A note on the interlacing of zeros and orthogonality

Kathy Driver

Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa

Received 16 September 2008; accepted 11 November 2008
Available online 18 November 2008

Communicated by Paul Nevai

Abstract

Let \(\{t_n\}_{n=0}^\infty \) be a sequence of monic polynomials with \(\deg(t_n) = n \) such that, for each \(n \in \mathbb{N} \), the zeros of \(t_n \) are real and simple and \(t_n \) and \(t_{n+1} \) have no common zeros. We discuss the connection between the orthogonality of the sequence, the positivity of a certain ratio, and the interlacing of the zeros of \(t_n \) and \(t_{n+1} \) for \(n \geq 1, n \in \mathbb{N} \).

© 2008 Elsevier Inc. All rights reserved.

Keywords: Orthogonality of a monic polynomial sequence; Interlacing of zeros

For any positive Borel measure \(\mu \), if \(\{p_n\}_{n=0}^\infty \) is the uniquely determined sequence of monic orthogonal polynomials with respect to \(\mu \), it is a well-known classical result that the \(n \) zeros of \(p_n \) are real and distinct and lie in the convex hull of \(\text{supp}(\mu) \). Further, if \(x_{1,n} < x_{2,n} < \cdots < x_{n,n} \) are the zeros of \(p_n \) and \(x_{1,n+1} < x_{2,n+1} < \cdots < x_{n+1,n+1} \) are the zeros of \(p_{n+1} \), then

\[
x_{1,n+1} < x_{1,n} < x_{2,n+1} < x_{2,n} < \cdots < x_{n+1,n+1} < x_{n,n} < x_{n+1,n+1},
\]
a property usually called the interlacing of the zeros.

In 2007, Marcellán (see [1] for related work) posed the following question:

If \(\{p_n\}_{n=0}^\infty \) and \(\{q_n\}_{n=0}^\infty \) are two monic orthogonal polynomial sequences corresponding to positive Borel measures \(\mu_1 \) and \(\mu_2 \) respectively, under what circumstances is \(\{r_n\}_{n=0}^\infty \) an orthogonal sequence where \(r_n = a p_n + b q_n \), with \(a \) and \(b \) non-zero constants?

E-mail addresses: Kathy.Driver@uct.ac.za, sci-dean@uct.ac.za.

0021-9045/S - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2008.11.008
In addressing this question, it has been suggested that if the zeros of \(r_n \) and \(r_{n+1} \) are interlacing for each \(n \in \mathbb{N}, n \geq 1 \), then \(\{r_n\}_{n=0}^{\infty} \) is orthogonal with respect to some positive Borel measure. This seems plausible in light of Wendroff’s theorem (cf. [4]) which proves that if \(\{x_{k,n}\}_{k=1}^{n} \) and \(\{x_{k,n+1}\}_{k=1}^{n+1} \) are two sets of real distinct points satisfying (1), then \(p_n(x) = \prod_{k=1}^{n}(x - x_{k,n}) \) and \(p_{n+1}(x) = \prod_{k=1}^{n+1}(x - x_{k,n+1}) \) can be embedded in an orthogonal sequence.

The purpose of this note is to discuss the connection between three different properties of a sequence of monic polynomials \(\{t_n\}_{n=0}^{\infty} \), namely, the orthogonality of the sequence, the positivity of a certain ratio, and the interlacing of the zeros of \(t_n \) and \(t_{n+1} \) for all \(n \in \mathbb{N}, n \geq 1 \). We give an example to illustrate that the interlacing of zeros of monic polynomials of adjacent degree in a sequence is a far weaker property than the orthogonality of such a sequence. For related work on connections between orthogonal polynomials, their zeros, and their recurrence coefficients, see [3].

We begin by reformulating Theorem 6.2 in [2].

Lemma. Let \(\{t_n\}_{n=0}^{\infty} \) be a sequence of monic polynomials with \(\deg(t_n) = n \) and suppose that the zeros of \(t_n \) are real and simple and that \(t_n \) and \(t_{n+1} \) have no common zeros for any \(n \in \mathbb{N} \). Then \(\{t_n\}_{n=0}^{\infty} \) satisfies a three term recurrence relation of the form

\[
t_{n+1}(x) = (x - b_n)t_n(x) - \lambda_n t_{n-1}(x)
\]

if and only if

\[
\left(\frac{t_{n+1}}{t_{n-1}} \right) (t_{i,n}) = \left(\frac{t_{n+1}}{t_{n-1}} \right) (t_{j,n}) \quad \text{for each } i, j = 1, 2, \ldots, n,
\]

where \(\{t_{k,n}\}_{k=1}^{n} \) is the set of zeros of \(t_n \). Note that we take \(t_0(x) \equiv 1 \) and \(t_{-1}(x) \equiv 0 \).

