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Abstract

We find the BFKL Pomeron intercept at N = 4 supersymmetric gauge theory in the form of the inverse
coupling expansion j0 = 2 − 2λ−1/2 − λ−1 + 1/4λ−3/2 + 2(1 + 3ζ3)λ−2 + O(λ−5/2) with the use of the
AdS/CFT correspondence in terms of string energies calculated recently. The corresponding slope γ ′(2) of
the anomalous dimension calculated directly up to the fifth order of perturbation theory turns out to be in
an agreement with the closed expression obtained from the recent Basso results.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Pomeron is the Regge singularity of the t -channel partial wave [1] responsible for the approx-
imate equality of total cross-sections for high energy particle–particle and particle–antiparticle
interactions valid in an accordance with the Pomeranchuk theorem [2]. In QCD the Pomeron is
a colorless object, constructed from reggeized gluons [3].

The investigation of the high energy behavior of scattering amplitudes in the N = 4 Super-
symmetric Yang–Mills (SYM) model [4–6] is important for our understanding of the Regge pro-
cesses in QCD. Indeed, this conformal model can be considered as a simplified version of QCD,
in which the next-to-leading order (NLO) corrections [7] to the Balitsky–Fadin–Kuraev–Lipatov
(BFKL) equation [3] are comparatively simple and numerically small. In the N = 4 SYM the
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equations for composite states of several reggeized gluons and for anomalous dimensions of
quasi-partonic operators turn out to be integrable at the leading logarithmic approximation [8,9].
Further, the eigenvalue of the BFKL kernel for this model has the remarkable property of the
maximal transcendentality [5]. This property gave a possibility to calculate the anomalous di-
mensions (AD) γ of the twist-two Wilson operators in one [10], two [5,11], three [12], four [13,
14] and five [15] loops using the QCD results [16] and the asymptotic Bethe ansatz [17] improved
with wrapping corrections [14]1 in an agreement with the BFKL predictions [4,5].

On the other hand, due to the AdS/CFT correspondence [19–21], in N = 4 SYM some phys-
ical quantities can be also computed at large couplings. In particular, for AD of the large spin
operators Beisert, Eden and Staudacher constructed the integral equation [22] with the use the
asymptotic Bethe ansatz. This equation reproduced the known results at small coupling constants
and is in a full agreement (see [23,24]) with large coupling predictions [25,26].

With the use of the BFKL equation in a diffusion approximation [3,4,6], strong coupling re-
sults for AD [25] and the Pomeron-graviton duality [27] the Pomeron intercept was calculated
at the leading order in the inverse coupling constant (see the Erratum [28] to the paper [12]).2

Similar results in the N = 4 SYM and QCD were obtained in Refs. [29] and [30]. The Pomeron-
graviton duality in the N = 4 SYM gives a possibility to construct the Pomeron interaction model
as a generally covariant effective theory for the reggeized gravitons [31].

Below we use recent calculations [32–35] of string energies to find the strong coupling cor-
rections to the Pomeron intercept j0 = 2−� in next orders. We discuss also the relation between
the Pomeron intercept and the slope of the anomalous dimension at j = 2.

2. BFKL equation at small coupling constant

The eigenvalue of the BFKL equation in N = 4 SYM model has the following perturbative
expansion [4,5] (see also Ref. [6])

j − 1 = ω = λ

4π2

[
χ(γBFKL) + δ(γBFKL)

λ

16π2

]
, λ = g2Nc, (1)

where λ is the t’Hooft coupling constant. The quantities χ and δ are functions of the conformal
weights m and m̃ of the principal series of unitary Möbius group representations, but for the
conformal spin n = m − m̃ = 0 they depend only on the BFKL anomalous dimension

γBFKL = m + m̃

2
= 1

2
+ iν (2)

and are presented below [4,5]

χ(γ ) = 2Ψ (1) − Ψ (γ ) − Ψ (1 − γ ), (3)

δ(γ ) = Ψ ′′(γ ) + Ψ ′′(1 − γ ) + 6ζ3 − 2ζ2χ(γ ) − 2Φ(γ ) − 2Φ(1 − γ ). (4)

Here Ψ (z) and Ψ ′(z), Ψ ′′(z) are the Euler Ψ -function and its derivatives. The function Φ(γ )

is defined as follows

Φ(γ ) = 2
∞∑

k=0

(−1)k+1

k + γ
β ′(k + 1), (5)

1 The anomalous dimensions up to four loops were calculated also with the use of the Baxter equation [18].
2 The value of this intercept was estimated earlier in Ref. [11].



