If we let 

m = (Y - x)“f (x + h(Y - x)), 

then g( 1) = g(0). But f is increasing on U implies that g( 1) - g(0) > 0, hence 
the contradiction. To prove (b), we use Theorem 1.1 to assert that f is a 
homeomorphism on U. To show that f -l is increasing on f (U), let yr and y2 
be two arbitrary but distinct points in f (U). Let yr = f (xi) and y2 =f(x2). 
Then 

(f -‘(rd -f-YY2h Yl - Yd = <x1 - x2 ,f (x1) -f(xz)> > 0. 

This completes the proof of Lemma 3.1. 

DEFINITION 3.2. Let f : X + Y, XC R”, Y = Rn. Then f is said to be a 
state function on X, or simply a state function, if, and only if, the Jacobian 
matrix Jf(x) is symmetric for all x E X. 

DEFINITION 3.3. Let f : U---f R1, where U is an open convex subset of 
R”. Then f is said to be 
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(4 strictly convex on U, or simply a strictly convex function if, and only if, 

f@x + (1 - 4Y) < hf(x) + (1 -- h)f(Y) 

VX,Y#XEU and 0 <A <: I. 

(b) convex on Cr, or simply a convex function if and only if the inequality 
sign in (a) is replaced by “.<“. 

The following relationship between increasing and strictly convex func- 
tions had been proved in [6] and is reproduced here for handy reference: 

THEOREM 3.1. Let U be an open convex subset of R* and v : U + R1 be a 
Cl map. Let f = Cp, on U. Then f is increasing on U {f and only {f v is strictly 
convex on C. 

It is well known that a scalar function v : U - R1 defined on an open con- 
vex set is strictly convex if the Hessian matrix H,(X) of F [which is also the 
Jacobian matrix Jf(x) off = VT] is positive definite [26]. Our next objective 
is to weaken this hypothesis by allowing the Hessian to vanish on a set of 
isolated points. 

LEMMA 3.2. Let U be an open convex subset of R’ and let 9 : U + R1 be a 
C2 scalar function. Let S = {x E U : v”(x) = 0} and T = {x E U : x $ S}. Then 
CJJ is strictly convex on U if and only if q~“(x) > O.for all x in T and S is at most 
a set of isolated points. 

Proof. Suppose v”(x) > 0 for all x in T and S is a set of isolated points. 
Then for any two distinct points u and v in U with u > v, we have 

c$(u) - c$(v) = i’: c$‘(x) dx > 0. (3.1) 

Letw-(1 -h)p+hqwherehE(O,l),p and Q are any two distinct points 
in C. It follows from (3.1) that 

c&w) - q(p) = sTr q’(x) dx < I’ (w - p), 
n 

(3.2) 

,&) - q(w) = fq ?‘(x) dx > V’(W) (q -- ZL’). 
- tc 

Multiplying (3.2) by (1 - A) and (3.3) by h and adding, we obtain 

YJ(U - 4 P + w < (1 - 4 Y(P) + Ml) 

(3.3) 

(3.4) 

for all p :,# 4 in U. Hence p is strictly convex on 1:. 
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To prove the converse, let ‘p be strictly convex on U and suppose there 
exists a nonempty interval (a, b) C U such that v”(x) < 0 for all x in (a, 6). 
If we let w = (1 - A) p + XQ where h E (0, l), p and q are any two distinct 
points in (a, b), then 

v(w) - q,(p) = j-W v’(x) dx 2 v’(w) (w -PI, 2, 

p(q) - ~(4 = s:, P’(X) dx G TJ’(W> (4 - w>. 
Multiplying (3.5) by (1 - A) and (3.6) by h and adding, we obtain 

d(l - 4 P + w b (1 - 4 v(P) + h+l). (3.7) 

This implies v is not strictly convex on U, which is a contradiction. Hence, 
there cannot exist a nonempty open interval in U on which p” < 0. Therefore, 
v”(x) < 0 can occur at most on a set of isolated points. Suppose there is a 
point C such that y”(C) < 0. Since p” is continuous, there is an interval N 
about c such that r/(x) < 0 for all x in N. This is a contradiction. Hence, 
p”(x) 3 0 for all x and p”(x) = 0 can occur on at most a set of isolated points. 

