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SUMMARY

Selective ubiquitin-dependent autophagy plays a
pivotal role in the elimination of protein aggregates,
assemblies, or organelles and counteracts the cyto-
toxicity of proteins linked to neurodegenerative dis-
eases. Following substrate ubiquitylation, the cargo
is delivered to autophagosomes involving adaptors
like human p62 that bind ubiquitin and the autopha-
gosomal ubiquitin-like protein Atg8/LC3; however,
whether similar pathways exist in lower eukaryotes
remained unclear. Here, we identify by a screen in
yeast a new class of ubiquitin-Atg8 adaptors termed
CUET proteins, comprising the ubiquitin-binding
CUE-domain protein Cue5 from yeast and its human
homolog Tollip. Cue5 collaborates with Rsp5 ubiqui-
tin ligase, and the corresponding yeast mutants
accumulate aggregation-prone proteins and are
vulnerable to polyQ protein expression. Similarly,
Tollip depletion causes cytotoxicity toward polyQ
proteins, whereas Tollip overexpression clears
human cells from Huntington’s disease-linked polyQ
proteins by autophagy. We thus propose that CUET
proteins play a critical and ancient role in autophagic
clearance of cytotoxic protein aggregates.
INTRODUCTION

Proteinmisfolding and aggregation can be cytotoxic for cells and

may lead to cell death, but organisms respond by evoking

several containment measures. Molecular chaperones are ex-

pressed to repair protein folding or to disentangle protein aggre-

gates or prevent their formation (Kim et al., 2013). In cases in

which misfolded or aggregated proteins persist, degradation

via the proteasome or the lysosome is the typical means to clear

toxic components from cells (Kirkin et al., 2009b; Stefani and

Dobson, 2003). Selective degradation of soluble proteins is usu-

ally conducted by the ubiquitin-proteasome system (UPS) (Ravid

and Hochstrasser, 2008). By contrast, tightly folded proteins or

protein aggregates, which are unable to traverse the narrow

openings of the proteasome (Finley, 2009; Piwko and Jentsch,
2006) and are hence resistant to proteasomal degradation,

may accumulate in cells as ubiquitylated species (Bence et al.,

2001). Several studies suggested that such ubiquitin-modified

species or aggregates are recognized by the selective macroau-

tophagy pathway (here termed autophagy) (Mizushima et al.,

2011). Notably, this alternative ubiquitin-dependent degradation

pathway is used to eliminate not only aberrant proteins or com-

plexes, but also superfluous or damaged cellular structures like

mammalian midbodies, organelles, or even bacteria, and is

hence critical for innate immunity (Klionsky, 2007; Levine et al.,

2011; Pohl and Jentsch, 2009). Autophagy is further relevant to

human health and disease by the finding that protein aggregates

are a common feature in a number of neurodegenerative disor-

ders (Levine and Kroemer, 2008). For example, tau-containing

neurofibrillary tangles accumulate in Alzheimer’s disease and

a-synuclein in Lewy bodies in Parkinson’s disease, and aggre-

gates of poly-glutamine (polyQ) mutant variants of the protein

huntingtin are formed in patients with Huntington’s disease

(Choi et al., 2013). Indeed, autophagy appears abnormal in

many neurodegenerative diseases, and inactivation of auto-

phagy can lead to neurodegeneration associated with an accu-

mulation of ubiquitylated structures (Hara et al., 2006).

Selective autophagy of ubiquitylated cargo is achieved by the

action of specific adaptors that connect the ubiquitin system

with the autophagy pathway (Kraft et al., 2010; Rogov et al.,

2014). Known adaptors are, e.g., human p62 (also known as

SQSTM1) and its relative NBR1, which both harbor a UBA

domain for ubiquitin-conjugate binding and a distinct binding

site termed AIM (Atg8-interacting motif) or LIR (LC3-interacting

region) for the autophagosomal protein Atg8 (LC3) (Kirkin et al.,

2009a; Kraft et al., 2010; Pankiv et al., 2007). Atg8 is structurally

similar to ubiquitin but becomes conjugated to the lipid

phosphatidylethanolamine of the autophagosomal membrane

through a ubiquitin-like conjugation system (Ohsumi, 2001).

Notably, Atg8 is not only required for productive autophagosome

formation, but also serves as a central docking module for auto-

phagic cargos prior to their delivery to lysosomal degradation via

the autophagy pathway (Mizushima et al., 2011). Thus, ubiquitin-

Atg8 adaptors such as p62 are fundamentally important for auto-

phagy selectivity as they recognize the substrates directly.

Indeed, human p62 and to a lesser extent the related protein

NBR1 have been shown to associate with protein assemblies

and aggregates, including those linked to neurodegenerative

diseases (Kirkin et al., 2009a). On the other hand, only a weak
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enhancement of ubiquitylated aggregates was observed in p62

or NBR1 knockout mice or cells, suggesting that alternative or

additive pathways might exist (Komatsu et al., 2007). Moreover,

although the central components of the autophagy pathway

have been initially delineated in Saccharomyces cerevisiae

(Mizushima et al., 2011) and are well conserved from yeast to

mammals, so far no ubiquitin-Atg8 adaptor has been described

in yeast (Rogov et al., 2014). In fact, even whether ubiquitin-

dependent cargo selection for macroautophagy exists in lower

eukaryotes is unclear (Kraft et al., 2010).

Because ubiquitin-Atg8 adaptors lie at the heart of auto-

phagy selectivity, we embarked on a biochemical screen in

S. cerevisiae for proteins that bind yeast Atg8 and ubiquitin.

Using a mass spectrometric approach, we identified Cue5, a

yeast protein harboring a ubiquitin-binding CUE domain (Kang

et al., 2003; Prag et al., 2003), as a ubiquitin-Atg8 adaptor and

showed that it indeed functions in ubiquitin-dependent auto-

phagy. This discovery helped us to identify the human CUE-

domain protein Tollip as a functional Cue5 homolog. Notably,

these related adaptors, which we termed CUET proteins (CUE-

domain targeting adaptors; Cue5-Tollip proteins), are crucial

for autophagic removal of protein aggregates, such as proteins

derived from expanded polyQ isoforms of huntingtin. Our

findings thus suggest that ubiquitin-Atg8 adaptors of the CUET

protein family play an evolutionarily conserved role in autophagy,

specifically by combating the cytotoxicity caused by aggrega-

tion-prone proteins.