A.V. Kotikov, L.N. Lipatov / Nuclear Physics B 874 [PM] (2013) 889–904 891
where

β ′(z) = 1

4

[
Ψ ′

(
z + 1

2

)
− Ψ ′

(
z

2

)]
. (6)

Due to the symmetry of ω to the substitution γBFKL → 1 − γBFKL expression (1) is an even
function of ν

ω = ω0 +
∞∑

m=1

(−1)mDmν2m, (7)

where

ω0 = 4 ln 2
λ

4π2

[
1 − c1

λ

16π2

]
+ O

(
λ3), (8)

Dm = 2
(
22m+1 − 1

)
ζ2m+1

λ

4π2
+ δ(2m)(1/2)

(2m)!
λ2

64π4
+ O

(
λ3). (9)

According to Ref. [5] we have

c1 = 2ζ2 + 1

2 ln 2

(
11ζ3 − 32 Ls3

(
π

2

)
− 14πζ2

)
≈ 7.5812, (10)

where (see [36])

Ls3(x) = −
x∫

0

ln2
∣∣∣∣2 sin

(
y

2

)∣∣∣∣dy. (11)

Thus, the rightmost Pomeron singularity of the partial wave fj (t) in the perturbation theory
is situated at

j0 = 1 + ω0 = 1 + 4 ln 2
λ

4π2

[
1 − c1

λ

16π2

]
+ O

(
λ3) (12)

for small values of coupling λ.
In turn, the anomalous dimension γ also has the square-root singularity in this point, which

means, that the convergency radius of the perturbation series in λ for the anomalous dimension
γ = γ (ω,λ) at small ω is given by the expression

λcr = π2ω

ln 2

(
1 + c1

ω

16 ln 2

)
+ O

(
ω3). (13)

To clarify this statement let us write representation (7) for ω in the diffusion approximation for
arbitrary λ

ω = ω0(λ) − D1(λ)ν2 + O
(
ν4). (14)

From this expression we obtain, that the anomalous dimension has the square-root singularity

lim
λ→λcr

γ =
√

ω′
0(λcr)(λcr − λ)

D1(λcr)
+ const, (15)

where λcr is a function of ω satisfying the equation

ω = ω0(λcr). (16)
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Therefore the perturbative series for the anomalous dimension γ

γ =
∞∑

k=1

λkck(ω), (17)

has the finite radius of convergence λ = λcr and its coefficients ck behave at large k as follows

lim
k→∞ ck = λ−k

cr k− 3
2

1

2
√

π

√
λcrω

′
0(λcr)

D1(λcr)
. (18)

It will be interesting to find higher order corrections to the BFKL intercept ω0(λ) and the dif-
fusion coefficient D1(λ) by comparing the above asymptotic expression for ck with the analytic
results at k = 1–5 obtained recently [5,12–15]. Note, that the BFKL singularity for positive ω

is situated at positive λ = λcr . But it is expected, that with growing ω the nearest singularity,
responsible for the perturbation theory divergency will be at negative λ. Positions of both singu-
larities can be found from the perturbative expansion of γ with the possible use of appropriate
resummation methods (cf. [12]).

Due to the Möbius invariance and hermicity of the BFKL hamiltonian in N = 4 SUSY
expansion (7) is valid also at large coupling constants. In the framework of the AdS/CFT corre-
spondence the BFKL Pomeron is equivalent to the reggeized graviton [27]. In particular, in the
strong coupling regime λ → ∞

j0 = 2 − �, (19)

where the leading contribution � = 2/
√

λ was calculated in Refs. [28–30]. Below we find next-
to-leading terms in the strong coupling expansion of the Pomeron intercept. In the next section
the simple approach to the intercept estimates discussed shortly in Ref. [28] will be reviewed.

