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SUMMARY

Cochlin, an extracellular matrix protein, shares ho-
mologies with the Factor C, a serine protease found
in horseshoe crabs, which is critical for antibacterial
responses. Mutations in the COCH gene are respon-
sible for humanDFNA9 syndrome, a disorder charac-
terized by neurodegeneration of the inner ear that
leads to hearing loss and vestibular impairments.
The physiological function of cochlin, however, is un-
known. Here, we report that cochlin is specifically ex-
pressed by follicular dendritic cells and selectively
localized in the fine extracellular network of conduits
in the spleen and lymph nodes. During inflammation,
cochlin was cleaved by aggrecanases and secreted
into blood circulation. In models of lung infection
with Pseudomonas aeruginosa and Staphylococcus
aureus, Coch �/� mice show reduced survival linked
to defects in local cytokine production, recruitment
of immune effector cells, and bacterial clearance.
By producing cochlin, FDCs thus contribute to the
innate immune response in defense against bacteria.

INTRODUCTION

Cochlin, encoded by the gene Coch, is a highly abundant extra-

cellular matrix protein in the cochlea and vestibule of the inner

ear (Robertson et al., 1994; Robertson et al., 1997). Missense

mutations and in-frame deletions in the COCH gene are etiolog-

ically linked to the autosomal-dominant DFNA9 syndrome, a dis-

order characterized by late onset nonsyndromic hearing loss and

vestibular dysfunctions with associated neurosensory degener-

ation in the inner ear (Manolis et al., 1996). Whereas the neurode-

generation associated with DFNA9 is believed to be caused by a

gain-of-function by the mutated cochlin, the normal physiolog-

ical function of cochlin remains unknown. The N terminus of co-
chlin contains a LCCL domain also present in Factor C, a serine

protease of the horseshoe crab Limulus involved in activating the

coagulation cascade in response to LPS (Iwanaga et al., 1992).

The expression of cochlin is highly selective; it is abundantly ex-

pressed in the inner ear and also found in the spleen (Robertson

et al., 1997). To understand the physiological function of cochlin

in the spleen, we investigated the splenic cell type that produces

cochlin, the regulation of its production, and its possible role in

immunity.

Follicular dendritic cells (FDCs), a type of stromal cells of the

secondary lymphoid organs, are recognized as key organizers

of B cell follicles and central to the development of germinal cen-

ters (GCs) where cooperation of multiple cell lineages leads to

the formation of isotype-switched, high-affinity immunoglobulin

and the establishment of humoral immune memory (Allen and

Cyster, 2008). FDCs function by presenting native antigen in

the form of immune complexes to B cells, supporting both

T-dependent and -independent B cell activation, and suppress-

ing apoptosis in B cells with high affinity antigen-binding

receptors resulting from successful somatic hypermutation

processes. In the secondary lymphoid organs, FDCs are tightly

associated with a fine tubular extracellular matrix network—

named conduits—used as an adhesion substrate for cell’s

crawling movement and involved in distributing small molecules

through the splenic white pulp and lymph nodes, respectively

(Bajénoff et al., 2006; Gretz et al., 2000; Nolte et al., 2003; Sixt

et al., 2005). FDCs may on one hand secrete cytokines such as

CXCL13 into the conduits and, on the other hand, capture small

antigens circulating in the conduits (Roozendaal et al., 2009).

Although the function of FDCs in modulating the activation of

B cells can be regulated by innate immunity, FDCs have no

established role in modulating innate immunity (El Shikh et al.,

2007; Garin et al., 2010; Suzuki et al., 2010).

The homology of cochlin to the Limulus Factor C protein led us

to postulate that cochlin may participate in host resistance to

infection. In the present study, we investigated the role for co-

chlin in immunity. We demonstrate that cochlin is produced spe-

cifically by the FDCs in the secondary lymphoid organs and

exclusively present in the fine extracellular network of conduits.
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Figure 1. Cochlin Is Produced and Secreted

by FDCs in the Spleen and the Lymph Nodes

(A) Spleen and lymph node lysates from WT and

Coch�/� mice were analyzed by WB.

(B and C) Lymph node and spleen sections from

WT mice were costained for cochlin and B cell

(B220) (objective lens 10X) (B) or FDCs (CR2.1)

(objective lens 20X) (C).

(D and E) Primary FDCswere isolated fromWT and

Coch�/� mice. Lysates from in vitro cultured FDCs

were analyzed by WB (D). Culture media were

subjected to anti-cochlin IP and analyzed by WB

(E). Spleen lysates from WT and Coch�/� mice, as

well as lysates from 293T cells expressing cochlin

were used as controls.

See also Figure S1.
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However, cochlin deficiency has no effect on acquired immunity.

Instead, we show that cochlin LCCL domain is released into the

blood after proteolytic cleavage in response to LPS and bacterial

infection. Finally, we provide evidence that cochlin deficiency

leads to a defective innate response and an increased sensi-

tivity to P. aeruginosa infection. Our study demonstrates cochlin

as the first immune modulator released from conduits to act at

the systemic level, revealing a unique biological function of con-

duits and evidence for a role of FDCs in regulating innate

immunity.