RESULTS

Accumulation of Ubiquitin-Protein Conjugates in Yeast
Autophagy Mutants
Given that the ubiquitin system and the basic autophagy

machinery are conserved form yeast to mammals (Rogov

et al., 2014), we found it reasonable to assume that ubiquitin-

Atg8 adaptors may also exist in yeast. To search for possible

ties between the ubiquitin and the autophagy system in

S. cerevisiae, we first asked whether ubiquitin conjugates accu-

mulate in yeast autophagy pathway mutants under conditions

when autophagy is activated. Because autophagy is universally

induced upon starvation (Mizushima et al., 2011), we shifted

yeast cells into a synthetic minimal medium lacking nitrogen

(SD-N medium; see Experimental Procedures) and followed

the pattern of cellular ubiquitin conjugates using ubiquitin-spe-

cific antibodies. We noticed that the levels of ubiquitin conju-

gates, as identified by immunoblotting, decreased rapidly in

wild-type (WT) cells after starvation (Figure 1A). The observed

decrease affected predominantly high molar mass ubiquitin

conjugates, suggesting that the phenomenon may be more spe-

cific for polyubiquitylated proteins. Notably, when we used

mutants deficient in the autophagosomal ubiquitin-like protein

Atg8 (Datg8), starvation-induced loss of ubiquitin conjugates

was strongly reduced (Figure 1A). Moreover, ubiquitin conju-

gates also remained high in starved mutants lacking the auto-

phagy-activating kinase Atg1 (Datg1), the E1-like enzyme Atg7

needed for Atg8 lipidation (Datg7), and also in cells deficient in

peptidase Pep4 (Dpep4) of the vacuole (yeast lysosome-related

organelle) (Figures S1A and S1B available online). When we acti-
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vated autophagy by blocking the TOR (target of rapamycin)

pathway by adding rapamycin to the medium (Noda and

Ohsumi, 1998), the level of ubiquitin conjugates again dropped

in WT cells, but not in autophagy mutants (Figures 1B and

S1C). By contrast, no accumulation of ubiquitin conjugates

was detectable in mutants lacking Atg11 and Atg19 (Datg11,

Datg19), two proteins needed for the autophagy-related cyto-

plasm-to-vacuole targeting (Cvt) pathway (Feng et al., 2014)

(Figure S1A). From this finding, we infer that the observed effect

on ubiquitin conjugates is specific for the central autophagy

pathway (macroautophagy) that acts, for example, on protein

aggregates. Indeed, we noticed that the level of insoluble ubiq-

uitin conjugates that accumulate upon elevated growth temper-

atures in WT cells (Figure 1C; P, pellet fraction) was much higher

when autophagy was blocked (Datg8; Figure 1C), which was not

observed in mutant cells lacking the protein Atg11 (Datg11) (Fig-

ure S1D). From these lines of evidence we thus conclude that

the ubiquitin and autophagy pathways are functionally linked

also in yeast and that autophagy may be utilized to clear ubiqui-

tylated protein aggregates from cells.

Yeast Cue5 Functions as Ubiquitin-Atg8 Adaptor
Because Atg8 from mammalian cells interacts with ubiquitin

conjugates via ubiquitin-Atg8 adaptors (Rogov et al., 2014), we

next asked whether yeast Atg8 associates with ubiquitin conju-

gates as well. In fact, when we immunoprecipitated Atg8 (HA-

epitope-tagged Atg8; HA-Atg8) from yeast cell extracts, we

co-isolated ubiquitin conjugates (Figure 2A). In an attempt to

screen for putative ubiquitin-Atg8 adaptors, we immunoprecipi-

tated proteins using HA-specific antibody from starved WT and

HA-Atg8-expressing cells and identified the bound proteins by

mass spectrometry (see Figure S2A andMethods). As expected,

we detected peptides for Atg8 itself and its ubiquitin-like conju-

gation machinery (Atg7, Atg3) specifically in the sample of HA-

Atg8-expressing cells (Figure S2B). Interestingly, also enriched

in this sample were peptides corresponding to the ubiquitin

ligase Rsp5 (see below) and Cue5, a protein bearing a putative

ubiquitin-binding CUE domain (Kang et al., 2003; Prag et al.,

2003).

As Cue5 also possesses a putative Atg8-interacting motif

(AIM) close to its carboxyl (C) terminus (Figure 2B), we asked

whether the previously uncharacterized yeast protein binds

Atg8. Indeed, as judged by an immunoprecipitation experiment,

Cue5 and Atg8 interact in vivo, particularly in starved yeast cells

(Figure 2C). Furthermore, we detected the preferential binding of

Cue5 to the lipidated form of Atg8 (Atg8-PE) (Figures 2D and

S2C). By contrast, no interaction was observed between Cue5

and the protein Atg11 linked to the Cvt pathway (Figure S2D).

Interestingly, in starved cells, binding of Atg8 to ubiquitin conju-

gates was largely dependent on Cue5 (Figure S2E), suggesting

that Cue5 may indeed be a key ubiquitin-Atg8 adaptor. Impor-

tantly, binding of Atg8 to Cue5 is direct and is mediated by the

C-terminal AIM, as indicated by glutathione S-transferase

(GST) pull-down experiments using purified GST fusions of WT

Cue5 and of variants in which critical residues of the AIM

sequence had been altered (single replacement: Cue5-W373A,

Cue5-L376A; complete replacement: Cue5-W373A, Q374A,

P375A, L376A = Cue5-AIMmut; Figure 2E).
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Figure 1. Ubiquitin Conjugates Accumulate in Autophagy-Deficient Cells

(A) Ubiquitin conjugates are degraded by the autophagy pathway upon starvation, and degradation is blocked in cells lacking Atg8. Wild-type (WT) and Atg8-

deficient (Datg8) cells were subjected to starvation in synthetic minimal medium lacking nitrogen (SD-N) for indicated times (h). Cell lysates were probed for

ubiquitin (Ub) conjugates by immunoblotting using anti-ubiquitin antibodies (P4D1). Immunoblot against Pgk1 serves as loading control.

(B) Activation of autophagy by rapamycin promotes the degradation of ubiquitin conjugates.

(C) Insoluble ubiquitin conjugates accumulate in autophagy-deficient cells. WT and Atg8-deficient (Datg8) cells were cultured at different temperatures and

fractionated by centrifugation, and ubiquitin conjugates were detected in total cell lysate (T), soluble (S), and pellet (P) fractions. 1% of the T and S fractions and

20% of the isolated P fraction were loaded onto the gel.

See also Figure S1.
We confirmed that Cue5 also binds free His-tagged ubiquitin

in vitro (Figure S2F) and endogenous ubiquitin-conjugates in vivo

(Figure 2F). Ubiquitin binding of Cue5 is, in fact, mediated by its

CUE domain, as substitutions of amino acid residues (Cue5-

F109A, P110A; Cue5-L135A, L136A) crucial for ubiquitin binding

of the related CUE domain of the yeast endocytic pathway pro-

tein Vps9 (Shih et al., 2003) abolished Cue5 ubiquitin-conjugate

binding in vivo (Figure 2F). Notably, the fusion of the Cue5 CUE

domain (residues 89–190) to GST interacted with isolated

lysine-48 (K48) and lysine-63 (K63)-linked polyubiquitin chains

(Figure S2G), suggesting that Cue5 might not distinguish much

between various types of ubiquitin modifications.
Next, we tested whether Cue5 is important for the clearance of

ubiquitin conjugates in starved yeast cells similar to Atg8.