THEOREM 3.2. Let U be an open convex subset of Rn and let ‘p : U--f RI 
be a C2 scalar function. Then p is strictly convex on U if and only if the quadratic 

f OY?Tl 

Q(h, x, z) GE (z - x)” H&x + h(z - x)) (.z - x) (3.8) 

is positive for all x and z in U, and for all h E (0, 1) except for at most a set of 
isolated points on which Q(h, x, z) = 0. 

Proof. The strict convexity of v on U is equivalent to the strict convexity 
of p on each straight line segment in U. This is equivalent to the strict con- 
vexity of the function 

m = 9)(x + e - x>), h E (0, l), 

where x and z are any two distinct points on U. By Lemma 3.2, g(h) is strictly 
convex on (0, 1) if, and only if, g”(h) > 0 except for at most a set of isolated 
points on which g”(X) = 0. But 

g”(h) = (z - x)” E&(x + X(x - x)) (z - x) = Q(X, x, z). 

Hence, g is strictly convex if, and only if Q(X, x, z) is positive for all A E (0, 1) 
except for at most a set of isolated points on which Q(h, X, z) = 0. This 
completes the proof of Theorem 3.2. 
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The result of Theorem 3.2 motivates the following definitions: 

DEFINITION 3.4. An n x n real matrix il which need not be symmetric is 
said to be positive definite (positive semidefinite) if, and only if, ytAy :;, 0 
(ytAy .3 0) for all 71 X 1 real vectors y f 0. 

DEFINITION 3.5. Let U be a subset of Ri”. An n x II matrix A(x) is said 
to be “almost positive definite” on U if and only if, A(x) is positive definite 
for all x in U except for at most a set of isolated points on which A(x) is 
positive semidefinite. 

COROLLARY 3.1. Let U be an open convex subset of R” and let q~ : U ---f R1 
be a C2 map. If the Hessian matrix H, of v is almost positive dejinite on U, then q~ 
is strictly convex on U. 

Proof. Let x and x be any two distinct points in C, then by hypothesis, 
we have for any y # 0 in R’“, 

Y ‘f&(x + A@ - 4) Y 3 0, x F (0, I), (3.9) 

where the equality sign may hold only on a set of isolated points in (0, 1) 
that h takes on. Now if we lety = z - x in (3.9), and use the notation in (3.8), 
we obtain 9(X, X, z) > 0 for all x and z # x in U and for all h E (0, l), except 
possibly for a set of isolated points on which Q(X, X, z) = 0. Hence, by Theo- 
rem 3.2, v is strictly convex on U. This completes the proof of Corollary 3.1. 

It is well known that if f is a Cl state function defined on an open rectangular 
subset U C R”, then there exists a C2 scalar potential function y : U- R1 
such that f :- : Vg, [26, 271, where an open rectangular subset of Rn is defined 
to be the set (X : ai < xi < hi, i = 1, 2,..., n}. The following theorem is a 
utilization of state functions: 

THEOREM 3.3. Let U be an open rectangular subset of Rn and let f : U + R’” 
be a C1 state function. Then f is increasing on U if and only if the quadratic form 

P(A, 24, v) = (v - a)” Jr@ $- X(v - 24)) (v - 24) (3.10) 

is positive for all u and v # u in U, andfor all h E (0, 1) except for at most a set 
of isolated points on which P(A, u, v) = 0. 

Proof. Since f is a Cl state function, there exists a C2 potential function 
v : U - R1 such that f = V~I on U. The conclusion follows immediately 
from Theorems 3.1 and 3.2. This completes the proof of Theorem 3.3. 
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COROLLARY 3.2. Let U be an open rectangular subset of Ryp and let 
f : U + R” be a Cl state function. Then f is increasing on U ;f Jf(x) is almost 
positive dejinite on U. 

Proof. Since f is a Cl state function, there exists a C2 potential function 
p : U + R1 such that f = VP, on U [26-271. By Corollary 3.1, g, is strictly 
convex on U and hence f is increasing on U by Theorem 3.1. This completes 
the proof of Corollary 3.2. 

An example of a state function which satisfies the hypothesis of Corollary 
3.2 but whose Jacobian matrix is not positive definite is given by 

A simple calculation shows that det jf(x) = 0 at x = 0 and Jf(x) is almost 
positive definite on R2. Moreover, f is increasing because 

<f(u) -f(v), u -v> = (u1 - % + u2 - a212 

+ $(Ul - v1j2 (U12 + Ulz'l + fk2) 

+ 5(u2 - 42 (uz2 + 4% + v2”) > 0 

whenever u # v. 