RESULTS

Cochlin Is Expressed and Secreted by Follicular
Dendritic Cells
We investigated the expression of cochlin by using a highly spe-

cific monoclonal antibody (Yao et al., 2010) and found that co-

chlin is expressed in spleens and lymph nodes (Figure 1A; see

also Figure S1A available online). However, because both pro-

tein and messenger RNA (mRNA) of cochlin are not detectable

in isolated splenocytes, which contain mostly B and T cells (Fig-

ure S1B), we considered the possibility that cochlin is expressed

by stromal cells in the spleens. By using in situ immunocyto-

chemistry, we found that cochlin is present in the fine network-

like structure located in the B cell zone in the white pulp of

spleens and in the center of the B cell follicles in lymph nodes

(Figure 1B; Figure S1C). Because this localization corresponds

to that of the follicular dendritic cells (FDCs), we examined the

coimmunostaining of CR2.1, a marker for FDC, and cochlin.

Indeed, cochlin is localized in the close proximity of the FDCs

(Figures 1C). Cultured primary WT, but not Coch�/�, FDCs ex-

press and secrete cochlin in vitro (Figures 1D and 1E). We thus

conclude that FDCs express and secrete cochlin in the spleen

and the lymph nodes.

Cochlin Accumulates in the Lumen of the Conduits
Because cochlin is an extracellular protein and distributed in a

fine network-like structure in the spleen and lymph nodes (Fig-

ure 1), we considered the possibility that cochlin might be asso-

ciated with the conduits, an extracellular matrix network involved

in distributing chemokines and small blood and lymph-borne
1064 Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc.
molecules through the splenic white pulp and lymph nodes,

respectively (Gretz et al., 2000; Nolte et al., 2003; Roozendaal

et al., 2009; Sixt et al., 2005). We investigated whether cochlin

colocalizes with known markers for conduits such as collagen,

ER-TR7, and perlecan in the spleens. We found that cochlin co-

localizes with the subset of conduits present in the B cell zone,

but not in the periarteriolar lymphocyte sheath (PALS) (Figure 2A).

Althoughmost of the conduit constituents are synthesized by en-

wrapping fibroblastic reticular cells (FRC), only conduits in the B

cell zone are associated with FDCs in addition to FRCs (Gretz

et al., 2000; Lokmic et al., 2008; Roozendaal et al., 2009; Sixt

et al., 2005). The specific association of cochlin with the conduits

in the B cell zone further supports that cochlin is produced by the

FDCs.

Conduits are formed by a central collagen bundle core sur-

rounded by a microfibrillar layer, which is enwrapped in a base-

mentmembrane.High-resolution fluorescencemicroscopic anal-

ysis of splenic samples coimmunostained with anticochlin and

antibodies for laminin-1 and perlecan, markers for the basement

membrane, or with antibody for ER-TR7, a marker for themicrofi-

brillar layer, demonstrate that cochlin iswrappedby thebasement

membrane and by the microfibrillar layer. Indeed, fluorescence

microscopy analysis suggests that cochlin colocalizes with the

central collagen core (Figure 2B). By using electron microscopic

analysis, we found that cochlin colocalizes with the central

collagen bundles and with fibrillar collagen in the conduits (Fig-

ure 2C). We thus concluded that cochlin is synthesized by the

FDCsandsecreted in the lumenof theFDCs-associatedconduits.

We next assessed the function of cochlin by analyzing the

FDC-associated conduits in the spleen and lymph nodes of

Coch�/� mice. Cochlin deficiency did not modify the FDC-asso-

ciated conduit’s structure as seen in fluorescent and electronic

microscopy (Figures S2A–S2C). In the spleen or the lymph no-

des, immune cells crawl on the surface of the conduits to circu-

late (Bajénoff et al., 2006), and cochlin deficiency did not impair B

cell, FDCs or T cell localization in the spleen or the lymph nodes

of Coch�/� mice (Figures S2A and S2B; data not shown). Con-

duits also allow for the flow of low molecular weight molecules

(MW % 70 kDa) such as cytokines and small antigens (Gretz

et al., 2000; Nolte et al., 2003; Roozendaal et al., 2009) in their

lumen. Cochlin deficiency did not modify either the flow of small
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Figure 2. Cochlin Concentrates in the Lumen of Conduits

(A and B) Spleen sections fromWT mice were costained for cochlin and the conduits markers collagen, ER-TR7, perlecan, and laminin-1. Objective lens 10X (A).

Objective lens 100X, 3D reconstructions were performed by using deconvolved z series (B).

(C) Spleen fine sections were stained for cochlin (gold beads, black arrowheads; fc, fibrillar collagen; cb, collagen bundles).

See also Figure S2.
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molecules or the molecular weight cutoff of the components

circulating through the conduits, as observed by following the

flow of 10, 70, and 500 kDa fluorescent dextran in Coch�/�

spleens (Figures S2D–S2F). FDCs adhere to the surface of the

conduits and capture circulating small antigens before transfer-

ring them to the B cells, or alternatively B cells directly sample

small antigens circulating in the conduits (Roozendaal et al.,

2009). However, cochlin deficiency in vivo did not impair the

close association of FDCs with the conduits (Figure S3A).

Thus, we conclude that cochlin deficiency has no effect on the

adherence of FDCs to the conduits.

We next tested whether cochlin was involved in the transfer of

small antigens from the conduits to the immune cells, but cochlin

deficiency did not alter the ability of FDCs or B cells to capture

small antigens at their surfaces in the lymph nodes (Figures

S3B and S3C). In addition, Coch�/� mice did not show any de-

fects in the immunoglobulin response to the small antigens

TEL (turkey egg lysozyme, 12–14 kDa) trafficking through the

conduits lumen nor to the large antigen PE (phycoerytherin,

240 kDa) excluded from the conduits, as anticipated, and used
here as a control (Figure S3D) (Roozendaal et al., 2009). Further-

more,Coch�/�mice showed no defect in germinal center forma-

tion (Figure S3E) or antibody affinity maturation during primary

and secondary responses (Figures S3F and S3G). Taken

together, we conclude that although cochlin is specifically asso-

ciated with the conduits in the B cell zone, cochlin deficiency has

no detectable effect on adaptive immune response in our exper-

imental conditions.