3. AdS/CFT correspondence

Due to the energy–momentum conservation, the universal anomalous dimension of the stress
tensor Tμν should be zero, i.e.,

γ (j = 2) = 0. (20)

It is important, that the anomalous dimension γ contributing to the DGLAP equation [37]
does not coincide with γBFKL appearing in the BFKL equation. They are related as follows [7]
(see also [38])

γ = γBFKL + ω

2
= j

2
+ iν, (21)

where the additional contribution ω/2 is responsible in particular for the cancelation of the
singular terms ∼ 1/γ 3 obtained from the NLO corrections (1) to the eigenvalue of the BFKL
kernel [7].

Using above relations one obtains

ν(j = 2) = i. (22)

As a result, from Eq. (7) for the Pomeron intercept we derive the following representation for the
correction � (19) to the graviton spin 2

� =
∞∑

Dm. (23)

m=1
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In the diffusion approximation, where Dm = 0 for m � 2, one obtains from (23) the relation
between the diffusion coefficient D1 and � (see [28])

D1 ≈ �. (24)

This relation was also obtained in Ref. [39].
According to (19) and (23), we have the following small-ν expansion for the eigenvalue of

the BFKL kernel

j − 2 =
∞∑

m=1

Dm

((−ν2)m − 1
)
, (25)

where ν2 is related to γ according to Eq. (21)

ν2 = −
(

j

2
− γ

)2

. (26)

On the other hand, due to the AdS/CFT correspondence the string energies E in dimensionless
units are related to the anomalous dimensions γ of the twist-two operators as follows [20,21]3

E2 = (j + Γ )2 − 4, Γ = −2γ (27)

and therefore we can obtain from (26) the relation between the parameter ν for the principal
series of unitary representations of the Möbius group and the string energy E

ν2 = −
(

E2

4
+ 1

)
. (28)

This expression for ν2 can be inserted in the r.h.s. of Eq. (25) leading to the following expression
for the Regge trajectory of the graviton in the anti-de-Sitter space

j − 2 =
∞∑

m=1

Dm

[(
E2

4
+ 1

)m

− 1

]
. (29)

Note [28], that due to (28) expression (7) for the eigenvalue of the BFKL kernel in the diffu-
sion approximation (24)

j = j0 − �ν2 = 2 − �
(
ν2 + 1

)
, (30)

is equivalent to the linear graviton Regge trajectory

j = 2 + α′

2
t, α′t = �

E2

2
, (31)

where its slope α′ and the Mandelstam invariant t , defined in the 10-dimensional space, equal

α′ = �
R2

2
, t = E2

R2
(32)

and R is the radius of the anti-de-Sitter space.

3 Note that our expression (27) for the string energy E differs from a definition, in which E is equal to the scaling

dimension �sc. But Eq. (27) is correct, because it can be presented as E2 = (�sc − 2)2 − 4 and coincides with Eqs. (45)
and (3.44) from Refs. [20] and [21], respectively.
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Now we return to Eq. (29) in general case. We assume below, that it is valid also at large j

and large λ in the region

1 	 j 	 √
λ, (33)

where the strong coupling calculations of energies were performed [32,35]. Comparing the l.h.s.
and r.h.s. of (29) at large j values gives us the coefficients Dm and � (see Appendix A).4

4. Graviton Regge trajectory and Pomeron intercept

The coefficients D1 and D2 at large λ can be written as follows5

D1 = 2√
λ

(
1 − 2a01√

λ

)
, D2 = −8a10

λ3/2
, (34)

where a01 and a10 are calculated in Appendix A

a01 = −1

4
, a10 = 3

8
. (35)

As a result, we find eigenvalue (29) of the BFKL kernel at large λ in the form of the nonlinear
Regge trajectory of the graviton in the anti-de-Sitter space

j − 2 = D1
E2

4
+ D2

[(
E2

4

)2

+ E2

2

]
. (36)

Note, that the perturbation theory for the BFKL equation gives this trajectory at small
ω = j − 1 (see Eq. (1)) according to Eqs. (21) and (28). However the energy–momentum con-
straint (20), leading to ω = 1 at E = 0, is not fulfilled in the perturbation theory, because at
γ → 0 the right-hand side of (1) contains the pole singularities which should be canceled after
an appropriate resummation of all orders.