Indeed, we found that starvation-induced decay of ubiquitin

conjugates was strongly reduced in cells lacking Cue5 (Dcue5)

(Figure 2G). Because this defect in ubiquitin-conjugate clearance

also occurred in cells expressing (as only source of Cue5) Cue5

variants with functionally compromised CUE (Cue5-L135A,

L136A = Cue5-CUEmut) and AIM (Cue5-AIMmut) motifs (Fig-

ure 2G), we deduce that both ubiquitin-conjugate binding and

Atg8 interaction are required for Cue5 functionality. Furthermore,

Cue5 appears to act specifically at the stage of ubiquitin-conju-

gate recognition, as autophagy itself (indicated by GFP-Atg8
Cell 158, 549–563, July 31, 2014 ª2014 Elsevier Inc. 551
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Figure 2. Identification of Cue5 as Ubiquitin-

Atg8 Adaptor of S. cerevisiae

(A) Atg8 binds ubiquitin conjugates. Cells ex-

pressing N-terminally HA-tagged Atg8 were sub-

jected to starvation in SD-N media for 12 hr before

immunoprecipitation with anti-HA affinity matrix.

Proteins of the extract (Input) and precipitated

proteins (IP) were analyzed by immunoblotting with

anti-HA and anti-ubiquitin (P4D1) antibodies. Free

ubiquitin (Ub) is indicated. The asterisk denotes the

IgG light chain.

(B) Schematic representation of yeast Cue5 con-

taining the ubiquitin-binding CUE domain (aa 89–

140) and a putative Atg8-interacting motif (AIM, aa

373–376).

(C) Cue5 interacts with Atg8 in vivo, and this inter-

action is increased by starvation-induced auto-

phagy. Atg8 and Cue5 were HA and Myc epitope

tagged, respectively, and their interaction was

detected by coimmunoprecipitation before and

after starvation in SD-N medium.

(D) Cue5 preferentially interacts with the lipidated

form of Atg8 in vivo. Coimmunoprecipitation assay

conducted similar to (C). Lipidated Atg8 (Atg8-PE)

resolved by SDS-PAGE on a 13.5% poly-

acrylamide gel containing 6M urea.

(E) Cue5 interacts with Atg8 directly via its putative

AIM. GST pull-down assays were carried out using

recombinant His-tagged Atg8 and GST fusions of

WT Cue5, or Cue5-AIM mutants (Cue5-W373A;

Cue5-L376A; Cue5-AIMmut = Cue5-W373A,

Q374A, P375A, L376A). Immunoblot against anti-

His(Atg8) and Coomassie-blue-stained gel are

shown.

(F) Amino acid replacements in the CUE domain

of Cue5 abolish its ubiquitin-conjugate-binding

ability. GST pull-down assays were performed

using yeast whole-cell extracts and GST fusions of

WT Cue5 or Cue5 variants (Cue5-F109A, P110A;

Cue5-L135A, L136A).

(G) Cue5 mediates autophagic degradation of

ubiquitin conjugates through binding to ubiquitin

and Atg8. WT or respective CUE-domain mutant

(Cue5-CUEmut = Cue5-L135A, L136A) and AIM

(Cue5-AIMmut) mutant variants of Cue5 were ex-

pressed in Cue5-deficient cells (Dcue5), and ubiq-

uitin conjugatesweremonitoredby immunoblotting

(as in Figure 1A) after starvation in SD-N medium.

(H) Insoluble ubiquitin conjugates accumulate at elevated temperatures in Cue5-deficient (Dcue5) cells as in autophagy-deficient (Datg8) cells. Cell extracts were

fractionated and ubiquitin conjugates detected in total cell lysate (T), soluble (S), and pellet (P) fractions (as in Figure 1C).

See also Figure S2.
degradation; Klionsky et al., 2012) is not affected when Cue5 is

absent (Figure S2H). In addition, other selective autophagy-

related pathways do not seem to be affected in Cue5-deficient

cells, such as the Cvt pathway (Figure S2I), mitophagy (Fig-

ure S2J), pexophagy (Figure S2K), and ribophagy (Figure S2L).

Importantly, Cue5-dependent autophagic clearance seems to

be specifically relevant for aggregated proteins because insol-

uble ubiquitin conjugates strongly accumulate upon elevated

temperatures (30�C compared to 23�C) in mutants deficient in

Cue5 as they do in Atg8-deficient cells (Figure 2H). Because

Cue5 protein levels are barely affected by higher temperature

but decrease upon starvation through vacuolar degradation (Fig-
552 Cell 158, 549–563, July 31, 2014 ª2014 Elsevier Inc.
ure S2M), heat-stress-induced autophagy may target less cargo

than starvation-induced autophagy. From all of these findings,

we thus conclude that Cue5 indeed connects the ubiquitin

pathway to autophagy in yeast by functioning as a ubiquitin-

Atg8 adaptor analogous to p62 in mammals.

Cue5 Targets Aggregation-Prone Proteins for
Autophagy
To determine what type of proteins are subject to ubiquitin- and

Cue5-dependent autophagy, we isolated ubiquitin conjugates

from starvedWT and Cue5-deficient cells and compared the pu-

rified proteins by a SILAC-based mass spectrometry protocol



(Mann, 2006; Figure 3A and Experimental Procedures). We

focused on 24 proteins most strongly enriched in the sample

from Cue5-deficient cells (Figure 3B; proteins are listed in Fig-

ure S3A) and tested them individually for Cue5-dependent

degradation. After expression of these proteins as GFP fusions

in cells and induction of autophagy by starvation, we noticed in

all cases an accumulation of a stable (vacuolar protease-resis-

tant) GFP fragment (Klionsky et al., 2012), as is typical for auto-

phagy substrates (Figures 3C and S2H and data not shown).

Indeed, the production of stable GFP fragments depended on

the presence of Atg8 and largely also Cue5 (Figure 3C), demon-

strating that the tested proteins are bona fide substrates of a

Cue5- and Atg8-dependent autophagy pathway.

The identified Cue5 substrates are primarily cytosolic proteins

of diverse cellular functions and share no obvious common

likenesses (Figure S3A). However, because aggregated proteins

are frequently targeted to autophagy (Rogov et al., 2014), we

asked whether the identified Cue5 substrates are perhaps

aggregation prone. Indeed, for some of the tested Cue5 sub-

strates (as GFP fusions), we found that they tend to aggregate

already at normal growth temperature (30�C), as indicated by

the presence of the proteins in the insoluble pellet fraction of

cell extracts after centrifugation (Fang et al., 2011; Figure S3B).

By contrast, non-aggregation-prone proteins such as GFP-

tagged Ubc9 (Ubc9WT-GFP), ubiquitin, or SUMO, used previ-

ously in similar assays (Kaganovich et al., 2008) (Figures S3B

and S3C), were virtually completely soluble, whereas a few

Cue5 substrates (e.g., Ent2 and Gvp36) only mildly aggregated

at 30�C (Figure S3B).

We next compared the solubility of proteins in WT and Cue5-

deficient cells, in which we induced protein aggregation by

growing them at a higher temperature (37�C instead of 23�C).
Notably, when we analyzed an only mildly aggregation-prone

Cue5 substrate like Gvp36 (as a GFP fusion), a fraction of

the protein accumulated in the pellet fraction of WT cells, but

only if they were grown at the higher temperature (Figure 3D).