Cochlin Cleavage Products Are Released in the Blood
during Inflammation
Because the conduit lumens connect with the blood circulation

(Gretz et al., 2000), we next tested whether cochlin is released

into the bloodstream by using immunoblot analysis of the serum

for detection. In basal conditions, two weak immunoreactive

bands reacting with the cochlin antibody were present in the

blood, which were absent in the sera from Coch�/� mice (Fig-

ure 3A). We named them p8 and p18 according to their respec-

tive apparent molecular weights. Because the Limulus Factor C,

which contains a homologous LCCL domain, is secreted into the
Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc. 1065
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Figure 3. Cochlin LCCL Domain Is Released

into the Blood following Proteolytic Cleav-

age upon Inflammation

(A and B) WT and Coch�/� mice were injected i.p.

with LPS (5 mg/kg) (A), TNF-a (15 mg, 8 hr) (B), or

PBS as control.

(C) The p8 fragment is the deglycosylation product

of p18. Serum-free culturemedium from 293T cells

expressing cochlin was treated by PNGase F for

1 hr (�, untreated; mock, 1 hr without PNGase F).

(D) The C-term fragment corresponds to aa 135–

552. Anti-FLAG IPs from the culture medium of

293T cells expressing cochlin-FLAG.

(E) The p8 and p18 fragments correspond to aa

26–134. Serum-free culture media of 293T cells

expressing the full-length or the N-terminal domain

(aa 1–134) of cochlin treated with PNGase F as

indicated.

See also Figure S3.
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hemolymph in response to LPS (Iwanaga et al., 1992), we next

tested whether cochlin p8 and p18 are released into the blood

during LPS response. We found that the levels of cochlin p8

and p18 in sera greatly increased shortly after intraperitoneal

(i.p.) injection of LPS in WT but not Coch�/� mice (Figure 3A).

In accordance with cleavage followed by secretion, full-length

cochlin is substantially reduced in the spleen starting 4 hr after

LPS injection, and p18 peaks transiently in the spleen from 2 hr

to 4 hr following LPS injection before gradually decreasing but

being maintained at a detectable level. Altogether these data

suggest that full-length cochlin is processed into the p8 and

p18 forms in the spleen prior to their release in the blood.

The levels of tumor necrosis factor-a (TNF-a), one of the first

cytokines detectable in the blood, peaked at 1 hr after LPS injec-

tion (Figure S4A). We observed that TNF-a injection is sufficient

to induce the release of the cochlin p8 and p18 forms into the

blood (Figure 3B). This suggests that cochlin p18 and p8 release

in the blood is mediated downstream of TNF-a release following

LPS injection. Thus, increased levels of cochlin p8 and p18 in

the blood are not restricted to LPS stimulation per se but may

be a common phenomenon under various inflammatory condi-

tions involving TNF-a.

The Cochlin p8 and p18 Forms Correspond to the LCCL
Domain
Because the cochlin antibody used for the WB analysis recog-

nizes the N-terminal part of cochlin (Yao et al., 2010), which con-
1066 Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc.
tains a LCCL domain, the p8 and p18 are

most likely derived from the LCCL

domain. Consistent with this possibility,

we have previously shown that cochlin

p8 and p18 forms are detectable in condi-

tioned media of 293T cells transfected

with a cochlin expression vector (Yao

et al., 2010). To further characterize the

identity of the cochlin p8 and p18, we

treated conditioned media of 293T cells

expressing cochlin with N-glycosidase

F, because cochlin is known to be glyco-
sylated (Kommareddi et al., 2007; Robertson et al., 2003). We

observed that following N-glycosidase F treatment, the cochlin

p18 disappeared while the p8 level correspondingly increased

(Figure 3C), suggesting that cochlin p18 is the glycosylated

form of p8.

We then determined the cleavage site of full-length cochlin by

Edman degradation of the purified C-terminal FLAG-tagged

cleavage product corresponding to that of p18 (Figure 3D); ‘‘AT-

GRAV’’ was found to be its N-terminal residues. Because this

sequence corresponds to aa 135–140 of full-length cochlin, we

concluded that cochlin is cleaved between E134 and A135. Co-

chlin p8 and p18 fragments are recognized by the monoclonal

antibody 9A10D2 raised against the N-terminal cochlin antigen

corresponding to aa 7–227 (Yao et al., 2010). Because aa 1–25

correspond to the signal peptide, we hypothesized that the p8

and p18 N-terminal fragment may correspond to the aa 26–

134. We compared the migration profile in a SDS-PAGE gel of

p8 and p18 in conditioned media of 293T cells expressing full-

length cochlin and in conditioned media of 293T cells expressing

cochlin aa 1–134 following PNGase F treatment. The expression

from the vector coding for cochlin aa 1–134 resulted in bands of

the same apparent molecular weights as p8 and p18. Taken

together, we concluded that p8 corresponds to cochlin N-termi-

nal fragment aa 26–134, which is then glycosylated to form p18

(Figure 3E).

We next investigated the release of the C-terminal domain

by using the polyclonal antibody recognizing epitopes
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Figure 4. Cochlin Is Cleaved by the Metallo-

proteases Aggrecanase-1 and Aggreca-

nase-2

(A and B) Aggrecanase inhibitors block cochlin

cleavage. 293T cells expressing cochlin were

cultured in serum-free medium with the indicated

concentrations of MMP inhibitor III or compound

8OO for 24 hr.