However, the converse to Corollary 3.2 is not true and consequently, the 
converse to Corollary 3.1 is also not true. The following trivial example will 
bear this out: 

Let p : RR2 - R1 and f : R2 -+ R2 be defined by 

p)(x) = ix14 + 4x2” + $x,4, 

flc4 = X13, f&x) = x2 + x23. 

It is obvious that f = VT,. Trivially, one can show that f is increasing on R2, 
hence p is strictly convex on R2. But, a straightforward calculation will show 
that Jr(x) = H,(X) is positive definite for all x in R2 except on the line xl = 0 
and on this line, Jr(x) = H,(X) is positive semidefinite. 

If f is not a state function, it will not be possible to generalize the preceding 
characterization of an increasing function f in terms of the strict convexity of 
some scalar function v because only state functions can be expressed as the 
gradient of a potential function. However, the following theorem shows that a 
natural generalization of the preceding characterization to nonstate functions 
can be achieved through their Jacobian matrices. 

THEOREM 3.4. Let U be an open convex subset of Rn and let f : U + R” be a 
Cl function. If Jr(x) is almost positive definite on U, then f is increasing on U. 
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Proof. Let u and v be any two distinct points in I;‘. Then the points on the 
straight line v t X(U - v) are in U for h E [0, 11. Let 

g(X) = (u - v)“f (v + X(u -- v)). (3.11) 

Sinceg is a C’ function on [0, 1] and Jr( x 1s a most positive definite on E, we ) ‘. 1 
have 

Al) --R(O) = j,, dh *l cl’go dA = )-I (u - v)’ Jr(v + A(” ~~ 2~)) (u - v) d/l :> 0. 
‘0 

13) (3. 
Rut 

g( 1) - g(0) = (U - v)” f (a) - (24 - v)“f(v) =-= (a - v)’ (f (24) -f(v)). 

(3. 13) 

It follows, therefore, from (3.12) and (3.13) that f is increasing on U. This 
completes the proof of Theorem 3.4. 

An example of a nonstate function which satisfies the hyk>othesis of Theo- 
rem 3.4 is given by 

Let the nonsymmetric Jacobian matrix If(x) be resolved into a symmetric 
part 4(x) and a skew-symmetric part B(x) 

J&4 = [:, ‘- x12 f + xv2] = (: + ,%2 : .:. x92] + [ _; A] 
=_ -4(x) + B(x). 

Clearly, iz(z) is almost positive definite, and hence so is jf(x). To verify that f 
is indeed increasing, we found 

(f(u) - f(v), u - v> = (ul - VI + u2 - v2)2 + ; [(q - VI)2 (u12 + ulvl -+ VIZ) 

-1 (24, - v2)2 (uz2 + u.94 + v2”)] > 0 for all u f r. 

Although the converse of Theorem 3.4 is not true, the following theorem 
shows that not much improvement is possible: 

THEOREM 3.5. Let U be an open convex subset of R’” and let f : U + R” be a 
Cl function. If If(x) is positive semidefinite for all x in U, then f is nondecreasing 
on li. 
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Proof. The proof of Theorem 3.5 follows mutatis mutandis from the proof 
of Theorem 3.4 and is, therefore, omitted. 

LEMMA 3.3. Let U be an open convex subset of R” and f : U + Rn be a 
Cl map. If f is nondecreasing on U, then Jf(x) is positive semidejinite on U. 

Proof. Suppose there exists a point x0 in U and a pair of distinct vectors 
x1 and xa in R” such that the quadratic form 

is negative. Then there exists a neighborhood about x0 which contains an open 
ball B(x, , Y) C U such that for every z in B(x, , Y), we have Q(z, x1 , x2) < 0. 
Since B(x, , Y) is an n-dimensional ball, for each y in Rn, there exists a vector 
7 in B(x,, , r) and oi > 0 such thaty = a(7 - x,,). Hence, we have two vectors 
%r and 3s in B(x,, , Y) such that x1 = a,(q - %a) and x2 = a,(%s - %a), where 
a, > 0, a2 > 0. Let a = max{a, , a,}. Then we can find 2r and 2a in B(x, , Y) 

such that x1 = a(& - x,,) and x2 = a(.& - x,,). Thus 

x2 - x1 = a(& - .Q. (3.14) 

Since f, and 4, are in B(x, , Y), the points [a, + ,\(a, - iI)] with h in [0, 11 
are in B(x, , Y). Hence, for h in [0, I], we have 

Q(4 + @2. - a,), $1 ,a,) = $Q(i, + A(& - al), x1 ) XJ < 0. (3.15) 

Consider the following scalar function: 

m = 6% - Wf(4 + w2 - Q), XE [O, 11. 