As this fraction considerably increased in Cue5-deficient cells,

we conclude that the tested aggregated protein is normally

targeted to Cue5-dependent autophagy. Moreover, the extent

of Gvp36 autophagic Cue5-dependent degradation increased

substantially at elevated temperatures, as judged from a GFP-

cleavage assay (Figure 3E). To extend this finding, we also

used Ubc9ts-GFP (a mutant variant of soluble Ubc9WT-GFP),

which is known to aberrantly fold and aggregate at 37�C
(Kaganovich et al., 2008). As this protein aggregated at 37�C in

Cue5-deficient cells slightly more than in WT (albeit not nearly

as markedly as for Gvp36), a small fraction of this mutant protein

seems to be a Cue5 substrate as well (Figure S3C). By contrast,

Ubc9WT-GFP, ubiquitin, or SUMO remained soluble in Cue5-

deficient cells even when grown at the higher temperature (Fig-

ures 3D and S3C). Furthermore, we did not observe interaction

between Cue5 and ubiquitin-proline-b-galactosidase, a well-

characterized soluble proteasome substrate (Bachmair et al.,

1986) despite its high rate of polyubiquitylation (Figure S3D).

Together, these data thus suggest that ubiquitin- and Cue5-

dependent autophagy act prominently on aggregation-prone

proteins under cellular conditions when protein aggregation

otherwise occurs.
Ubiquitylation Pathway Connected to Cue5-Dependent
Autophagy
Because Rsp5 ubiquitin ligase (Rotin and Kumar, 2009) was

found in the fraction of Atg8-copurifying proteins (see above)

and Ubc4 and Ubc5, two nearly identical ubiquitin-conjugating

enzymes (Seufert and Jentsch, 1990), were among the potential

Cue5 substrates (Figure S3A), we speculated that these en-

zymes of the ubiquitin pathway might be functionally linked to

Cue5-dependent autophagy. Intriguingly, starvation-induced

autophagy of several Cue5 substrates was substantially in-

hibited in cells expressing defective Rsp5 (rsp5-2, conditional

mutant of the essential gene RSP5) and also in cells lacking

Ubc4, Ubc5, or both enzymes (Figures 4A, 4B and data not

shown). This suggests that a sizable fraction of Cue5-dependent

autophagy substrates receives their ubiquitin mark by the acti-

vity of Ubc4, Ubc5, and Rsp5 enzymes. In fact, by analyzing

two Cue5 substrates (Tma19 and Fpr1 expressed as GFP fu-

sions) in cells expressing His-tagged ubiquitin, we found that

their ubiquitylation depended on active Rsp5 (Figure 4C) and

that binding of Cue5 to these substrates was strongly reduced

when Rsp5 was defective (Figure 4D). Nevertheless, autophagy

of some proteins (e.g., the ribosomal protein Rpp2b) occurred

independently of Rsp5 (Figure S4A), indicating that ubiquitin li-

gases other than Rsp5 might act in the Cue5 pathway as well.

Interestingly, immunoprecipitation of Rsp5 co-isolated Cue5

(Figure 4E), suggesting that ubiquitin-conjugate formation and

ubiquitin-conjugate recognition are intimately coupled. We also

noticed that Cue5 itself is ubiquitin modified (Figure S4B) and

that this depends on Rsp5 aswell (Figure S4C). Indeed, the auto-

phagy adaptor Cue5 itself is subject to starvation-induced auto-

phagy (similar to mammalian p62), which is mediated by Atg8

and also largely by Rsp5 (Figures 4F and S2M). Notably, the

autophagy pathway is still active in the absence of Rsp5 activity

(as monitored by GFP-Atg8 cleavage), demonstrating that Rsp5

is not required for the core activity of the autophagy pathway

(Figure S4D). Complementing the results of our SILAC experi-

ment (Figure S3A), we found that Ubc4 and also Rsp5 are

substrates of Atg8- and Cue5-dependent starvation-induced

autophagy (Figures S4E and S4F). We thus infer that Ubc4/

Ubc5 and Rsp5 are directly involved in earmarking proteins for

autophagy upon starvation and that a fraction of the ubiquityla-

tion and autophagy machineries is targeted conjointly with

genuine autophagy substrates to autophagosomes and vacuolar

degradation.

Rsp5 and Cue5 Promote the Clearance of Huntingtin-
Derived PolyQ Proteins
Owing to the finding that the spectrum of Cue5 substrates is

enriched in aggregation-prone proteins (Figures 3D and S3B)

and that insoluble proteins accumulate in Cue5-deficient cells

(Figure 2H), we speculated that the Cue5-dependent selective

autophagy pathway might clear cells from aggregates. Parti-

cularly well-studied aggregates are those caused by Hunting-

ton’s-disease-associated cytotoxic variants of the protein

huntingtin that bear expanded tracks of glutamine residues

(polyQ) (Choi et al., 2013). We took advantage of two model sub-

strates encompassing the polyQ region expressed from exon-1

of the huntingtin-encoding gene: an aggregation-prone variant
Cell 158, 549–563, July 31, 2014 ª2014 Elsevier Inc. 553
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Figure 3. Identification and Analysis of the Cue5-Dependent Autophagic Substrates

(A) Outline of SILAC experiments aimed to identify the ubiquitylated substrates, autophagic degradation of which is dependent on Cue5 upon starvation. Two

independent SILAC experiments were conducted. The first was aimed at identifying all ubiquitylated substrates generated in starved cells (His-Ub/WT SILAC

ratiosmeasured following Ni-NTA pull-down), and the secondwas designed to detect ubiquitylated substrates that accumulate upon starvation specifically in the

absence of Cue5 (His-Ub Dcue5/His-Ub SILAC ratios measured following Ni-NTA pull-down). For detailed description of SILAC mass spectrometry approach,

see Experimental Procedures.

(B) Ubiquitylated Cue5-dependent autophagic substrates identified by SILAC mass spectrometry. Two SILAC data sets described in (A) were combined and

plotted in a single scatter diagram. Proteins that were found ubiquitylated (y axis; log2 SILAC ratios above 1) and specifically accumulated further in Cue5-

deficient (Dcue5) cells (x axis; log2 SILAC ratios above 1) were considered as high-confidence ubiquitylated substrates of Cue5-dependent autophagic clearance

and are shown in black. The list of substrates is presented in Figure S3A, and their validation is in (C).

(C) Validation of the high-confidence Cue5-dependent autophagic substrates identified in (B). C-terminally GFP-tagged proteins were checked for their auto-

phagic degradation by GFP-cleavage assay in WT and Atg8- or Cue5-deficient cells following 16 hr starvation in SD-N medium at 30�C.