(C) Cochlin interacts with aggrecanase-1 and

aggrecanase-2. Anti-FLAG IP from lysates of

293T cells expressing the indicated constructs

(*, nonspecific band) is shown.

(D) Aggrecanase-1 and aggrecanase-2 cleave

secreted full-length cochlin. Purified full-length

cochlin was treated with aggrecanase-1 (left

panel) or aggrecanase-2 (right panel).

(E and F) Adamts-4 gene expression is upregu-

lated in mice spleen upon LPS or TNF-a injection.

Spleens from mice injected i.p. with LPS (5 mg/kg)

(E), mTNF-a (5 mg or 15 mg, 8 hr), (F) or PBS (as

control) were analyzed by RT-PCR for the

expression of Adamts-4 and Adamts-5.

(G) Aggrecanase-1 and aggrecanase-2 are ex-

pressed by FDCs. In vitro FDC cultures were

treated with LPS (100 ng/ml, 6 hr or overnight

[O/N]). Aggrecanase-1 and aggrecanase-2 ex-

pressions were analyzed by RT-PCR.

(H) Aggrecanase-1 protein level is upregulated in

the spleen upon LPS injection with kinetics similar

to cochlin cleavage. Spleens from Coch+/� and

Coch�/�mice injected i.p. with LPS (5mg/kg) were

analyzed by WB.

(I) Aggrecanase-1- and aggrecanase-2-

specific inhibitor C8OO inhibits LPS-induced

p18 release into the blood. WT and

Coch�/� mice were injected i.p. with LPS

(1 mg/kg) and C8OO (100 mg/kg) or vehicule only (1.3% DMSO+1.3% solutol) for 8 hr. n = 2 mice per group.

(J) Aggrecanase-1 interacts with cochlin in vivo upon LPS injection. Spleen lysates from WT and Coch�/� mice injected i.p. with LPS (5 mg/kg, 4 hr) were

subjected to anti-cochlin IP.

See also Figure S4.
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predominantly in this domain. The C-terminal domain remained

undetectable in the serum even after LPS injection (Figure S4B),

and IF staining using the same antibody showed no decrease in

cochlin intensity in the spleen following LPS injection (Figures

S4C and S4D).We concluded that, contrary to the LCCL domain,

the C-terminal domain of cochlin remains in the spleen following

cochlin cleavage.

To determine the expression of LCCL domains in sera under

control or LPS stimulated conditions, we next used purified

cochlin aa 26–134 fused with hemagglutinin (HA) (hereafter

named LCCL-HA) of known concentration as a standard. We

found that the expression of p8 and p18 under basal conditions

are too low to be precisely determined, whereas 8 hr after LPS

injection the concentration of p8 and p18 reach �0.4 mg/ml (Fig-

ures S4E and S4F).

Together these data demonstrate that cochlin LCCL domain is

released from the spleen into the blood by cochlin proteolytic

cleavage during inflammation.

Cochlin Is Processed by Aggrecanase-1 and
Aggrecanase-2
To explore the mechanism that mediates the cleavage of full-

length cochlin, we incubated 293T cells expressing cochlin
with chemical inhibitors of different proteases. We found that in

the presence of MMP inhibitor III, a broad spectrum metallopro-

tease inhibitor, no p8 and p18 fragments were detected in the

culture medium of 293T cells expressing cochlin (Figure 4A).

Because cochlin is cleaved between E134 and A135, we next

investigated whether two glutamyl endopeptidases in the metal-

loprotease family known to cleave E-A bonds, namely aggreca-

nase-1 and aggrecanase-2, were involved in processing cochlin

(Nagase and Kashiwagi, 2003). Compound 8OO, a specific in-

hibitor of aggrecanases (patent US2007/0043066) inhibits the

release of p8 and p18 fragments in the culture medium of 293T

cells expressing cochlin (Figure 4B). In addition, we observed

that aggrecanase-1 and aggrecanase-2 physically interact with

cochlin as shown by coimmunoprecipitation assay in 293T cells

(Figure 4C) and that purified aggrecanase-1 and aggrecanase-2

can directly cleave full-length cochlin to the cochlin p18 fragment

in an in vitro cleavage assay (Figure 4D).

To investigate the mechanism that leads to the processing

and secretion of cochlin following LPS or TNF-a stimulation,

we assessed aggrecanase expression in the spleen following

LPS or TNF-a injection. The Adamts-4 (a desintegrin and metal-

loproteinase with thrombospondin motifs) gene encoding ag-

grecanase-1 is not expressed in the spleen in basal conditions
Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc. 1067
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but its transcription is greatly activated as soon as 1 hr after

LPS injection (Figure 4E). Adamts-4 mRNA was also induced

following TNF-a injection (Figure 4F). On the other hand,

Adamts-5 gene encoding aggrecanase-2 is expressed in the

spleen under basal conditions. However, the expression of

Adamts-5 not only is not activated following LPS or TNF-a in-

jection but actually decreases transiently following LPS injec-

tion (Figures 4E and 4F). Consistently, the expression of

Adamts-4 mRNA in cultured FDCs was induced by LPS,

whereas that of Adamts-5 mRNA in FDCs was constitutive

(Figure 4G).

