JOURNAL OF NUMBER THEORY 38, 52-57 (1991)

The Structure of the lwasawa Module Associated with a \mathbb{Z}_p^r -Extension of a p-adic Local Field of Characteristic 0

D. S. NAGARAJ

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Received March 29, 1989; revised April 30, 1990

Let K be a finite extension of \mathbf{Q}_p . Let $K_{\infty,r}$ be a Galois extension of K such that $\mathscr{G}_r := \text{Gal}(K_{\infty,r}/K) \cong \mathbb{Z}_p^r$ for some integer $r \geq 1$. Let $K_{\infty,r}^{ab,p}$ be the maximal abelian pro-p extension of $K_{\infty,r}$, $M_r = \text{Gal}(K_{\infty,r}^{ab,p}/K_{\infty,r})$, and $A_r = \underline{\lim} Z_p [[\mathcal{G}_r/p^n \mathcal{G}_r]]$. When $r = 1$, Iwasawa has determined the A_r -module structure of M,. In this article we determine the rank and depth of the Λ ,-module M, for any integer $r \ge 1$. $© 1991 Academic Press, Inc.$

INTRODUCTION

Let K be a finite extension of \mathbf{Q}_p . Let $K_{\infty,r}$ be a Galois extension of K such that $\mathcal{G}_r := \text{Gal}(K_{\infty,r}/K) \simeq \mathbb{Z}_p^r$ for some integer $r \geq 1$. Let $K_{\infty,r}^{ab,p}$ be the maximal abelian pro-p extension of $K_{\infty,r}$. Let $\mathbf{M}_r = \text{Gal}(K_{\infty,r}^{ab,r}/K_{\infty,r})$ and $A_r = \lim_{n \to \infty} \mathbb{Z}_n[{\mathscr G}_r/p^n{\mathscr G}_r].$ If we choose topological generators for ${\mathscr G}_r$, then A_r can be identified with $\mathbb{Z}_p[[X_1, ..., X_r]]$. Note that M, is naturally a Λ_r module which we call the Iwasawa module. When $r = 1$, Iwasawa has determined the Λ ,-module structure of M,. In this note we determine the rank and depth of the Λ_r -module M, for any integer $r \geq 1$. For the definition of depth of a module see [S].

For related results, we mention the works of J. P. Wintenberger [W] and Nguyen-Quang-Do [N]. J. P. Wintenberger [W] has considered Galois extensions of K (K as above) whose Galois group is isomorphic to $\mathbb{Z}_{p}^{r} \times G$, where G is a finite group of order prime to p. In particular, he has shown that the corresponding A_{ϕ} -module M_{ϕ} is a free module of rank d for any irreducible character ϕ of G other than trivial and cyclotomic character (see \lceil W, Theorem 4.1]).

1. STRUCTURE OF THE IWASAWA MODULE FOR $r=1$

Here we recall the result of Iwasawa (see $[I, p. 316-320]$). Let K be as in the introduction and $K_{\infty,1}$ be a \mathbb{Z}_p -extension of K. Then $\mathbf{M}_1 = \text{Gal}(K^{ab,p}_{\infty,1}/K_{\infty,1})$ be the corresponding $A_1 \simeq \mathbf{Z}_p[[X]]$ module.

Let $d = [K : \mathbf{Q}_n]$, \overline{K} be the algebraic closure of K, $\mathbf{W}_n =$ set of pⁿth roots of unity in \bar{K} and $\mathbf{W}_{\infty} = \bigcup_{n>0} \mathbf{W}_n$. For any field $L \subset \bar{K}$ set $\mathbf{W}_L = \mathbf{W}_{\infty} \cap L$.

THEOREM (Iwasawa). The $A_1 \simeq Z_p$ [|X|]-module structure of M_1 is as follows:

(1) Suppose $K_{\infty,1} \neq K(\mathbf{W}_{\infty})$, i.e., $\mathbf{W}_{K_{\infty,1}} = \mathbf{W}_{\infty} \cap K_{\infty,1} \neq \mathbf{W}_{\infty}$, then

 $\mathbf{M}_1 \subseteq A_1^d$ and $A_1^d / \mathbf{M}_1 \simeq \mathbf{W}_{K_n}$,

(2) Suppose $K_{\infty,1} = K(\mathbf{W}_{\infty}),$ i.e., $\mathbf{W}_{K_{\infty},1} = \mathbf{W}_{\infty} \cap K_{\infty,1} = \mathbf{W}_{\infty}$, then

$$
\mathbf{M}_1 \simeq T(\mathbf{W}_{\infty}) \oplus A_1^d.
$$

where $T(\mathbf{W}_{\infty}) = \underline{\lim} \mathbf{W}_n$ is the Tate module of \mathbf{W}_{∞} .