(legend continued on next page)
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harboring 96 glutamine residues (Htt-96Q) and a version with a

shorter polyQ stretch (Htt-20Q), which is much less aggregation

prone (Park et al., 2013). Whenwe expressed these constructs in

yeast using a copper-inducible promoter, we noticed that Htt-

96Q, but not Htt-20Q, affected growth on plates for Datg8 cells

and, albeit to a lesser extent, also in Dcue5 and rsp5-2 mutants

(Figure 5A). Thus, Cue5 and Rsp5 confer partial resistance to the

cytotoxicity of polyQ proteins in yeast, but additional detoxifying

Atg8-dependent pathways (which possibly do not rely on ubiqui-

tylation) appear to exist in yeast as well.

To verify that Cue5 and Rsp5 are involved in the clearance of

aggregated Htt-96Q, we performed cell fractionation assays.

Whereas only a small fraction of Htt-96Q was found in the pellet

fraction of extracts from WT cells, the expanded polyQ protein

strongly accumulated in the pellet fractions of mutants defective

in Atg8, Cue5, and Rsp5 (Figure 5B), in contrast to its non-aggre-

gation-prone Htt-20Q variant (Figure S5A). Moreover, when WT

cells were grown at elevated temperatures (30�C compared to

23�C), not only Htt-96Q accumulated in the pellet fraction,

but also a sizable fraction of Atg8 and Cue5 (Figure 5C). This

suggests that temperature stress promotes polyQ protein

aggregation in yeast cells, which also causes a redistribution of

autophagy factors into protein aggregates. We also noticed

that Htt-96Q is ubiquitin modified in yeast and that Rsp5 is the

critical ubiquitin ligase (Figure S5B). Moreover, immunoprecipi-

tation of both Atg8 and Cue5 (as HA-tagged versions) co-precip-

itated Htt-96Q (Figure 5D), but not Htt-20Q (Figure S5C). As

binding of Htt-96Q to Cue5 depended on the integrity of the

CUE domain (Figure 5E), we conclude that Cue5 recognizes

ubiquitylated Htt-96Q in yeast. From all of the above findings,

we thus conclude that Cue5 is a crucial quality control factor of

yeast, which functions by clearing cells from protein aggregates,

such as polyQ proteins, by the ubiquitin-linked autophagy

pathway.

Human Tollip Is a Functional Homolog of Yeast Cue5
Bioinformatic analysis (DELTA-BLAST) (Boratyn et al., 2012) re-

vealed no obvious human ortholog of Cue5 but identified the

CUE-domain-containing Tollip (Toll-interacting protein), a pro-

tein previously implicated in innate immunity and endocytosis

(Capelluto, 2012; Visvikis et al., 2011), as a candidate. However,

Tollip differs fromCue5 by its domain organization (Figure 6A), as

it possesses additionally to a CUE domain a large N-terminal

extension, harboring a phospholipid-binding C2 domain. On

the other hand, Tollip contains two putative AIM (LIR) motifs

within this C2 domain (AIM1 and AIM2; Figure 6A), indicating

that it seems to possess the structural hallmarks required for a

functional ubiquitin-Atg8/LC3 adaptor.

Indeed, by conducting coimmunoprecipitation experiments,

we found that Tollip binds the human Atg8 homolog LC3 (Figures

6B and S6A). To test whether the putative AIMs are functional,

we generated Tollip variants harboring amino acid alterations
(D) Cue5-dependent autophagy substrate Gvp36 accumulates much more in th

compared to WT cells. By contrast, non-aggregation-prone proteins ubiquitin (U

(E) C-terminally GFP-tagged Gvp36 was monitored for its autophagic degradatio

Cue5-deficient cells.

See also Figure S3.
in either of the two putative AIM sequences or both (Tollip M1,

M2, M1+M2). Coimmunoprecipitation experiments revealed

that both motifs contribute to LC3 binding and that Tollip lost

this ability if both motifs are defective (Figure 6B). When we

tested for ubiquitin-binding activity of Tollip by GST pull-down

experiments, we observed that Tollip (as a GST fusion) binds

recombinant free His-tagged ubiquitin in vitro (Figure S6B) and

also ubiquitin conjugates of HeLa cell extracts (Figure S6C).

The interaction of Tollip with ubiquitin conjugates is mediated

by its CUE domain, as the CUE-domain mutant variant (Tollip-

CUEmut = Tollip-L267A, L268A) is unable to bind ubiquitin conju-

gates (Figure 6C). Notably, in contrast to a previous report (Mitra

et al., 2013), we found no evidence for ubiquitin-binding activity

for the C2 domain but solely for the C-terminal CUE-domain-

containing region of Tollip (Figures S6B and S6C). Importantly,

when we expressed RFP-tagged Tollip in human cells and

blocked the fusion of autophagosomes with lysosomes by bafi-

lomycin A1 treatment, Tollip colocalized with ubiquitin and LC3-

positive autophagosomes (Figures 6D and S6D), indicating that

Tollip is indeed linked to autophagy. Furthermore, a sizable frac-

tion of human Tollip (and LC3, as GFP fusions) is found in the

insoluble protein fraction of cells (Figure S6E) analogous to yeast

Cue5 and Atg8 (Figure 5C). However, Tollip appears to be re-

cruited to aggregates independent of ubiquitin-conjugate recog-

nition, as the CUE-domainmutant variant (CUEmut) is found in the

pellet at the same level as the WT Tollip (Figure S6F).

Strikingly, when expressed in yeast, human Tollip not only

bound yeast ubiquitin conjugates and Atg8 in vivo (Figure S6G),

but also suppressed the hypersensitivity of yeast Cue5-deficient

(Dcue5) cells toward Htt-96Q expression (Figure S6H) and

restored the autophagic degradation of ubiquitin conjugates in

Dcue5mutants (Figure S6I). Thus, Tollip fulfills both biochemical

and genetic criteria for being a functional human homolog of the

S. cerevisiae Cue5 despite the differences in their domain

arrangements. We therefore conclude that yeast Cue5 and

human Tollip define a new class of ubiquitin-Atg8/LC3 adaptors

(termed CUET proteins), being also the first found in both lower

eukaryotes and vertebrates.

Tollip Clears Human Cells from Huntingtin-Derived
PolyQ Proteins
Encouraged by the finding that human Tollip can provide aggre-

gation-prone polyQ protein tolerance in yeast (Figure S6H), we

wondered whether Tollip has this capacity in human cells as

well. To address this question, we coexpressed an aggrega-

tion-prone huntingtin-derived model substrate bearing an

expanded polyQ stretch (GFP-Htt-103Q) with Tollip in human

HeLa cells. Strikingly, expression of Tollip promoted the degra-

dation of the polyQ protein (Figures 7A and S7A). Importantly,

Tollip’s activity in polyQ clearance is dose dependent and

acts via autophagy and not proteasomal degradation, as indi-

cated by autophagy and proteasome inhibition experiments
e pellet (P) fraction of Cue5-deficient (Dcue5) cells at elevated temperatures

b) and SUMO remain soluble.

n at different temperatures (23�C and 30�C) by GFP-cleavage assay in WT and
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Figure 4. Ubiquitin Ligase Rsp5 Is Linked to Cue5-Dependent Autophagy

(A and B) Two confirmedCue5-dependent autophagic substrates, Tma19 and Fpr1, require the activity of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzyme

Ubc4 for degradation upon starvation. Tma19 and Fpr1 were N-terminally GFP tagged in WT and rsp5-2 mutant or Ubc4-deficient (Dubc4) cells, and their

starvation-induced autophagic degradation was analyzed by GFP-cleavage assay.