At the protein level, splenic aggrecanase-1 was induced 2 hr

after LPS injection, corresponding exactly to the kinetics of the

observed cochlin cleavage in the spleen and the secretion of co-

chlin p8 and p18 into the blood (Figures 4H and 3A). Consistent

with the processing of cochlin by aggrecanases, the levels of p8

and p18 induced in the serum by LPS were reduced by the injec-

tion of compound 8OO (Figure 4I). We next tested the interaction

of endogenous cochlin with aggrecanase-1 in vivo. Aggreca-

nase-1 coimmunoprecipitates with cochlin in spleen lysates

from WT mice injected with LPS (Figure 4J). Neither aggreca-

nase-1 nor cochlin bands were detectable in the anticochlin

immunoprecipitation from the splenic lysate of aCoch�/�mouse

treated in the same conditions, demonstrating the specificity of

the assay. Together with the in vitro data, our results strongly

indicate that aggrecanase-1 cleaves cochlin in vivo during LPS

and TNF-a responses.

Cochlin Deficiency Leads to Defects in Antibacterial
Innate Immunity
To characterize the role of cochlin in antibacterial innate immu-

nity, we first examined the role of cochlin in LPS responses,

based on the homology of its LCCL domain with the evolution-

arily ancient related Factor C protein from the horseshoe crab

Limulus. Factor C is critical in sensing LPS and in the consequent

activation of the hemolymph coagulation cascade, as well as in

complement deposition onto the surface of bacteria (Ariki

et al., 2008; Iwanaga et al., 1992; Koshiba et al., 2007). However,

we did not detect any interaction between the cochlin LCCL

domain and LPS (data not shown). Coch�/� macrophages

showed no defect in the response to LPS in vitro, nor did the

addition of recombinant cochlin LCCL domain have any impact

on this response (Figures S5A and S5B). Moreover, Coch�/�

mice showed normal coagulation and cytokine responses to

LPS injection in vivo (Figures S5C and S5D), and their viability

to LPS challenge was not modified as compared to that of WT

mice (Figure S5E).We thus concluded that cochlin is not involved

in the control of the LPS response.

We next tested whether cochlin took part in the detection of

bacteria by pattern recognition receptors (PRRs) independently

of LPS recognition by TLR4-MD2. In vitro, Coch�/� macro-

phages respond normally to peptidoglycans (PGN), which acti-

vate TLR2 and Nod-1 and Nod-2 receptors, and the addition of

recombinant cochlin LCCL domain did not impact this response

(Figure S5A). We next investigated the role of cochlin in the

detection of intact bacteria by using P. aeruginosa (strain

PA14) as a model. Because Coch�/� macrophages, in the pres-

ence or absence of recombinant cochlin LCCL domain, showed

no difference in cytokine responses to the infection by PA14
1068 Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc.
in vitro (Figure S5F), we concluded that cochlin is not involved

in the mechanism of bacterial detection per se.

We next reasoned that while the molecular mechanisms used

by cochlin and Limulus Factor C might have diverged, their func-

tion might nevertheless be conserved, and we investigated the

role of cochlin in response to bacteria in vivo. We examined

how cochlin might impact infection caused by P. aeruginosa, a

gram-negative bacteria usually not pathogenic in healthy individ-

uals but which constitutes a major cause of morbidity for cystic

fibrosis patients with chronic lower respiratory tract infection, as

well as acute opportunistic pneumonias in immunocompromised

individuals (Sadikot et al., 2005). Innate immune responses that

recruit neutrophils to the lungs are the primary means by which

mammals resistP. aeruginosa infections (Koh et al., 2009). Similar

to that of LPS injection, intranasal (i.n.) infection with

P. aeruginosa (strain PA14) triggered the release of cochlin p8

andp18 intomouse sera (Figure 5A).More importantly, 24 hr after

i.n. infection of PA14, Coch�/� mice showed higher bacterial

loads in the lungs, blood, and spleens compared toWTmice (Fig-

ure 5B). This defect in controlling infectionwithP. aeruginosawas

associated with higher levels of cytokines such as IL-6 and IL-18

in the serum at 24 hr (Figure 5C) and decreased survival of

Coch�/�mice (Figure5D). Similarly,Coch�/�miceshowedhigher

bacterial loads in the lungs, blood, and spleens as compared to

WTmice 24 hr following i.n. infection with the gram-positive bac-

teria Staphylococcus aureus (LAC strain) (Figure 5E), demon-

strating that cochlin antibacterial function is not restricted to

one specific bacteria strain, and definitively excluding a LPS-

dependent mechanism. Because cochlin LCCL had direct effect

neither on the in vitro viability and growth of PA14 and LAC nor on

biofilm formation (Figures S5G and S5J), we concluded that co-

chlin is unlikely to be a bactericidal effector and hypothesized

that it may regulate innate immune response. Indeed, analysis

of the bronchoalveolar lavage of infected lungs showed that

Coch�/� mice had a defect in the local secretion of IL-6, TNF-a,

IL-1b, and in the macrophage and neutrophil chemoattractants

MCP-1 and KC at 8 hr postinfection with PA14 (Figure 5F), fol-

lowed by a defective recruitment of monocytes/small macro-

phages and neutrophils at 12 hr after infection (Figure 5G). Differ-

entiated alveolar macrophage counts were similar in BAL of WT

and Coch�/� mice at this time point (data not shown). Because

cochlin was not expressed at the mRNA level in lung under basal

condition nor following infectionwithPA14 (Figure 5H) but cochlin

LCCL protein accumulated in the lung following infection with

PA14 (Figure 5I), we hypothesized that cochlin cleavage by ag-

grecanases and the subsequent release of cochlin LCCL into

the blood was necessary for cochlin to control bacteria loads in

the lung. Indeed inhibition of aggrecanases by i.v. injection of

compound 8OO greatly increased lung bacteria loads, demon-

strating that aggrecanaseactivity participate in thecontrol of bac-

teria growth (Figure 5J).More importantly, theeffect of compound

8OO was significantly attenuated in Coch�/� mice compared to

that of WT mice as shown by the statistical significance of the

interaction in the two-wayANOVA.We thus conclude that cochlin

cleavage accounts for a significant part of the antibacterial effect

by aggrecanases, although aggrecanases also control bacteria

growth through additional cochlin-independent mechanisms.