Proof. See [I, Theorem 25]. \blacksquare

DEFINITION. If N is a finitely generated module over a domain A with quotient field L, then dimension of the vector space $N \otimes_{A} L$ over L is called the *rank* of N.

COROLLARY. Notations as above

(1) If $W_k = (e)$ then M_1 is a free A_1 -module of rank d.

(2) If $W_k \neq (e)$ then M_1 is not free A_1 -module but depth $A_1(M_1) = 1$ and $\text{rk}_{A_1}(\mathbf{M}_1) = d$, where $\text{depth}_{A_1}(\mathbf{M}_1) := \text{depth}_{A_1}$ of \mathbf{M}_1 and $\text{rk}_{A_1}(\mathbf{M}_1)$: = rank of M_1 as a Λ_1 -module.

Proof. (1) follows from (1) of the theorem above.

(2) (a) If $W_K \neq (e)$ and $K_{\infty,1} \neq K(W_\infty)$ then by (1) of the theorem above we have an exact sequence of A_1 -modules

$$
0 \to \mathbf{M}_1 \to A_1^d \to \mathbf{W}_{K_{\infty,1}} \to 0.
$$

From this sequence it follows that depth_{A_1} $(M_1)=1$ and rk_{A_1} $(M_1)=$ $rk_{A_1}(A_1^d) = d.$

(b) If $K_{\infty,1} = K(W_{\infty})$ then by (2) of the theorem above we have

$$
\mathbf{M}_1 \simeq T(\mathbf{W}_{\infty}) \oplus A_1^d
$$

hence it is clear that depth_{A_1} $(M_1) = 1$ and rk_{A_1} $(M_1) = d$.

54 D. S. NAGARAJ

2. STRUCTURE OF THE Λ , MODULE M, FOR $r\geq 2$

To study the Λ ,-module structure of M,, we use induction on r; for this we need the following:

LEMMA 1. Let \mathcal{G}_r , $K_{\infty,r}$, $K_{\infty,r}^{ab,p}$, Λ_r , and **M**, be as in the introduction with $r \geqslant 2$. Let H be a subgroup of \mathscr{G}_r such that $\mathscr{G}_r/H \simeq \mathbb{Z}_p^{r-1}$. Let $K_{\infty,r-1} = K_{\infty,r}^H$ be the fixed field of H. Then $Gal(K_{\infty,r-1}/K) = \mathscr{G}_{r-1} = \mathscr{G}_r/H$. If v is a topological generator of H then $A_r/(v-1) \simeq A_{r-1}$ and $v-1$ is injective on M_r , and there is an exact sequence of A_{r-1} -modules

$$
0 \to \mathbf{M}_r/(v-1) \mathbf{M}_r \to \mathbf{M}_{r-1} \to \mathbf{Z}_p \to 0,
$$

where $\mathbf{M}_{r-1} = \text{Gal}(K_{\infty,r-1}^{ab,p}/K_{\infty,r-1})$ and \mathbf{Z}_p is the A_{r-1} -module with trivial \mathscr{G}_{n-1} action.

Proof. See [W, Lemma 5.2]. \blacksquare

Remark. By Lemma 1 and the fact about compact Λ ,-modules (see [G, p. 87]) it follows that M, is a finitely generated Λ ,-module.

THEOREM 1. Let M , and Λ , be as above then

$$
rk_{\Lambda_r}(\mathbf{M}_r)=d,
$$

where $d = [K: \mathbf{Q}_p]$.