(C) Ubiquitylation of Tma19 and Fpr1 depends on Rsp5. Denaturing Ni-NTA pull-down was performed to isolate His-tagged ubiquitin conjugates from WT and

rsp5-2 mutant cells expressing GFP-tagged Tma19 and Fpr1.

(D) Interaction of Tma19 and Fpr1 with Cue5 depends on Rsp5. Interaction of GFP-tagged Tma19 and Fpr1 with C-terminally Myc-tagged Cue5 was analyzed in

WT and rsp5-2 mutant cells by coimmunoprecipitation.

(E) Ubiquitin-Atg8 adaptor Cue5 interacts with Rsp5. Interaction of C-terminally Myc-tagged Cue5 with N-terminally HA-tagged Rsp5 was analyzed by

coimmunoprecipitation.

(F) Starvation-induced autophagic degradation of Cue5 is dependent on Rsp5. Degradation of N-terminally GFP-tagged Cue5 inWT and Atg8-deficient (Datg8) or

rsp5-2 mutant cells upon starvation was analyzed by GFP-cleavage assay.

See also Figure S4.
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Figure 5. Cue5 and Rsp5 Facilitate the Clearance of Huntingtin-Derived PolyQ Proteins

(A) Toxic effects of expressed model substrates derived from the Huntingtin gene polyQ exon-1 fragment (non-aggregation-prone variant Htt-20Q and highly

aggregation-prone variant Htt-96Q) were analyzed in WT, Atg8-, or Cue5-deficient cells and also in rsp5-2 mutant cells. Htt-20Q and Htt-96Q variants were

expressed under CUP1-promoter control (300 mM CuSO4).

(B) Clearance of Htt-96Q protein aggregates depends on Atg8, Cue5, and Rsp5. WT, Atg8-, or Cue5-deficient cells and rsp5-2mutant cells expressing Htt-96Q

variant underCUP1-promoter control (100 mMCuSO4) were fractionated and Htt-96Q protein detected in soluble and pellet fractions. Pgk1 and Dpm1 were used

as non-aggregation-prone protein controls.

(C) Atg8 and Cue5 accumulate together with Htt-96Q protein aggregates in the pellet (P) fraction at elevated temperatures. Similar to (B) but comparing different

temperatures (30�C; 23�C).
(D) Atg8 and Cue5 bind the aggregation-prone protein Htt-96Q. N-terminally HA-tagged Atg8 and C-terminally HA-tagged Cue5 immunoprecipitated Htt-96Q

protein expressed under CUP1-promoter control (100 mM CuSO4) in coimmunoprecipitation assays. The asterisk denotes the IgG light chain.

(E) Cue5 binding to the aggregation-prone protein Htt-96Q depends on the CUE domain. C-terminally HA-tagged Cue5 WT, but not its CUE-domain mutant

variant (CUEmut), immunoprecipitated Htt-96Q protein. Experiment conducted similar to (D).

See also Figure S5.
(Figure 7A). Indeed, when we coexpressed GFP-Htt-103Q either

with WT Tollip or its mutant variants defective in LC3 binding

(TollipM1,M2,M1+M2), onlyWT Tollip promoted the autophagic

degradation of polyQ (Figure 7B). Notably, the polyQ protein

already partially accumulated in cells when the expressed Tollip

protein lacked just one of the two AIMs (Figure 7B). Moreover,

autophagic clearance of GFP-Htt-103Q by Tollip was also

dependent on its CUE domain, as the CUE-domain mutant

variant (CUEmut) failed to promote polyQ degradation (Figure 7C).

From these findings, we thus infer that Tollip is highly potent in

effectively clearing cells from the overexpressed huntingtin

polyQ protein and that both AIMs of Tollip as well as its CUE

domain are needed for its full potency. Because overexpression

of Tollip does not clear human cells from huntingtin variants

harboring shorter polyQ stretches (Htt-20Q; Figure 7D), Tollip
appears to target specifically highly aggregation-prone proteins

(like Htt-72Q and Htt-103Q) for autophagy (Figure 7D). Remark-

ably, yeast Cue5 when heterologously expressed in human cells

was also able (albeit less potently) to clear cells from expanded

polyQ proteins (Htt-103Q) in a dose-dependent manner and

requiring functional CUE and AIM binding motifs (Figure 7E).

We thus infer that Cue5 and Tollip are functionally similar also

in human cells and that this class of ubiquitin-Atg8/LC3 adaptors

is particularly potent toward expanded polyQ proteins.

Previous studies have demonstrated that the human ubiquitin-

Atg8/LC3 adaptor p62 mediates targeting of polyQ proteins to

autophagosomes (Kraft et al., 2010; Pankiv et al., 2007), but

whether polyQ proteins are eliminated via p62 from cells has

not been directly addressed. To investigate this issue, we first

analyzed the potency of p62 and Tollip in autophagic clearance
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Figure 6. Tollip Is a Human Homolog of Yeast Ubiquitin-Atg8 Adaptor Protein Cue5

(A) Schematic representation of human Tollip protein. Tollip contains a Tom1-binding domain (TBD), a phospholipid-binding C2-domain harboring two putative

LC3/Atg8-interacting motifs (AIM1, AIM2), and a ubiquitin-binding CUE domain.

(B) Tollip binding to LC3 is mediated by both of its putative AIMs. N-terminally Flag-tagged WT Tollip or its AIM mutant variants (Tollip-W133A, T134A, H135A,

I136A: M1; Tollip-W151A, Y152A, S153A, L154A: M2; Tollip-W133A, T134A, H135A, I136A, W151A, Y152A, S153A, L154A: M1+2), were coexpressed with

N-terminally GFP-tagged LC3 in HeLa cells, and their interaction was analyzed by coimmunoprecipitation assays.

(C) Binding of Tollip to ubiquitin conjugates is mediated by its CUE domain. GST pull-down assays were performed using HeLa whole-cell extracts and GST

fusions of WT Tollip or its CUE-domain mutant variant (Tollip-CUEmut = Tollip-L267A, L268A).

(D) Tollip colocalizes with LC3 and ubiquitin after blockage of the autophagosome-lysosome fusion in HeLa cells. RFP-Tollip was coexpressed with GFP-LC3 or

GFP-ubiquitin (Ub). Following cell treatment with bafilomycin A1 (0.2 mM) for 16 hr, cells were imaged using fluorescence microscopy. Scale bars, 20 mm.

See also Figure S6.
of huntingtin-derived polyQ proteins. In our experimental system

(HeLa cells), we found that Tollip was more potent in polyQ

protein (Htt-103Q) clearance than p62 (Figure 7F). A possible

explanation for this difference came from the finding that Tollip

binds endogenous ubiquitin conjugates of human cells appar-

ently tighter than p62, as demonstrated by immunoprecipitation

andGST-pull-down experiments (Figures 7G andS7B). Although

both adaptors bind free ubiquitin (His ubiquitin) with apparently

similar affinities (Figure S7D), Tollip seems to bind purified

K48- or K63-linked polyubiquitin chains stronger than p62, in

particular those of a longer chain length (Figure S7C).