We observe that if (2) holds then

\[
b_n = \sum_{i=1}^{n+1} t_{i,n+1} - \sum_{i=1}^{n} t_{i,n},
\]

and the common value of the ratios in (3) is \(-\lambda_n\).

We can now state and prove our result.

Theorem. Let \(\{t_n\}_{n=0}^{\infty} \) be a sequence of real monic polynomials, \(\deg(t_n) = n \), satisfying the property that the zeros of \(t_n \) are real and simple and \(t_n \) and \(t_{n+1} \) have no common zeros for any \(n \in \mathbb{N} \). Assume, in addition, that (3) holds for every \(n \in \mathbb{N}, n \geq 1 \). Then the following are equivalent:

(i) the sequence \(\{t_n\}_{n=0}^{\infty} \) is orthogonal with respect to a positive Borel measure;

(ii) \(\lambda_n \) is positive for each \(n \in \mathbb{N} \), where \(-\lambda_n\) is the common value of the ratios in (3);

(iii) the zeros of \(t_n \) and \(t_{n+1} \) are interlacing for each \(n \in \mathbb{N} \).

Proof. If (i) holds, it is a classical result that \(\{t_n\}_{n=0}^{\infty} \) satisfies a three term recurrence relation of the form (2) with \(\lambda_n > 0 \). It follows immediately from (3) that (ii) holds and, since the interlacing property (iii) is a well-known consequence of orthogonality, we see that (i) implies (iii). Now, if (ii) holds, it follows from Favard’s Theorem that (i), and therefore (iii), holds. Finally, if \(t_{1,n} < t_{2,n} < \cdots < t_{n,n} \) are the zeros of \(t_n \) for each \(n \in \mathbb{N} \), we see that if (iii) holds, we have

\[
t_{1,n+1} < t_{1,n} < t_{2,n+1} < \cdots < t_{n,n+1} < t_{n,n} < t_{n+1,n+1}
\]
for each \(n \geq 1, n \in \mathbb{N} \). Evaluating (2) at the smallest zero \(t_{1,n+1} \) of \(t_{n+1}(x) \), we see that
\[
0 = (t_{1,n+1} - b_n)t_n(t_{1,n+1}) - \lambda_n t_{n-1}(t_{1,n+1}),
\]
and therefore,
\[
\lambda_n = (t_{1,n+1} - b_n) \left(\frac{t_n}{t_{n-1}} \right) (t_{1,n+1}).
\]

From (4) and (5) we observe that
\[
t_{1,n+1} - b_n = (t_{1,n} - t_{2,n+1}) + \cdots + (t_{n,n} - t_{n+1,n+1}) < 0,
\]
while \(t_n \) and \(t_{n-1} \) must have a different sign at the smallest zero of \(t_{n+1} \) since neither can have a smaller zero and their degrees differ by exactly one. Therefore \(\lambda_n > 0 \) and this concludes the proof. \(\square \)

Remark. Let \(\{t_n\}_{n=0}^\infty \) be a sequence of monic polynomials, where the zeros of \(t_n \) and \(t_{n+1} \) are interlacing for all \(n \geq 1, n \in \mathbb{N} \), that includes, for example,
\[
t_3(x) = (x - 1)(x - 4)(x - 8), \quad t_2(x) = (x - 2)(x - 5), \quad t_1(x) = (x - 3).
\]

Then
\[
\left(\frac{t_3}{t_1} \right) (2) = -12,
\]
while
\[
\left(\frac{t_3}{t_1} \right) (5) = -6,
\]
so the sequence \(\{t_n\}_{n=0}^\infty \) cannot be orthogonal with respect to any positive Borel measure. The point is, in an orthogonal sequence, the three term recurrence relation completely (and uniquely) determines \(t_1 \) if \(t_3 \) and \(t_2 \) are given.

Acknowledgments

The author acknowledges constructive and helpful comments by Alan Beardon and the referees. The research was supported by the National Research Foundation Grant Number 61095.

References