Neglecting the term D2E
2/2 ∼ E2/λ3/2 at λ → ∞ in comparison with a larger correction

a01E
2/λ, we obtain the graviton trajectory (36) in the form

j − 2 = 2√
λ

(
1 − 2a01√

λ

)
E2

4
− 8a10

λ3/2

(
E2

4

)2

. (37)

Solving this quadratic equation, one can derive with the same accuracy (see [32,35])

2√
λ

E2

4
= (j − 2)

(
1 + 2

a01 + a10(j − 2)√
λ

)
. (38)

On the other hand, due to (27) this relation can be written as follows

1

2
√

λ
(j − 2γ )2 = 2√

λ
+ (j − 2)

(
1 + 2

a01 + a10(j − 2)√
λ

)
(39)

and for j − 2 
 1/
√

λ we have

j − 2γ = √
2(j − 2)λ1/4

[
1 +

(
1

j − 2
+ a01 + a10(j − 2)

)
1√
λ

]
. (40)

4 When this paper was almost prepared for publication, we found the article [40] containing some of our results (see
discussions in Appendix A).

5 Here we consider only the calculation of the λ−1 correction to Pomeron intercept. More general results are presented
in Appendix A.
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In particular, for j = 4 one obtains the anomalous dimension for the Konishi operator γ = γK

[32] (see also Appendix B)

2 − γK = λ1/4
[

1 +
(

1

2
+ a01 + 2a10

)
1√
λ

]
= λ1/4

[
1 + 1√

λ

]
. (41)

For the anomalous dimension at j −2 ∼ 1/
√

λ from (39) we obtain the square-root singularity
similar to that appearing at small j − 1 = ω0 (8)

γ = −λ1/4

√
2

(
1 + a01√

λ

)
(
√

D1 + j − 2 − √
D1 ), (42)

where D1 (34) is equal to the correction � to the graviton trajectory intercept with our accu-
racy

� = D1 ≈ 2√
λ

(
1 + 1

2
√

λ

)
.

Note, that in the region j − 2 < −�, the anomalous dimension is complex similar to it in the
perturbative regime at j − 1 < ω0 (8). Moreover, the position of the BFKL singularity of γ at
large coupling constants can be found from the calculation of the radius of the divergency of the
perturbation theory in 1/

√
λ at small j − 2.

5. Numerical analysis of the Pomeron intercept j0(λ)

Let us obtain a unified expression for the position of the Pomeron singularity j0 = 1 + ω0 for
arbitrary values of λ, using an interpolation between weak and strong coupling regimes.

It is convenient to replace ω0 with the new variable t as follows

t0 = ω0

1 − ω0
, ω0 = t0

1 + t0
. (43)

This variable has the asymptotic behavior t0 ∼ λ at λ → 0 and t0 ∼ √
λ/2 at λ → ∞ similar

to the case of the cusp anomalous dimension (see, for example, [11]). So, following the method
of Refs. [11,12,41], we shall write a simple algebraic equation for t0 = t0(λ) whose solution will
interpolate ω0 for the full λ range.

We choose the equation of the form

k0(λ) = k1(λ)t0 + k2(λ)t2
0 , (44)

where the following ansatz for the coefficients k0, k1 and k2 is used:

k0(λ) = β0λ + α0λ
2, k1(λ) = β1 + α1λ, k2(λ) = γ2λ

−1 + β2 + β2λ. (45)

Here γ2, αi and βi (i = 0,1,2) are free parameters, which are fixed using the known asymptotics
of ω0 at λ → 0 and λ → ∞.