Taken together, we conclude that cochlin, specifically ex-

pressed by the follicular dendritic cells and selectively localized



Figure 5. Cochlin Promotes Antibacterial

Immunity against P. aeruginosa

(A) Release of cochlin p8 and p18 into the serum

during infection with PA14. Sera from WT and

Coch�/� mice i.n. infected with PA14 for 10 hr

were analyzed byWB. Sera frommice injected i.p.

with LPS (5 mg/kg, 8 hr) were used as positive

controls.

(B) Increased CFU number in lung and bacterial

spread in Coch�/� mice. Coch�/� and WT mice

were i.n. infected with PA14 for 24 hr. n = 8 per

group; *p < 0.01; **p < 0.001; data are represen-

tative of four independent experiments. Error bars

represent 1 SEM.

(C) Enhanced systemic cytokine burst in Coch�/�

mice.Coch�/� andWTmice were i.n. infectedwith

PA14 for 24 hr. IL-6 and IL-18 concentrations in

sera were measured by ELISA. Uninfected mice

were used as negative controls (NC). n = 8 per

group; *p < 0.01. Error bars represent 1 SEM.

(D) Reduced survival of infected Coch�/� mice.

Coch�/� and WT mice were i.n. infected with

PA14. n = 8 per group; Gehan-Breslow-Wilcoxon

test p < 0.05; data are representative of two in-

dependent experiments.

(E) Increased CFU number in lung and bacterial

spread in Coch�/� mice following S. aureus i.n.

infection. Coch�/� and WT mice were i.n. infected

with LAC for 24 hr. n = 8–9 per group; *p < 0.01;

**p < 0.001; data are representative of two inde-

pendent experiments. Error bars represent 1 SEM.

(F) Decreased cytokine levels in the BAL fluid of

Coch�/� mice. Coch�/� and WT mice were i.n. in-

fectedwithPA14 for 8hr.Cytokinesconcentrations

in theBALfluidweredeterminedbyELISA. n=7per

group; *p < 0.05. Error bars represent 1 SEM.

(G) Decreased lung recruitment of PMNs in

Coch�/� mice. Coch�/� and WT mice were i.n.

infected with PA14 for 12 hr. Cell numbers and

composition in the BAL was analyzed by flow

cytometry. Neutrophils are defined as CD11cneg,

CD11bhigh and GR-1pos. Monocytes and small

macrophages are defined as CD11cneg,

CD11bmild, and GR-1neg. n = 7 per group; *p <

0.05. Error bars represent 1 SEM.

(H and I) Cochlin is not produced but LCCL accu-

mulates in the lung following P. aeruginosa i.n.

infection.Coch�/� andWTmice were infected with

PA14 for 8 hr. Lung were analyzed for cochlin

mRNAexpressionbyRT-PCR (H)andcochlinLCCL

protein accumulation by WB (I). *, unspecific band.

(J) Reduced effect of aggrecanase inhibition on CFU number in the lung of Coch�/� mice. Coch�/� and WT mice were i.v. injected with C8OO (100 mg/kg) or

vehicle only (�) and i.n. infected with PA14 for 24 hr. n = 5 per group; *p < 0.01; **p < 0.001; ns, nonsignificant. The effect of cochlin deficiency on the increase in

CFU following C8OO injection was assessed by a two-way ANOVA by using ‘‘genotype,’’ ‘‘C8OO treatment,’’ and the interaction between ‘‘genotype’’ and

‘‘C8OO treatment’’ as fixed factors. ‘‘genotype’’: F1.18 = 11.68, p = 0.0035; ‘‘C8OO’’: F1.18 = 55.07, p < 0.001; ‘‘genotype*C8OO’’: F1.18 = 5.57, p = 0.0313. Error

bars represent 1 SEM.

See also Figure S5.
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in the fine extracellular network of conduits in the spleen

and lymph nodes, is an important modulator of innate immune

response. During infection and inflammation, cochlin is cleaved

by aggrecanases and secreted into blood circulation and

regulates local cytokine production, recruitment of immune

effector cells, and bacterial clearance (Figure S5K). We propose

that by regulating the production of cochlin, the FDCs may have

a previously unknown function in innate immune response in de-

fense against bacteria.
DISCUSSION

Our study describes cochlin as a modulator of innate immunity

produced by the FDCs, the known critical modulators of humoral

immunity promoting activation and maturation of B cells within

follicles (Allen and Cyster, 2008). FDCs are tightly associated

with conduits, a fine extracellular network in spleen and lymph

nodes that is involved in small antigens and cytokines transport.

While other conduit-associated cytokines have been shown to
Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc. 1069
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regulate local cell migration within the lymphoid organ, our study

demonstrates cochlin as the first immune modulator locally

deposited by the FDCs into the conduits and released upon

inflammation into the systemic circulation. Our study supports

the notion that the conduit is not only a channel mediating

passive diffusion of small molecules, but also a reservoir for

ready-to-be-released immune regulators to play active roles in

modulating immunity. Moreover, our study suggests a unique

role for the FDCs in modulating innate immunity.