Then, g( 1) - g(0) = ($a - fJt [f (2s) - f (al)] > 0 because f is nondecreas- 
ing on U. But g(1) - g(0) = g’(h*) f or some A* in (0, 1). Hence, we have 

g(1) - g(0) = g’(h*) = (a, - Qt J&G, + X*(9, - a,)) (a, - al) 

= Q(2, + A*@2 - a,), 21 ) L-22) < 0, 
(3.16) 

which is a contradiction. Hence, there does not exist a point x,, in U and a pair 
of vectors x, and x2 in Rn such that Q(x,, , X, , x2) < 0. Therefore, 

Q(xo 7 xl > x2) > 0 for all x,, in U and x1, x2 in R”. This implies that Jr(x) is a 
positive semidefinite matrix for all x in U. 

The preceding results can be summarized as follows: 
Let U be an open convex subset of R” and let f : U - Rn be a Cl function. 
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Consider the following properties: 

(A) Jr(x) is positive definite on U. 

(B) If(x) is almost positive definite on l*. 

(C) f is increasing on t.. 

(D) f is nondecreasing on Cr. 

(E) Jf(.v) is positive semidefinite on CT. 

Then we have the following results: 

(A) =- (B) 3 (C) 2 (D) e (E). 

4. PROPERTIES AND CHARACTERIZATION OF QUASI-INCREASING FUNCTIONS 

Our objective in this section is to study the properties of a class of homeo- 
morphic functions, called “quasi-increasing functions,” which includes the 
class of increasing functions as a proper subset. Our main motivation is to 
derive weaker global inversion theorems which allow the Jacobian of an 
appropriately transformed homeomorphrc function to vanish on hyperplanes, 
rather than on a set of isolated points. 

DEFINITION 4.1. An n x n matrix A is said to be a class-E matrix if, and 
only if, each row and each column of A have one and only one nonzero element 
which is either 1 or - 1. 

Notice that premultiplication (postmultiplication) of a matrix / by a 
class-E matrix il is equivalent to a permutation of the rows (columns) of J 
with certain rows (columns) of / multiplied by - 1. In this respect, class-E 
matrices act like elementary matrices [28]. The following two important 
properties of class-E matrices can be shown trivially: 

1. If E, and E, are class-E matrices, then E,E,, is a class-E matrix. Con- 
versely, if E, is a class-E matrix, there are two class-E matrices, E,, and E,, 
such that E,,E,, = E, . 

2. Every class-E matrix is an orthogonal matrix. 

DEFINITION 4.2. A function f : R” + R” is said to be quasi-increasing if, 
and only if, there existtwo class-E matrices E, and E, such that the transformed 
functionp : R” - R” defined byf((x) = E, f 0 (Ehx) is an increasing function. 

I,EMMA 4.1. Every quasi-increasing function f is a homeomorphic function. 

Proof. By definition, the transformed function f(x) = E, f 0 (I&X) is 
increasing and hence by Lemma 3.1(b), . h is omeomorphic in R”. Since class-E 
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matrices are nonsingular, the function f 0 (l&,x) = E,lf(x) is also homeo- 
morphic in R”. If we let z = Ebx, then x = E,?z is well defined and hence 
f(z) is homeomorphic in R”. This completes the proof. 

The following lemma is an important observation for the development of 
this section: 

LEMMA 4.2. Let E, and Eb be two class-E matrices of order n and 
f : UC R” - R” be a Cl map on U. Then E, Jf(x) Eb is positive dejinite (semi- 
dejkite) at a point x E U if, and only if, E, Jf(x) is positive dejkite (semi- 
definite) at x, where E, = EbEa . 

Proof. Since the proofs of the positive definite part and the positive semi- 
definite part are similar, it suffices to prove the positive definite part only. 

Since E,, is nonsingular, so is Ebt. Hence, for every vector z # 0 in R”, 
there is a vector s # 0 in R” such that z = E,,Q. So, we have the following: 

Q(x) = xtEa Jf(x) E,z = stEbEa Jj(x) EbEbts = stE, Jj(x) s = P(s). 