The solution of quadratic equation (44) is given below

t0 = k1

2k2

[√
1 + 4k0k2

k2
1

− 1

]
. (46)

To fix the parameters γ2, αi and βi (i = 0,1,2), we use two known coefficients for the weak
coupling expansion of ω0:
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ω0 = ẽ1λ + ẽ2λ
2 + ẽ3λ

3 + · · · (at λ → 0) (47)

with

ẽ1 = ln 2

π2
≈ 0.07023, ẽ2 = −ẽ1

7.5812

16π2
≈ −0.00337 (48)

and first four terms of its strong coupling expansion

ω0 = 1 − �, � = 2√
λ

(
1 + t̃1√

λ
+ t̃2

λ
+ t̃3

λ3/2
+ t̃4

λ2
+ · · ·

)
(at λ → ∞) (49)

with (see below Eq. (58))

t̃1 = 1

2
, t̃2 = −1

8
, t̃3 = −1 − 3ζ3, t̃4 = 2a12 − 145

128
− 9

2
ζ3. (50)

The coefficients ẽ3 and t̃4 are unknown but we estimate them later from the interpolation.
Then, for the weak and strong coupling expansions of t one obtains

t0 = e1λ + e2λ
2 + e3λ

3 + · · · (when λ → 0), (51)

t0 =
√

λ

2

(
1 − t1√

λ
− t2

λ
− t3

λ3/2
− t4

λ2

)
+ · · · (when λ → ∞), (52)

where

e1 = ẽ1, e2 = ẽ2 + ẽ2
1, e3 = ẽ3 + ẽ1ẽ2 + ẽ3

1, t1 = t̃1 + 2 = 5

2
,

t2 = t̃2 − t̃ 2
1 = −3

8
, t3 = t̃3 − 2t̃2 t̃1 + t̃ 3

1 = −3

4
(1 + 4ζ3),

t4 = t̃4 − 2t̃3 t̃1 − t̃ 2
2 + 3t̃2 t̃

2
1 − t̃4

1 = 2a12 − 39

128
− 3

2
ζ3. (53)

Comparing the l.h.s. and the r.h.s. of Eq. (44) at λ → 0 and λ → ∞, respectively, we derive
the following relations

α2 = 4α0, α2 = 10α0, β1 = C1α0, β2 = C2α0,

γ2 = C3α0, β0 = (C2 − 22)
α0

4
(54)

with the free parameter α0 which disappears in the relationship k1/k2 and k0/k2 and, thus, in the
results (46) for t0.

Here

C1 ≈ 88.60, C2 ≈ 42.41, C3 ≈ −277.0, (55)

which lead to the following predictions for the coefficients e3 and t4 in (51) and (52)

e3 = −10e2 + 2C2e1e2 + 4e2
1

C1 + 2C3e1
≈ −0.00079,

t4 = 9 + 16(C3 − 5C1 + 7C2)

128
≈ −40.5774 (56)

and, respectively, for the corresponding terms in (47), (49) and (50)

ẽ3 ≈ −0.00066, t̃4 ≈ −51.0117, a12 ≈ −22.2348. (57)
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Fig. 1. (Color online.) The results for j0 as a function of z (λ = 10z).

Note that the results for the coefficients e3, t4, ẽ3, t̃4 and a12 do not depend on the free param-
eter α0.

On Fig. 1, we plot the Pomeron intercept j0 as a function of the coupling constant λ. The
behavior of the Pomeron intercept j0 shown in Fig. 1 is similar to that found in QCD with some
additional assumptions (see Ref. [30]).

6. Conclusion

We found the intercept of the BFKL Pomeron at weak and strong coupling regimes in the
N = 4 Supersymmetric Yang–Mills model.

At large couplings λ → ∞, the correction � for the Pomeron intercept j0 = 2 − � has the
form (see Eq. (A.21))

� = 2

λ1/2

[
1 + 1

2λ1/2
− 1

8λ
− (1 + 3ζ3)

1

λ3/2

+
(

2a12 − 145

128
− 9

2
ζ3

)
1

λ2
+ O

(
1

λ5/2

)]
. (58)

The anomalous dimension has a square-root singularity at the value of the BFKL intercept both
in the weak and strong coupling regimes. This value is related to the radius of convergency of
perturbation theory in λ and 1/

√
λ near the points j0 = 1 and j0 = 2, respectively.