We identified the FDCs as the producer of cochlin in the sec-

ondary lymphoid organs. FDCs play a critical role in germinal

center formation and B cell activation, affinity maturation, and

differentiation (Allen and Cyster, 2008). Coch�/� mice showed

no defects in germinal center formation, immunoglobulin re-

sponses, or antibody affinity maturation, suggesting that cochlin

in the FDCs may serve no function with regards to B cell activa-

tion. A previous study implicated cochlin in cell-adhesion, most

likely through its two C terminus von Willebrand factor A-like

(vWFA) domains (Bhattacharya et al., 2005). However, cochlin

deficiency does not modify FDC localization around the conduits

or their ability to capture antigen flowing in the conduit’s lumen,

suggesting that cochlin does not play a critical role in mediating

adhesion of FDCs. Although cochlin is associated with struc-

tures mediating fluid flow such as the trabecular meshwork in

the eyes, the conduits in the secondary lymphoid organs, as

well as in the inner ear (Bhattacharya et al., 2005; Nolte et al.,

2003; Robertson et al., 2006; Roozendaal et al., 2009), cochlin-

deficiency causes no impairment in the flow inside the conduit,

suggesting that cochlin does not play a critical structural role in

supporting the integrity of the fine tubular structure. Because

abnormal accumulation of cochlin in the inner ear and the eyes

has been proposed to interfere with fluid flow and contribute to

pathological conditions (Bhattacharya et al., 2005), a possible

future study may be to identify any condition where abnormal

accumulation of cochlin in the conduits may interfere with the

flow, which might provide further insights for the physiological

function of the conduits in the secondary lymphoid organs.

Our fluorescent and electron microscopy data consistently

show that cochlin colocalizes with collagen-forming fibrillar

and bundle structures in the conduits. A similar association

with type II fibrillar collagen has previously been shown in the in-

ner ear (Mizuta et al., 2008). Indeed, type I, II, and IV collagens

bind to the second vWFA domain but not the LCCL-domain of

cochlin (Nagy et al., 2008). Our data reveal that the LCCL domain

is released in the blood following cochlin cleavage between its

LCCL domain and its C-terminal domain containing the two

vWFA domains. While cochlin C-terminal domains (named p40

and p45) are found in the spleen (Rodriguez et al., 2004), they re-

mained undetectable in the blood in both basal and inflammatory

conditions. Thus, our working model is that cochlin binds to

conduit collagen through its vWFA domains, and following co-

chlin cleavage by aggrecanases, the LCCL domain is released

into the bloodstream while the C-terminal domain remained

bound to collagen in the conduits.

Multiple cochlin isoforms have been described that result from

both alternative splicing and posttranslational modifications, and

their expression patterns show tissue specificity (Bhattacharya

et al., 2005; Ikezono et al., 2001; Kommareddi et al., 2007; Miz-

uta et al., 2008; Robertson et al., 2001). Our study reports p8 and
1070 Immunity 38, 1063–1072, May 23, 2013 ª2013 Elsevier Inc.
p18 as new circulating forms of cochlin, highly reminiscent of the

N-terminal p16 fragment named cochlin tomoprotein (CTP)

recently identified in the ear perilymph, but absent from inner

ear tissue (Ikezono et al., 2004). Our data open perspectives in

the identification of CTP, which may be identical to p8 and

p18, and in its mechanism of secretion that may be dependent

on aggrecanases. In addition, our finding that p18 is a glycosy-

lated product of p8 is consistent with the residue N102 being a

consensus site for N-linked glycosylation.

Our observation that the cochlin cleavage site [E-AtgRavsTA]

was highly similar to the established aggrecanase-1 consensus

cleavage site [E-(AFVLMY)-X(0,1)-(RK)-X(2,3)-(ST)-(VYIFWMLA)]

led us to identify cochlin as a new substrate for aggrecanase-1

and aggrecanase-2. These glutamyl-endopeptidases from the

ADAMTSmetalloprotease family play a key role in arthritis patho-

genesis by cleaving the cartilage matrix proteoglycan aggrecan

(Lin and Liu, 2010). The other substrates of the ADAMTS family

include several components of the extracellular matrix such as

COMP (cartilage oligomeris protein), biglycan, TIMP-4, matrillin-

2, and matrillin-3 (Hills et al., 2007). We found that aggrecanase-

2, but not aggrecanase-1, is constitutively expressed in the

spleen, suggesting that the low basal circulating level of cochlin

p8 and p18 in the bloodmay result of aggrecanase-2 activity. Ag-

grecanase-1 expression is highly induced in the spleen following

LPSor TNF-a injectionwith kineticsmatching exactly these of co-

chlincleavage.Thisobservation is consistentwithmultiple reports

claiming that aggrecanase-1 expression is upregulated by inflam-

matory cytokines (Bondeson et al., 2006; Cross et al., 2006; Song

et al., 2007; Tortorella et al., 2001; Yamanishi et al., 2002).

Our discovery that cochlin LCCL domain is a blood-circulating

protein with increased level during inflammation led us to investi-

gate a systemic role of the LCCL domain in the innate immune

response. LCCL is an autonomous folding domain consisting of

a central a helix wrapped by two b sheets named after the first

three proteins identified to contain this domain (Limulus factor C,

Cochlin and Lgl-1 [late gestation lung]) and later found in various

secreted proteins with modular structures (Liepinsh et al., 2001).