This implies that Q(n) > 0 for all z # 0 in R” if, and only if, P(s) > 0 for 
all s # 0 in R”. Hence, our conclusion follows. 

In view of Lemma 4.2, we can conclude that if f : U C R” ---f Rn and is a Cr 
map on U, then E, Jf(x) Eb is almost positive definite on U if and only if 
E, Jf(x) is almost positive definite on U, where E, = E,E, , and E, , E, are 
class-E matrices. 

THEOREM 4.1. Let f : X---f Y, X = Y = Rn, be a Cl map. Suppose there 
exists a class-E matrix E, such that E, Jf(x) is almost positive definite on R”, then f 
is quasi-increasing. 

Proof. Let E, and E, be two class-E matrices such that E, = E,,E, . For 
each x in X and y = f (x), let x = E,u and w = E,y. Then 

w = E, f 0 (E+) E f(u) 

and f : U - W, where U = EilX = R” and W = E,Y = R”, is a Cr map. 
Moreover, 

Jib) = &Jr 0 (-44 4 = EaJAx) 4 . (4.1) 

It follows from the hypothesis and Lemma 4.2 that J?(u) is almost positive 
definite on R”. By Theorem 3.4,jis an increasing function on R”. Hence, f is 
quasi-increasing on R” and the theorem is proved. 

An example of a function f : R” --f R” which is neither increasing nor 
decreasing but which satisfies the hypothesis of Theorem 4.1 is given by 



GLOBAL HOMEOMORPHISRl 619 

f is neither increasing or decreasing on R2 because 

’ ,f(a) -f(6), a - /I‘) = -I when a, =h,, 

and 

when a, = b., , 6, = 0. 

Then 

and EcJf(x) = [; + 3x1’ ; + 3x,4 A(x). 

A simple computation will show that A(x) is positive definite except at the 
point x1 == xq = 0 and at this point, A(x) is positive semidefinite. Hence, 
A(x) is almost positive definite on R* and sofis quasi-increasing. Indeed, the 
function 

is increasing because 

<p(u) -f(b), a - b:, 

= [(a1 - b,) - (a, - b,)]2 t (a, - b,)2 (a1 -I-- a,b, -i h,“) 

-t (a2 - Q2 (a, + a&, + b,2) > 0 

whenever a # 6. 
Our next theorem shows that a function f : RR” ---f R” can be quasi-increasing 

even if the Jacobian off^ is allowed to vanish on (rl - 1)-dimensional hyper- 
planes. 

THEOREM 4.2. Let f : X - Y, X = Y = Rn, be a Cl map. Suppose there 
exists a class-E matrix E, such that E, Jf( ) ’ p x as osa aae dejkite for all x in R” ‘t ’ 
except for at most a$nite number of hyperplanes of dimension less than or equal to 
(n - I) defined as 

i pijxi = qj 
j=l 

i = 1, 2 ,..., m, 

where x := (x1 , xp ,..., x,); pij and qj j = , 1, 2 n, i = ,..., 1, 2 ,..., m, are 
constants. Let 

si= x: 
1 

ip,j”j=qi , i- 1,2 ,..., m. 
j=l 1 
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If for any two distinct vectors a! and /3 in each Si , i = 1,2,..., m, we have 

<Ec[f (4 -f @)I, cx - B> > 0, (4.2) 

then f is quasi-increasing. 

Proof. Let E, and E, be two class-E matrices such that E, = E,,Ea . For 
each x in X and y = f (x), let x = E,u and w = E,y. Then 

and 

U = E;lX = R”, W=E,Y=Rn 

w = E,y = E,f(x) = E,f 0 (Ebu) =f”(u). 

That is,f: U-+ W, U= W=Rn, is a Cl map. Let r and s be any two 
distinct points in Rn. Let 

g(h) = (r - s>“f(s + JVr - s)), h E [O, I]. 