The fourth corrections in (58) contain unknown coefficient a12, which will be obtained after
the evaluation of spinning folded string on the two-loop level. Some estimations were given in
Section 6.

The slope of the universal anomalous dimension at j = 2 known by the direct calculations [42]
up to the fifth order of perturbation theory can be written as follows

γ ′(2) = −
√

λ

4

I3(
√

λ )

I2(
√

λ )
, (59)

according to the well-known Basso result [33] for local operators of an arbitrary twist.
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Appendix A

Here we discuss coefficients Dm and the Pomeron intercept 2 − � using expression (29) at
comparatively large j in the region j 	 √

λ.

A.1. String energy at 1 	 j 	 √
λ

The recent results for the string energies [34] in the region restricted by inequalities (33) can
be presented in the form6

E2

4
= √

λ
S

2

[
h0(λ) + h1(λ)

S√
λ

+ h2(λ)
S2

λ

]
+ O

(
S7/2), (A.1)

where

hi(λ) = ai0 + ai1√
λ

+ ai2

λ
+ ai3√

λ3
+ ai2

λ2
. (A.2)

The contribution ∼ √
S can be extracted directly from the Basso result [33] taking Jan = 2

according to [34]:

h0(λ) = I3(
√

λ)

I2(
√

λ)
+ 2√

λ
= I1(

√
λ )

I2(
√

λ )
− 2√

λ
, (A.3)

where Ik(
√

λ) is the modified Bessel functions. It leads to the following values of coefficients a0i

a00 = 1, a01 = −1

2
, a02 = a03 = 15

8
, a04 = 135

128
. (A.4)

The coefficients a10 and a20 come from considerations of the classical part of the folded
spinning string corresponding to the twist-two operators7 (see, for example, [35])

a10 = 3

4
, a20 = − 3

16
. (A.5)

The one-loop coefficient a11 is found recently in the paper [34] (see also [43]), considering
different asymptotical regimes with taking into account the Basso result [33]

a11 = 3

16
(1 − ζ3), (A.6)

where ζ3 is the Euler ζ -function.

6 Here we put S = j − 2, which in particular is related to the use of the angular momentum Jan = 2 in calculations of
Refs. [32,35].

7 We are grateful to Arkady Tseytlin for explaining this point.
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All calculations were performed for nonzero values of the angular momentum Jan (really,
Jan = 2 was used) and are applicable also to the finite S values.8 Moreover, all these coefficients
are in a full agreement with numerical Y -system predictions (see [45,32] and references therein).

A.2. Equations for coefficients Dm and the Pomeron intercept 2 − �

Thus, from expression (A.1) we obtain the following expansions of even powers of E in the
small parameter j/

√
λ(

E2

4

)2

= λ
S2

4

[
h2

0(λ) + 2h0h1(λ)
S√
λ

]
,

(
E2

4

)3

= λ3/2 S3

8
h3

0(λ). (A.7)

Comparing the coefficients in the front of S, S2 and S3 in the l.h.s. and r.h.s. of (29), we derive
the equations

1 =
√

λ

2
h0D1, D1 = (D1 + 2D2 + 3D3), (A.8)

0 = 1

2
h1D1 + λ

4
h2

0D2, D2 = (D2 + 3D3), (A.9)

0 = 1

2
√

λ
h2D1 +

√
λ

4
h0h1D2 + λ3/2

8
h3

0D3. (A.10)

Their perturbative solution leads is given below

D1 = 2√
λ

1

h0
, D2 = −2

λ

h1

h2
0

D1 = − 4

λ3/2

h1

h3
0

, (A.11)

D3 = 4

λ2

2h2
1 − h0h2

h4
0

D1 = 8

λ5/2

2h2
1 − h2h0

h5
0

(A.12)

and, correspondingly,

D2 = D2 − 3D3, D1 = D1 − 2D2 + 3D3. (A.13)

Finally, we obtain the correction � to the Pomeron intercept in the form

� = D1 + D2 + D3 = D1 − D2 + D3

= 2√
λ

1

h2
0

+ 4

λ3/2

h1

h3
0

+ 8

λ5/2

2h2
1 − h2h0

h5
0

, (A.14)

where the λ-dependence of parameters hi is given in Eqs. (A.2) and (A.3).

