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Motivated by the theory of superconductivity and more precisely by the problem
of the onset of superconductivity in dimension two, a lot of papers devoted to the
analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger
operator with magnetic field have appeared recently. Here we mention the works by
Bernoff–Sternberg, Lu–Pan and Del Pino–Felmer–Sternberg. This partially reco-
vers questions analyzed in a different context by the authors around the question of
the so called magnetic bottles. Our aim is to analyze the former results, to treat
them in a more systematic way and to improve them by giving sharper estimates of
the remainder. In particular, we improve significantly the lower bounds and as a
by-product we solve a conjecture proposed by Bernoff–Sternberg concerning the
localization of the ground state inside the boundary in the case with constant
magnetic fields. © 2001 Academic Press
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1. INTRODUCTION

We would like to discuss the spectrum of various self-adjoint realizations
of the Schrödinger operator

Ph, A, W=(hDx1 −A1)2+(hDx2 −A2)2,

in an open set W … R2, where h > 0 is a small parameter. Note that in the
case of the problems considered in superconductivity the parameter h is
proportional to the inverse of the intensity of some external field but the
question which is posed in this theory is actually a semi-classical question,
that is the question of analyzing the behavior of the spectrum as h Q 0
(more specifically the asymptotic behavior of the ground state energy and
the localization of the ground state).

We have shown in [HeMo2] (note that the former spelling of the second
author was Abderemane Mohamed), that, in the case when W=R2, and in
the semiclassical regime, the potential h |B(x)| plays the role of an effective
electric potential. By this we mean that, very roughly, the analysis of the
Schrödinger operator, −h2D+h |B(x)|, could give some good insight on the
localization of the ground state.

For PDE specialists, this is strongly related to Garding–Melin–
Hörmander lower bounds (see [Mel], [HeRo]) for the operator

Ph, ADt
=(hDx1 −A1Dt)2+(hDx2 −A2Dt)2,

in W×R.
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Although the case with boundary is not explicitly discussed in the
previous literature ([HeMo2]), one gets similar results (in the case with
boundary), for the Dirichlet problem, at least under the additional condition

b < bŒ, (1.1)

where we have used the notations:

inf
x ¥ W̄

|B(x)|=b, inf
x ¥ “W

|B(x)|=bŒ. (1.2)

Theorem 1.1. Under the condition (1.1), the lowest eigenvalue l (1)(h) of
the Dirichlet realization PD

h, A, W of Ph, A, W satisfies:

l (1)(h)
h

=b+o(1). (1.3)

The points where the minima of |B| are obtained are called the magnetic
wells. The decay outside the minima of |B| is related to the Agmon distance
associated with |B|−b.

We recall that the estimate is quite easy to prove, when the dimension is
2 and when B has a constant sign due to the inequality:

±h F B(x) |u(x)|2 [ OPh, Au | uP, -u ¥ C.0 (W). (1.4)

Here O · | ·P denotes the scalar product in L2(W) and || · || will denote the
corresponding L2 norm.

When B does not have a constant sign, a similar estimate is obtained but
with a remainder estimate (See [HeMo2, Theorem 3.1]) in O(h5/4). The
most difficult case when the dimension is greater than 2 is also treated.

As in the case when B=0, where we discussed various results according
to the properties of V near the minimum, one can discuss various results
according to the properties of |B(x)| near the minimum (see [HeMo2],
[Mon]).

As we shall see later, this property is no longer true in the case of the
Neumann problem. The infimum of |B(x)| over W̄ is no longer the good
measure for analyzing the bottom of the spectrum—also when (1.1) is
satisfied. When the condition (1.1) is not satisfied, the situation is less clear.

First we observe by comparison between Neumann and Dirichlet that,
when (1.1) is satisfied, we have, for the lowest eigenvalue m (1)(h) of the
Neumann realization PN

h, A, W of Ph, A, W, the same upper bound as for l (1)(h).
But this is also true when the condition is not satisfied (if one comes back
for example to the proof by Helffer–Mohamed [HeMo2], which is done,
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after a suitable gauge transform, by construction of gaussian quasimodes).
This was also stated more recently by Lu–Pan [LuPa2] (Lemma 6.1) with
a similar proof.

Theorem 1.2. The lowest eigenvalue m (1)(h) of the Neumann realization
PN

h, A, W of Ph, A, W satisfies:

m (1)(h)
h

[ b+o(1). (1.5)

The problem is that the corresponding lower bound is no longer always
true.