Proof. Proof is by induction on r. If $r = 1$ then the theorem follows from the explicit structure theorem of the Iwasawa module given by the theorem of Iwasawa quoted above. So we assume $r \geq 2$ and the result holds for $r - 1$. Now with the notations of Lemma 1 we have an exact sequence of A_{r-1} -modules

$$
0 \to \mathbf{M}_r/(\nu - 1) \mathbf{M}_r \to \mathbf{M}_{r-1} \to \mathbf{Z}_p \to 0.
$$

This exact sequence together with the assumption that $r \geq 2$ and induction gives $rk_{A_{r-1}}(M_r/(v-1) M_r) = rk_{A_{r-1}}(M_{r-1})$. Since there are infinitely many subgroups of the type H in \mathcal{G} , the theorem follows from induction and Lemma 2 below. \blacksquare

LEMMA 2. Let **M** be a finitely generated Λ ,-module such that there are infinitely many height 1 prime ideals P of A, with $A_r/P \simeq A_{r-1}$ and $P = (t)$ with t injective on **M** and **M**/(t) **M** is a A_{r-1} -module of fixed rank say d. Then rank of M as Λ -module is d.

Proof. Let

$$
V_{\mathbf{M}}^d = \{ P \in \operatorname{Spec}(A_r) \mid \operatorname{rk}_{Ar/P}(\mathbf{M}/P\mathbf{M}) \geq d \}.
$$

Then upper semi continuity of the rank function

 $rk_{\mathbf{M}} : \text{Spec}(A_r) \to \mathbf{Z}$

defined by M (See [H, p. 288]) V_M^d is a closed subset of Spec(A_r). By our assumption on M we must have $V_M^d = \text{Spec}(A)$. Now the lemma follows from our assumption on M .

We next prove some results about depth of Λ -module M,. For the definition of depth and homological-dimension see [S].

THEOREM 2. Let M , and Λ , be as above. Then we have the following:

(a) If $r = 1$ and if $W_{K_{r-1}} = (e)$ then M_1 is a free A_1 -module, otherwise depth_{A_1} $(\mathbf{M}_1) = 1$.

(b) If $r = 2$ and if W_{K_r} , $= (e)$ then M_2 is a free A_2 -module, otherwise depth_{A_2} $(\mathbf{M}_2) = 2$.

(c) If $r \geq 3$ then depth₄ (**M**_r) = 3.

Proof. (a) If $r = 1$ then the result follows from the theorem of Iwasawa quoted at the beginning of this paper.

(b) Let $r = 2$ and let $H \subset \mathscr{G}_2$ be a subgroup such that $\mathscr{G}_1/H \simeq \mathscr{G}_1$. Then by Lemma 1 we have an exact sequence

$$
0 \to M_2/(v-1) M_2 \to M_1 \to Z_n \to 0 \cdots (*)
$$

of A_1 -modules, where v is a topological generator of H. Now from (a) we have depth_{A_1}(M₁) is 1 or 2. Also we have depth_{A_1}(Z_p) = 1. On the other hand if (R, m) is a regular local ring of dimension r and N is a finitely generated R module then

$$
\operatorname{depth}_R(N) + \operatorname{hd}_R(N) = \operatorname{dim}(R) = r,
$$

where hd_R(N) = homological dimension of N. (See [S, iv-35]). Note that $\text{hd}_R(N) = \sup\{i | \text{Tor}_i^R(N, R/m) \neq 0\}$. (See [S, iv-34]).

Case (1). Let $W_{K_0,2} = (e)$.

Then M_2 is a free A_2 -module (see [W, Theorem 4.1(i)]).

Case (2). Let $\mathbf{W}_{K_{x,2}} \neq (e)$.

But then $W_k \neq (e)$ (this is because

 $Gal(K_{\infty}/K) \simeq \mathbb{Z}_p^2$ and $Gal(\mathbf{Q}_p(\mathbf{W}_p)/\mathbf{Q}_p) \simeq (\mathbf{Z}_p/(p^n))^*$

for $n \ge 1$), hence $W_{K_{n-1}} \neq (e)$. Thus by (a) and the sequence (*) we obtain

$$
\text{depth}_{A_1}(\mathbf{M}_1) = 1 = \text{depth}_{A_1}(\mathbf{Z}_p) \quad \text{and} \quad \text{hd}_{A_1}(\mathbf{M}_1) = 1 = \text{hd}_{A_1}(\mathbf{Z}_p)
$$

Now tensoring the exact sequence $(*)$ with the residue field k of Λ_1 we obtain an exact sequence,