A.3. Strong coupling expansions of Dm and �

Using expressions (A.4)–(A.6) we have

D3 = 8r3

λ5/2
+ O

(
1

λ7/2

)
, D2 = − 4

λ3/2

[
c2 + c3

λ1/2
+ c4

λ
+ O

(
1

λ3/2

)]
, (A.15)

D1 = 2

λ1/2

[
1 + d1

λ1/2
+ d2

λ
+ d3

λ3/2
+ d4

λ2
+ O

(
1

λ5/2

)]
, (A.16)

8 The previous calculations [44] were done with the zero values of the angular momentum Jan and cannot be directly
applied for the finite S values. We are grateful to Arkady Tseytlin for explaining this point to us.
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where

c2 = a10 = 3

4
, c3 = a11 − 3a10a01 = 3

16
(7 − 8ζ3), r3 = 2a2

10 − a20 = 21

16
,

c4 = a12 + 3a10
(
2a2

01 − a02
) − 3a11a01 = a12 − 9

16
(5 + 4ζ3) (A.17)

and

d1 = −2a01 = 1

2
, d2 = 2a2

01 − a02 = −13

8
, d3 = 2a01a02 − a3

01 − a03 = −29

8
,

d4 = a4
01 − 3a2

01a02 + 2a01a03 + a2
02 − a04 = − 97

128
. (A.18)

Here a02, a12, a03 and a04 are parameters which should be calculated in future at two, three
and four loops of the string perturbation theory. It is important, that the coefficients Dk tend to
zero at large λ as λ−n+1/2.

Analogously, we can obtain expressions for D2, D1 and �:

D2 = − 4

λ3/2

[
c2 + c3

λ1/2
+ c4

λ
+ O

(
1

λ3/2

)]
, (A.19)

D1 = 2

λ1/2

[
1 + d1

λ1/2
+ d2

λ
+ d3

λ3/2
+ d4

λ2
+ O

(
1

λ5/2

)]
, (A.20)

� = 2

λ1/2

[
1 + d̂1

λ1/2
+ d̂2

λ
+ d̂3

λ3/2
+ d̂4

λ2
+ O

(
1

λ5/2

)]
, (A.21)

where

c2 = c2, c3 = c3, c4 = c4 + 6r3, d1 = d1 = d̂1, (A.22)

d2 = d2 + 4c2, d3 = d3 + 4c3, d4 = d4 + 4c4 + 12r3, (A.23)

d̂2 = d2 + 2c2, d̂3 = d3 + 2c3, d̂4 = d4 + 2c4 + 4r3 (A.24)

and all ci and di are given above in Eqs. (A.17) and (A.18). So, we have

d̂1 = 1

2
, d̂2 = −1

8
, d̂3 = −1 − 3ζ3, d̂4 = 2a12 − 145

128
− 9

2
ζ3. (A.25)

Using a similar approach, the coefficients d̂1 and d̂2 were found recently in the paper [40]. The
corresponding coefficients c2,0 and c3,0 in [40] coincide with our d̂1 and d̂2 but in the expression
for the Pomeron intercept they contributed with an opposite sign. Further, in the talk of Miguel S.
Costa “Conformal Regge theory” on IFT Workshop “Scattering amplitudes in the multi-Regge
limit” (Universidad Autonoma de Madrid, 24–26 October 2012) (see http://www.ift.uam.es/en/
node/3985) the sign of these contributions to the Pomeron intercept was correct but there is
a misprint the definition of the parameter of expansion. Note, however, that we have the next
term d̂3 in the strong coupling expansion.

A.4. Anomalous dimension near j = 2

At j = 2, the universal anomalous dimension is zero (20), but its derivative γ ′(2) (the slope
of γ ) has a nonzero value in the perturbative theory

http://www.ift.uam.es/en/node/3985
http://www.ift.uam.es/en/node/3985
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γ ′(2) = − λ

24
+ 1

2

(
λ

24

)2

− 2

5

(
λ

24

)3

+ 7

20

(
λ

24

)4

− 11

35

(
λ

24

)5

+ O
(
λ6), (A.26)

as it follows from exact three-loop calculations [12,28]. Two last terms were calculated by
V.N. Velizhanin [42] from the explicit results for γ in five loops [15].