We further compared Tollip to p62 by depleting the adaptors

from human HeLa cells by siRNA (Figures S7E and S7F) and

monitored viability of cells expressing either a control (GFP) or

the GFP-tagged huntingtin-derived polyQ protein (Htt-103Q).

Notably, depletion of Tollip (using either of two different

siRNAs) resulted in a higher loss of HeLa cell viability in the

face of polyQ protein expression compared to p62 depletion
558 Cell 158, 549–563, July 31, 2014 ª2014 Elsevier Inc.
(Figure 7H). Importantly, the general autophagic activity (indi-

cated by the accumulation of lipidated LC3; Klionsky et al.,

2012) is not affected when Tollip is depleted (Figure S7G).

Because co-depletion of Tollip and p62 resulted in further reduc-

tion of cell viability upon expression of huntingtin-derived polyQ

protein (Htt-103Q; Figure S7H), the two ubiquitin-Atg8/LC3

adaptors do not seem to function sequentially in a pathway

(non-epistatic) but may act cooperatively. In fact, immunopre-

cipitation of Tollip co-isolated a small fraction of p62 (and

NBR1) from cell extracts (Figure S7I), indicating that different

adaptors possibly cooperate in some cases by targeting the

same cellular aggregate yet perhaps via distinct ubiquitin conju-

gates and types of ubiquitin modifications. Our findings thus

revealed that CUET ubiquitin-Atg8/LC3 adaptors have highly

similar functions in yeast and humans and that Tollip is a critical

new player in a human safeguarding network that provides pro-

tection against the cytotoxicity of polyQ proteins by autophagic

clearance.



DISCUSSION

Autophagy, initially appreciated for its role of protein recycling

upon cellular starvation, is now seen as amajor player for cellular

regulation, stem cell maintenance, innate immunity, organelle

turnover, and protein quality control. In particular, ubiquitin-

dependent autophagy received special attention because it

plays a crucial protective role against cytotoxic proteins and

aggregates like those linked to several neurodegenerative dis-

eases. Research during the past decades led to the successful

identification of the core components of the autophagy pathway.

More recently, however, strong focus is put on the discovery of

factors that provide substrate specificity, as they act as decision

makers in the autophagy pathway (Rogov et al., 2014).

Given that the majority of core components of the autophagy

pathway had been initially discoveredmainly in yeast (Mizushima

et al., 2011), it seemed doubtful that ubiquitin-Atg8 adaptors

analogous to p62 are absent in lower eukaryotes. The motivation

to search for potential yeast adaptors stemmed not only from the

goal of dissecting the selectivity of autophagy in the genetically

tractable S. cerevisiae, but also from the hope that a potentially

identified yeast adaptor might have a hitherto overlooked human

homolog.

Indeed, the approach that we undertook succeeded in finding

a new class of ubiquitin-Atg8/LC3 adaptors coined CUET pro-

teins, which are functionally conserved from yeast to humans.

Because previously discovered ubiquitin-Atg8 adaptors are

restricted to metazoans (Rogov et al., 2014), CUET proteins

might be ancient and perhaps of basic cellular importance.

Notably, unlike p62 or NBR1, Cue5 and Tollip do not possess

UBA domains, but a CUE domain mediates ubiquitin binding

instead. As CUE domains are also found in yeast Cue1 and hu-

man GP78 involved in ERAD (Bagola et al., 2013; Chen et al.,

2006), Vps9 involved in endocytosis (Donaldson et al., 2003),

and yeast Don1 linked to prospore-membrane assembly (Mor-

eno-Borchart et al., 2001), ubiquitin-binding CUE domains

seem to be chiefly associated with membrane-linked ubiquitin-

dependent processes. Because the CUE domains of Cue5 and

Tollip bind monoubiquitin and also polyubiquitin chains of

various types, CUET proteins are perhaps tailored for binding

heavily and diversely ubiquitylated proteins, such as those found

in protein aggregates.

Our findings indicate that CUET proteins act as potent ‘‘guard-

ians of the proteome’’ of lower and higher eukaryotes through

their ability to clear cells efficiently from protein aggregates by

the ubiquitin-dependent autophagy pathway. The discovery

that yeast Cue5 collaborates with Ubc4/Ubc5 ubiquitin-conju-

gating enzymes and the Rsp5 ubiquitin ligase is striking, as these

components of the ubiquitin pathwaymediate stress tolerance in

yeast. Whereas Ubc4 and Ubc5 are heat stress inducible and

crucial for proteasome-mediated degradation of abnormal pro-

teins (Seufert and Jentsch, 1990), Rsp5 is required for cell

viability under heat-stress conditions (Hoppe et al., 2000). This

relationship thus backs the idea of a hierarchically organized

protein quality network targeting ubiquitylated abnormal pro-

teins initially to proteasomal degradation; but in the case of

formed protein aggregates, proteolytic elimination is achieved

by autophagy. Our finding that Cue5 does not detectably bind
a short-lived ubiquitin-proteasome pathway substrate suggests

that additional parameters such as protein aggregation may be

relevant for cargo selection by Cue5 as well.

The identification of Tollip as a human ubiquitin-Atg8/LC3

adaptor and highly potent mediator of autophagy-linked elimina-

tion of polyQ proteins like huntingtin has numerous implications.

Notably, Tollip has been reported previously to copurify with

cellular polyQ aggregates (Doi et al., 2004), and it was also found

to be downregulated in brain tissue samples from aged and

Alzheimer’s-disease-affected humans (Cribbs et al., 2012),

emphasizing its potential disease-related role. Moreover, it has

been suggested that Tollip mediates polyQ protein tolerance

through its ability to stimulate their aggregation (Oguro et al.,

2011). However, our findings revealed that Tollip, in addition to

this proposed tolerance activity, directly mediates polyQ protein

elimination via the autophagy pathway. Indeed, Tollip’s potency

in autophagic clearance is striking, as overexpressed huntingtin-

derived expanded polyQ proteins became virtually undetectable

when Tollip was overexpressed as well (Figures 7A and S7A).

Interestingly, Tollip is substantially more potent in polyQ

protein clearance than p62 in HeLa cells (Figure 7F). Further-

more, expression of polyQ proteins is more cytotoxic in HeLa

cells deficient in Tollip compared to cells depleted in p62 (Fig-

ures 7H and S7H). Although the relative potency might be

different in other cell types, Tollip appears to bind ubiquitin con-

jugates—in particular, polyubiquitylated proteins—better than

p62, both in vitro and in vivo (Figures 7G, S7B, and S7C). Indeed,

the expression of different ubiquitin-Atg8/LC3 adaptors with

distinct binding properties and ubiquitin-modification affinities

might be advantageous for cells, as this may allow recognition

of protein aggregates that are diversely ubiquitin modified by

different ubiquitin ligases. Evidence for this idea comes from

our findings that a small fraction of p62 (and NBR1) copurifies

with Tollip in cells (Figure S7I) and that polyQ protein expression

is even more toxic when both p62 and Tollip are depleted,

compared to situations in which only one adaptor is absent (Fig-

ure S7H). We infer from these findings that Tollip and p62 in fact

sometimes cooperate in autophagy by targeting the same

cellular aggregate. It also seems reasonable to assume that

the multiplicity in ubiquitin-Atg8/LC3 adaptors found in meta-

zoans might have evolved to satisfy the increasing needs of

more complex cells to cope with protein aggregation.