 $0 \to \operatorname{Tor}^{A_1}_*(\mathbf{M}_2/(\nu-1)\mathbf{M}_2, k) \to \operatorname{Tor}^{A_1}_1(\mathbf{M}_1, k) \to \cdots \to k \to 0.$

This exact sequence together with the fact

$$
\mathbf{M}_{2}/(\nu-1)\mathbf{M}_{2}\otimes k\rightarrow\mathbf{M}_{1}\otimes k
$$

is not injective gives hd₄,($\mathbf{M}_{2}/(\nu - 1) \mathbf{M}_{2}$) = 1 (see [S, iv-28]) hence depth₄,($\mathbf{M}_{2}/(\nu-1) \mathbf{M}_{2}$) = 1. Again using the fact that $\nu-1$ is injective on M_2 we obtain depth₄,(M_2) = 2 this proves (b).

(c) Let $r \ge 3$. Let H be a subgroup of \mathscr{G}_r such that $\mathscr{G}_r / H \simeq \mathbb{Z}_r^{r-1}$. Again by Lemma 1 we have an exact sequence

$$
0 \to \mathbf{M}_r/(v-1) \mathbf{M}_r \to \mathbf{M}_{r-1} \to \mathbf{Z}_p \to 0
$$

of A_{r-1} -modules. This exact sequence gives to a long exact sequence:

$$
\operatorname{Ext}^1_{A_{n-1}}(k, \mathbf{M}_{r-1}) \to \operatorname{Ext}^1_{A_{n-1}}(k, \mathbf{Z}_p) \to \operatorname{Ext}^2_{A_{n-1}}(k, \mathbf{M}_r/(v-1) \mathbf{M}_r) \to \cdots,
$$

where k is the residue field of A_{r-1} . Since $r \ge 2$ by induction we may assume that depth $_{A_{r-1}}(M_{r-1}) \geq 2$. Hence $\text{Ext}^1_{A_{r-1}}(k, M_{r-1}) = 0$. But depth_{$A_{r-1}(\mathbf{Z}_p) = 1$ implies $\operatorname{Ext}^1_{A_{r-1}}(k, \mathbf{Z}_p) \neq 0$ so by the long exact sequence} we obtain $\text{Ext}_{A_{r-1}}^2(k, \mathbf{M}_r/(v-1) \mathbf{M}_r) \neq 0$ hence depth $_{A_{r-1}}(\mathbf{M}_r/(v-1) \mathbf{M}_r) = 2$. Now again by Lemma 1, $v - 1$ is injective on M,, hence we obtain

$$
\text{depth}_{\Lambda_r}(\mathbf{M}_r) = 3.
$$

This proves (c) and hence the theorem. \blacksquare

COROLLARY. Notations as above. If $r \geq 3$ then M, is not a free A,-module.

Proof. If $r \ge 3$ then dim Λ , $=r+1 \ge 4$, on the other hand a free A_r-module has depth $r + 1 \ge 4$. But by Theorem 2 depth_A(M_r) = 3; hence M, is not free.

The above corollary has been remarked by both J. P. Wintenberger [W] and Nguyen-Quang-Do [N].

ACKNOWLEDGMENTS

I thank Professor Madhav V. Nori for his helpful suggestions and encouragement. I also thank Professor K. Rubin and the referee for suggestions towards improving the manuscript.

REFERENCES

- [G] R. GREENBERG, On the structure of certain Galois groups, *Invent. Math.* 47 (1978), 85-99.
- [H] R. HARTSHORNE, "Algebraic Geometry," GTM 52, Springer-Verlag, New York, 1977.
- [I] K. Iwasawa, On \mathbb{Z}_r extentions of algebraic numberfields, Annal. of Math. 98 (1973), 246-326.
- [N] NGUYEN-QUANG-DO, Sur la structure Galois des corps locaux et la théorie d'Iwasawa, II, J. Reinc Angew. Mafh. 333 (1982), 133-143.
- [S] J. P. SERRE, Algebra locale-Multiplicities, in "Lecture Notes in Math.," Vol. 11, Springer-Verlag, New York, 1975.
- [W] J. P. WINTENBERGER, Structure Galois de limits proj d'unités locales, Comp. Math. 42 (1981), 89-103.