To find the slope γ ′(2) at large values of the coupling constant we calculate the derivatives of
the l.h.s. and r.h.s. of Eq. (25) written in the form

j − 2 =
∑
m=1

Dm

[(
j

2
− γ

)2m

− 1

]
(A.27)

in the variable j for j = 2 using γ (2) = 0:

1 = (
1 − 2γ ′(2)

) ∑
m=1

mDm ≡ (
1 − 2γ ′(2)

)
D1, (A.28)

where D1 is found in (A.8). So we obtain explicitly

1 − 2γ ′(2) =
√

λ

2
h0(λ). (A.29)

Substituting (A.3) in (A.29), we have the closed form for the slope γ ′(2)

γ ′(2) = −
√

λ

4

I3(
√

λ )

I2(
√

λ )
,

which is in full agreement with predictions (A.26) of perturbation theory.

Appendix B

We apply Eqs. (25) and (26) with j = 4 (and/or S = 2) and Di (i = 1,2,3) obtained in
Appendix A, to find the large λ asymptotics of the anomalous dimension of the Konishi operator.
So, it obeys to the equation

2 =
∑
m=1

Dm

(
xm − 1

)
, x ≡ (2 − γk)

2. (B.1)

1. It is convenient to consider firstly the particular case, when D2 = D3 = 0 and, thus, D1 =
D1 = 2/

√
λh0. So, we have

2 = D1(x − 1) (B.2)

and

x = 2

D1
+ 1 = √

λh0 + 1, (B.3)

where h0 has the closed form (A.3). So, the anomalous dimension γK can be represented as

2 − γK = (
√

λh0 + 1)1/2 ≈ λ1/4
(√

h0 + 1

2
√

λ
√

h
− 1

8λh
3/2

+ O

(
1

λ2

))
. (B.4)
0 0



902 A.V. Kotikov, L.N. Lipatov / Nuclear Physics B 874 [PM] (2013) 889–904
For the case of the classic string, where h0 = 1, i.e. a00 = 1 and a0i = 0 (i � 1), we reconstruct
well-known results9

2 − γK ≈ λ1/4
(

1 + 1

2
√

λ
− 1

8λ
+ O

(
1

λ3/2

))
. (B.5)

For the exact values of h0 done in Eqs. (A.2) and (A.4), we have

2 − γK ≈ λ1/4
(

1 + 1 + a01

2
√

λ
+ 1

2λ

[
a02 − (1 + a01)

2

4

]
+ O

(
1

λ3/2

))
= λ1/4

(
1 + 1

4
√

λ
+ 29

32λ
+ O

(
1

λ3/2

))
. (B.6)

2. In the case when all Di (i = 1,2,3) are nonzero, it is convenient to represent the solution
of Eq. (B.1) in the following form

x = √
λh0 + 1 + x1 + x2√

λ
. (B.7)

Expanding Di in the inverse series of
√

λ and compare the coefficients in the front of λ0 and
1/

√
λ, we have

x1 = 2a10, x2 = 2a11 + 4a20. (B.8)

So, the solution of Eq. (B.7) with the coefficients (B.8) has the form

2 − γK ≈ λ1/4
(

1 + a01 + 1 + 2a10

2
√

λ
+ 1

2λ

[
a02 + 2a11 + 4a20 − (1 + a01 + 2a10)

2

4

]
+ O

(
1

λ3/2

))
. (B.9)

Using Eqs. (A.4)–(A.6) the exact values of aij , we have

2 − γK ≈ λ1/4
(

1 + 1√
λ

+ 1

4λ
[1 − 6ζ3] + O

(
1

λ3/2

))
. (B.10)

We would like to note that our coefficient in the front of λ−1/4 is equal to 1, which in an
agreement with calculations performed in [45,32,35]. Further, the coefficient in front of λ−3/4

agrees with the results of [34] (see also Refs. [43] and [46]).
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