Although yeast Cue5 and human Tollip are functionally homol-

ogous ubiquitin-Atg8/LC3 adaptors, the two proteins also differ.

One difference is the relative positioning of CUE and AIM

sequences in Cue5 and Tollip. However, this seems inconse-

quential because the proteins function as bridging adaptors,

connecting ubiquitylated substrates/aggregates to Atg8/LC3

and autophagosomes. A more notable difference between the

two CUET proteins is the additional presence of a Tom1-binding

domain (TBD) and a phospholipid-binding C2 domain within Toll-

ip’s N-terminal extension (Figure 6A). However, these additional

domains are potentially linked to Tollip’s extra functions. In addi-

tion to its role in autophagy described here, Tollip participates in

Toll-like receptor (TLR)-mediated innate immunity responses

and protein traffic by the endocytic pathway (Capelluto, 2012).

Whereas CUE-mediated ubiquitin-binding and C2-domain-

mediated phospholipid-binding seems crucial for most of
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Tollip’s proposed functions in cell signaling and membrane

trafficking (Capelluto, 2012), binding of Tollip to Tom1, an

ESCRT-0 component, mediates, e.g., the recruitment of clathrin

to endosomes (Katoh et al., 2006). Our finding that the two AIM

elements are present directly within Tollip’s C2 domain is at first

sight surprising; on the other hand, it suggests that this arrange-

ment might perhaps function as a switch, i.e., that LC3 binding

to the C2 domain of Tollip might channel the activity of this

otherwise multifunctional protein toward autophagy. Indeed, a

conserved residue (His135) in the C2 domain critically required

for Tollip’s binding to phosphoinositides (Ankem et al., 2011)

lies precisely within the putative AIM (AIM1) important for inter-

action with LC3 (Figures 6A and 6B). At any rate, our findings

highlight the Swiss-Army-knife-like property of Tollip, as the pro-

tein, in addition to its role as multitasking adaptor employed in

various plasma membrane-to-cytosol signaling and endocytic

protein trafficking pathways, also functions as ubiquitin-Atg8/

LC3 adaptor in the autophagy pathway. We propose that this

feature could lead to situations in which aggregation-prone

polyQ proteins like huntingtin perhaps contribute to cytotoxicity

and neurodegenerative diseases by interfering with other func-

tions of the adaptor.
EXPERIMENTAL PROCEDURES

Yeast Strains and Constructs

Yeast (S. cerevisiae) strains and constructs used in this study are listed in

Tables S1 and S2, respectively.
Yeast Starvation, GFP Cleavage, and Cell Fractionation Assays

Yeast cells were first cultured in YPD media to the log phase and were then

switched to synthetic minimal medium lacking nitrogen (SD-N) for indicated

times. For GFP-cleavage assays, autophagy substrates are GFP tagged

(e.g., GFP-Atg8), and their vacuolar degradation upon starvation is monitored

by the accumulation of the released GFP moiety, which is highly stable and

escapes autophagic degradation. For cell fractionation assays, yeast total
Figure 7. Tollip Clears Human Cells from Huntingtin-Derived PolyQ Pr

(A) Tollip promotes the autophagic clearance of aggregation-prone huntingtin-der

tagged aggregation prone Htt-103Q variant were co-overexpressed in HeLa c

autophagy inhibitor bafilomycin A1 (Baf A1, 0.2 mM), or proteasome inhibitor MG

(B) Tollip promotes the clearance of aggregation-prone huntingtin-derived polyQ p

taggedWT Tollip protein or its AIMmutant variants (M1, M2, M1+2) were co-overe

protein levels were analyzed.

(C) Tollip promotes the clearance of aggregation-prone huntingtin-derived polyQ

taggedWT Tollip protein or its CUE-domainmutant variant (CUEmut) were co-over

protein levels were analyzed.

(D) Tollip specifically promotes the degradation of highly aggregation-prone hun

with expanded polyQ stretches, but not the shorter Htt-20Q variant, are cleared

(E) Yeast Cue5 expressed in human cells promotes the clearance of aggregation-

tagged Tollip and Cue5 WT or its CUE-domain mutant (Cue5-CUEmut) and AIM

HeLa cells and Htt-103Q protein levels were analyzed.

(F) Tollip is more potent in clearance of the aggregation-prone Htt-103Q protein

GFP-Htt-103Q in HeLa cells, and Htt-103Q protein levels were analyzed. The as

(G) Tollip binds endogenous ubiquitin conjugates of human cells better than p6

immunoprecipitated from whole-cell extracts with anti-Flag affinity matrix. Coimm

anti-ubiquitin antibody (P4D1). The asterisks denote the light and heavy chains o

(H) Depletion of Tollip results in a higher loss of HeLa cell viability upon overexpres

and p62 were depleted by specific siRNAs in HeLa cells overexpressing GFP-Htt

Lamin A/C was used as a control. The results are the average of three independ

See also Figure S7.
cell extracts were prepared by cell disruption using bead-beater, precleared

at 2,000 3 g and fractionated at 16,000 3 g for 10 min to separate proteins

into soluble and insoluble pellet fraction. Detailed descriptions are provided

in the Extended Experimental Procedures.

Biochemical and Molecular Biology Techniques

The biochemical andmolecular biology techniques used in this study are stan-

dard procedures. Detailed descriptions for individual methods are provided in

the Extended Experimental Procedures.

SILAC Mass Spectrometry

To identify ubiquitylated substrates targeted for autophagic degradation by

Cue5 upon starvation, a SILAC-based mass spectrometry protocol was

used. WT or Dcue5 yeast cells deficient in biosynthesis of lysine and arginine

(Dlys1Darg4) expressing His-tagged ubiquitin (His-Ub) were grown for at least

ten divisions in synthetic complete (SC) media supplemented either with unla-

beled (Lys0 and Arg0; light) or heavy isotope-labeled amino acids (Lys8 and

Arg10; heavy) from Cambridge Isotope Laboratories. Log-phase Dcue5 cells

cultured in heavymedia andWT cells grown in light media were then subjected

to nitrogen starvation in SD-N media for 16 hr, harvested, and combined

together at equal amounts. His-Ub conjugates were then isolated using dena-

turing Ni-NTA pull-down and were separated on 4%–12% Bis-Tris gel. The

whole lane was excised in ten slices, and proteins were digested with trypsin

and analyzed by LC-MS/MS.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and two tables and can be foundwith this article online at http://dx.doi.

org/10.1016/j.cell.2014.05.048.
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