The aim of this paper is to discuss all these results and give some impro-
vements in the case of the Dirichlet realization and of the Neumann
realization. We shall in particular show how the technique of the Agmon
estimates developed in [HeSj1] and [HeMo2] will give the localization of
the groundstate in a rather more accurate form than in the previous works
of Lu–Pan [LuPa2] and Del Pino–Felmer–Sternberg [PiFeSt]. Perhaps
the more significant result is the proof (cf. Theorems 10.6 and 11.1) of the
following conjectured property :

Theorem 1.3. Let us assume that the magnetic field is constant and not
zero. Then any normalized groundstate of the Neumann realization of Ph, A, W

is exponentially localized as h Q 0 in the neighborhood of the points of the
boundary with maximal curvature.

Contents. The paper is organized as follows.
In Section 2, we establish rough results under very weak assumptions on

the potential. This extends a result established for the case with electric
field [BeHeVe] and was partially motivated by a question of S. Zelditch.
In Sections 3 and 4, we analyze the reference models corresponding to the
half plane and to the disk. Section 5 continues the general description of
the state of the art and exhibits new questions. In Section 6, we recall the
method of the Agmon estimates in the most basic cases and show how it
gives at a low price results concerning the concentration of the eigenvalues
near the boundary (under specific conditions) or in the interior. We pursue
in this section the analysis of the decay inside the boundary when some
general condition on the magnetic field is satisfied. Section 7 treats the
Dirichlet case or the Neumann case, when one can a priori show that the
groundstate is localized inside a compact of the open set W. We in particu-
lar give a two-term expansion of the groundstate energy, improving a one
term expansion given in [HeMo2]. Section 8 discusses the Dirichlet
problem when the boundary plays an important role, that is when the
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minimum of the magnetic field is attained at the boundary. Section 9 comes
back to the analysis of the Neumann problem; we recover with a better
control error term the upper bounds of [BeSt], [LuPa2], [PiFeSt] (this is
not simply an academic problem but could have consequence in the super-
conductivity problems) and improve the lower bound of [LuPa1] in the
generic case. The two last sections 10 and 11 are devoted to the case of the
constant magnetic case and to the complete proof of the conjecture of
[BeSt].

Finally, the two appendices recall the now well-known results which are
frequently used along the paper.

2. VERY ROUGH LOWER BOUNDS

Let us start the analysis of the question with very rough estimates. In the
case of Dirichlet and if B(x) ] 0 (say for example B(x) > 0), we can use2

2 S. Zelditch transmitted to one of us (July 1999) a question of this type coming from
geometry.

(1.4) which gives a comparison between self-adjoint operators in the form
(for any r ¥ [0, 1])

PD
h, A \ r(PD

h, A)+(1−r) hB(x). (2.1)

In order to find a lower bound for the smallest eigenvalue of the Dirichlet
realization, it is enough to apply for a suitable r a rough lower bound for
the operator:

r(PD
h, A)+(1−r) hB(x).

Using Kato’s inequality (cf for example [CFKS]), we can look for a lower
bound for the operator:

−rh2 DD
W+(1−r) hB(x).

We recall that this inequality gives, for any real potential V, the comparison

inf Sp(PD
h, A, W+V) \ inf Sp(−h2 DD

W+V), (2.2)

and that a similar result is true in the case of Neumann (see [HHOO]):

inf Sp(PN
h, A, W+V) \ inf Sp(−h2 DN

W+V). (2.3)

We shall show as a quite preliminary result the following proposition.
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Proposition 2.1. Under the condition that x W B(x) is \ 0, non con-
stant and analytic, then there exists h ¥ ]0, 1

2 ] and C > 0 such that:

l (1)(h)−bh \
1
C

h
1
h. (2.4)

Proof. Using well known lower bounds for the Schrödinger operator
−eD+V (see [BeHeVe]) (related to the Cwickel–Lieb–Rosenblyum estimate)
with e=rh and V(x)=1

2 (B(x)−b), we start from the property that there
exists h ¥ ]0, 1

2] and C such that, -r ¥ ]0, 1
2],

l (1)(h)−(1−r) hb \
1
C

(rh2)(rh)−h.

This can be rewritten in the form

l (1)(h)−hb \
1
C

r1−hh2−h−brh

or

l (1)(h)−hb \ r1−hh 1 1
C

h1−h−brh2 .

If we take r=ch (1−h)/h and cb small enough, we get (2.4) for h small
enough.

Remark 2.2. The optimality of this inequality will be discussed later in
particular cases. In particular, we will discuss the case when B(x)=b and
the case when B(x)−b has a non degenerate minimum.

Remark 2.3. When b=0, we can take r=1
2 , and get, for some h > 0:

l (1)(h) \
1
C

h2−h.

Results in [HeMo2], [Mon], [Ue2] or [LuPa1] show that it is optimal.