Then g is a Cl map on [0, 11. Hence, we have 

g(l)-g(O)= (‘lg’(A)dh=~l(r-s)tJ~(s+h(r-s))(r-s)dh 
JO 0 

= 
I 

1 (r - s)~ E,J, 0 [Eb(s + A(r - s))] E,(r - s) dh 

= 
s 

: (r - s)” EbtEbE,Jf 0 [Eb(s + A(r - s))] Eb(r - s) dh 
(4.3) 

= s 1 (xr - x,)” &J&s + +, - 4) (xr - 4 dk 

where x, = F,r and x, = Ebs. 
Since r = {x : x = x, + h(x,. - x,), X E [0, I]} is a straight line connecting 

the points x, and x, # x, , only the following three cases can occur: 

(a) r does not intersect any S, , k = 1, 2 ,,.., m; 

(b) r intersects some S, , k = 1,2 ,..., m; 

(c) r is contained in some Sk , say St1 , Srz ,..., S, D , where 
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Notice that a straight line can intersect each hyperplane at most at one point 
unless it is contained in that hyperplane. If case (a) or (b) occurs, then, except 
for a finite number of X in (0, 1) for which the straight line 

r = {x : s = X,5 -I- X(x, -- ‘X-J, A e [O, 11: 

intersects with some hyperplane S, , the matrix E,,[,(x,, im X(.v,. -- x,?)) is 
positive definite. Hence, (4.3) would imply that 

g(l) -g(O) > 0, 

that is, 

(Y --- Syf(Y) - (Y - s)y(s) = (f(Y) -j(s), Y - s\ > 0. (4.4) 

If case (c) occurs, then the straight line r connecting the points x,. and Lx? is 
contained in St1 n S1, n ... n S, %I . By assumption, 

@c[f(%) -f(%)l, x, - %j > 0. 
‘This implies that 

\EbEn[fo (Eby) -fo (E&I, Ehy - E,s) = (E,fo (Eby) - E,,f 0 (E&r -s> 

= (f(Y) -f(s), Y - s> > 0. 

Hence, for any two distinct points r and s in R”, we have 

(S(Y) -j(s), Y - S‘i > 0. 

That is, f^ is increasing on R” and so f is quasi-increasing. This completes the 
proof of Theorem 4.2. 

To illustrate the utility of Theorem 4.2, we will present next an example 
which applies Theorem 4.2 to show that a function which is neither increasing 
nor decreasing can nevertheless be quasi-increasing even though it fails to 
satisfy the hypothesis of Theorem 4.1. 

EXAMPLE 4.1. Let f : R2 + R2 where 

f(x)= [“tIjl)c2;x23] = [p::;]. 

f is neither increasing nor decreasing because (f(u) - f(v), u - v> z= ---.- 1 
when u = (0, 1) and z, = (0,O) and (f(u) -f(u), u -- v> = 1 when 
u = (I, 1) and u = (2, 1). Moreover, the Jacobian off vanishes on the line 
x2 = 0. However, if we choose 

EC = [y -i] , E, = [-y -i] , and -5, = [h -i] , 

40913913-7 
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then it is easily verified that E, = E,E, and E,J,(x) is positive definite except 
on the line xa = 0, and on this line, (E,[f(u) -f(v)], (u - v)) > 0. Hence, 
by Theorem 4.2, f is quasi-increasing and homeomorphic on R2. Indeed, 
the inverse function is given by 

f-1 = [ Y2 - (Yl +Y2Y3 
(Yl -tY2P3 1 - 

By choosing E, = E, = Eb = I, the identity matrix, Theorem 4.2 becomes 
a sufficient condition for f to be an increasing function while allowing the 
Jacobian of Jf(x) to vanish on a larger set than a set of isolated points. The 
next example illustrates this point. 

EXAMPLE 4.2. Let f : R2 -+ R2 where 

f(x) = [ QXl” + X2 
- Xl + x2 + gx23 

] . 

It is easily verified that Jj(x) is positive definite except on the line x1 = 0, 
and on this line, (f(u) -f(v), u - v) > 0. Hence, by Theorem 4.2, f is an 
increasing function. 

5. CONCLUDING REMARKS 

Several new theorems have been presented for a function f : Rn + Rn to 
be homeomorphic on Rn. Unlike the Palais theorem [I], these global inversion 
theorems share a common feature in that the Jacobian off is allowed to 
vanish on at least a set of isolated points. This feature is also preserved in the 
global implicit function theorems which follow quite naturally from the 
inversion theorems. A version of partial converse to the global inverse (impli- 
cit) function theorem is also presented. 

The class of increasing functions is seen to be a natural generalization of the 
class of state functions associated with strict convex potential functions. A 
further generalization leads to the definition of a quasi-increasing function 
which behaves in many respects like an increasing function. 
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