The horseshoe crabLimulus coagulation factorC is a serineprote-

ase secreted in the hemolymph, activated upon LPS binding, and

is critical in antibacterial immunity. In particular, factor Cmediates

the degranulation of the amoebocytes, the initiation of a protease

cascade resulting in coagulation, and the activationof the comple-

ment system (Ariki et al., 2008; Iwanaga et al., 1992; Koshiba et al.,

2007). The contribution of the LCCL domain in the function of fac-

tor C remains unknown, and in particular LCCL does not bind LPS

(Koshiba et al., 2007; Tan et al., 2000). A role in antibacterial innate

immunityhasalsobeensuggested for themammalianprotein lgl-1

(also named CRISPLD2 for cysteine-rich secretory protein LCCL

domain containing 2) expressed in various organs and notably de-

tected in the serum. Lgl-1 binds to LPS and sequesters it away

from the PBMCs surface (Wang et al., 2009). Cochlin LCCL

sequence and secretion pattern homologies with Limulus factor

C and lgl-1 led us to hypothesize a conservation of their functions.

Indeed, we discovered that cochlin is critical in innate immunity by

using models of P. aeruginosa and S. aureus i.n. infection. How-

ever, contrary to factor C or lgl-1, cochlin effector function is inde-

pendent of LPS because cochlin LCCL domain does not bind to

LPS (data not shown; Liepinsh et al., 2001), and impacts LPS

response neither in vitro nor in vivo. In addition, the low affinity of
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the P. aeruginosa LPS for TLR4 and the absence of phenotype of

the Tlr4�/� mice in regards to P. aeruginosa infection predict that

the TLR4-mediated LPS response is accessory in the immunity

against this pathogen, and modulation of this pathway is not ex-

pected to impact the outcome of the infection (Feuillet et al.,

2006; Ramphal et al., 2005). Finally cochlin role in controlling the

gram-positive bacteria S. aureus definitely demonstrates a LPS-

independent mechanism.

Our study shows a defect of Coch�/� mice in local cytokine

and chemoattractant production in the lung and in the subse-

quent recruitment of immune cells leading to an impaired control

of the bacteria and a consequent reduced viability following

infection. These data confirm previous studies describing that

the recruitment of neutrophils and macrophages to the lung is

absolutely critical for the outcome of P. aeruginosa infection

and that blunted early local inflammatory response in the lung

leads to later higher bacteria load, uncontrolled systemic cyto-

kine secretion and reduced survival (Horino et al., 2009; Koh

et al., 2009). Taken together, our study demonstrates an unex-

pected function of FDC in modulating innate immunity and a

role for secondary lymphoid organ and particularly local lymph

nodes in the amplification of the innate immune response by

the release of modulators such as cochlin.

EXPERIMENTAL PROCEDURES

Expression Vectors

Cochlin expression vectors have already been described (Yao et al., 2010)

Adamts-4 and Adamts-5 genes were cloned from total cDNA isolated from

C57B6 mouse spleen by using the primers adamts4-f 50-CATTTTGGTGCCG

CAGATG-30, adamts4-r 50-CGGGACAGTGAGGTTATTTCC-30, adamts5-f

50-CACTATGCGGCTCGAGTG-30, adamts5-r 50-CAGGCTAACATTTCTTCAG

CAGAC-30 in pcDNA3.

Reagents

Compound 8OO (patent US2007/0043066) was custom synthetized by

Shanghai ChemPartner.

Antibodies

The monoclonal anticochlin 9A10D2 raised against aa 7–227 of cochlin has

been described (Yao et al., 2010) (WB analysis). Rabbit polyclonal antibody

P13 was raised against cochlin aa 7–227 (histology staining and immunopre-

cipitation). The rat monoclonal AD4/4D2E10 antiaggrecanase-1 was raised

against full-length murine aggrecanase-1.

FDC Isolation

FDCs were isolated from LN as described (Sukumar et al., 2006) and cultured

in FDCs media (DMEM, FCS 10%, HEPES 20 mM, glutamine 2 mM, genta-

micin 50 mg/ml, nonessential amino acid 1X, b-mercaptoethanol 4 3 10�4%).

In Vitro Cleavage Assay

The C-term FLAG-tagged aggrecanase-1 and aggrecanase-2 were purified by

IP from culture media of 293T cells transfected with the murine Adamts-4

(aggr-1) or Adamts-5 (aggr-2) constructs. The full-length C-term FLAG-tagged

cochlin was similarly purified by IP from culturemedia of transfected 293T cells

in the presence ofMMP inhibitor III (50 mM). Proteins were eluted by FLAG pep-

tide and dialyzed in cleavage buffer (Tris HCl pH 7.5 50 mM, NaCl 100 mM,

CaCl2 10mM, NaN3 0.02%, NP-40 0.02%). Cochlin and aggrecanase-1 or ag-

grecanase-2 were incubated in cleavage buffer at 37�C, and reactions were

stopped by Laemmli buffer.

Bacteria Infection

Gender-matched 6- to 9-week-old Coch�/� and C57B6 control mice were

sedated with ketamine hydrochloride (65 mg/kg) and xylazine (13 mg/kg)
and infected i.n. with PA14 (1–3 3 107 CFU) or LAC (1–3 3 108 CFU). For

CFU numeration, lungs, blood, and spleens were harvested and homogenized

in LB, and dilutions were platted on LB-agar plates. Bronchoalveolar lavages

(BAL) were collected in 2 ml of PBS and spun at 1,500 rpm for 5 min.
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