Remark 2.4. Note finally that if B — 0 in a simply connected open set
w (with w̄ … W), then

l (1)(h) [ l̃ (1)(w) h2,

where l̃ (1)(w) is the lowest eigenvalue of the Dirichlet Laplacian in w.
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3. THE BASIC MODELS IN THE HALF-PLANE

Let us consider in a regular domain W of R2 the Neumann (or Dirichlet)
realization of the operator

Ph, bA0 , W :=1hDx1 −
b
2

x2
22+1hDx2+

b
2

x1
22, (3.1)

with

A0(x1, x2)=(12 x2, −1
2 x1). (3.2)

Note that, by Neumann realization, we mean the condition

n · (hN−ibA0) u=0 on “W, (3.3)

where n is the external normal at the boundary.
The parameter h is the semiclassical parameter and b is the constant

magnetic field. Of course, as we have seen already, replacing (h, b) by (1, b
h )

does not really change the problem. We have indeed:

Ph, bA0
=h2P1, bA0/h. (3.4)

Here b is assumed to be different from 0 and, without loss of generality, we
can assume:

b > 0. (3.5)

So the problem of analyzing (for fixed b) the semiclassical limit h Q 0 is the
same as the problem of analyzing (for fixed h > 0) the large field limit
b Q +..
Let us denote by m (1)(h, b, W) and l (1)(h, b, W) the bottoms of the spectrum

of the Neumann or Dirichlet realization of Ph, bA0
in W. Depending on W,

this may correspond to an eigenvalue (if W is bounded) or to a point in the
essential spectrum (for example if W=R2 or W=R2

+). Let us recall that

m (1)(h, b, R2)=l (1)(h, b, R2)=hb, (3.6)

where b is an eigenvalue with infinite multiplicity.
We note that in the Dirichlet case, we have by monotonicity the lower

bound:

l (1)(h, b, W) \ l (1)(h, b, R2)=hb. (3.7)

Such a lower bound is false in the case of the Neumann problem and this
makes the problem more interesting.

610 HELFFER AND MORAME



The analysis in R2
+={(x1, x2) ¥ R2 | x2 > 0} is less known and will play

an important role in our discussion.
First we observe by construction of quasimodes and (3.7) that:

l (1)(h, b, R2
+)=hb. (3.8)

Let us now analyze the Neumann case.
We take h=1 and first perform a gauge transformation which leads to

the analysis of the operator

S̃b=D2
x2+(Dx1 −bx2)2, (3.9)

with Dirichlet or Neumann conditions. Note that we now get the standard
Neumann condition on x2=0.

In order to make the spectral analysis of the operator, we can perform a
partial Fourier transform and we get

Ŝb(t, s, Dt; B)=D2
t +(s−bt)2, (3.10)

considered as an operator on R2
+={(t, s) ¥ R2 | t > 0} with Dirichlet or

Neumann conditions on t=0.
A scaling shows that it is enough to consider the case b=1 and then we

recover the general case by multiplication by b.
The analysis of the spectrum is then reduced to the spectral analysis of

an t-family of differential operators

H(t, Dt; t) :=D2
t +(t−t)2. (3.11)

We shall consider the Dirichlet and Neumann realizations of this operator
in R+ respectively denoted by HD, t and HN, t. Let us observe that the
operator is unitary equivalent to the corresponding realization of the
harmonic oscillator D2

t +t2 in ]−t,+.[.
The Dirichlet spectrum of P1, A0

is obtained by

Sp(PD
1, A0

)={l ¥ R+ | ,t ¥ R s.t. l ¥ Sp(HD, t)} (3.12)

and similarly for Neumann. The eigenvalues of HD, t and HN, t are analytic
with respect to t and not constant. Hence one obtains easily (See Reed–
Simon, Vol. IV [ReSi]) that we get a priori a continuous band spectrum in
the two cases. The analysis of the bottom of the spectrum is an immediate
consequence of the analysis of the lowest eigenvalue of HD, t or HN, t as a
function of t.

Here the answer is quite different for Dirichlet and Neumann.
For Dirichlet, the lowest eigenvalue l̂ (1)(t) decays monotonically from

+. to 1 as t goes from −. to +..
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For Neumann, the lowest eigenvalue m̂ (1)(t) decays monotonically from
+. to 1 as t goes from −. to 0. Then one can show [DaHe] that there
exists t0 > 0 such that m̂ (1)(t) continues to decay monotonically till some
value

G0 :=m̂ (1)(t0) < 1 (3.13)

and increases again monotonically to 1 as t Q +. (see Appendix A for
more details) and we get

Proposition 3.1. The spectrum of the Dirichlet realization in R2
+ is:

Sp(PD
h, bA0 , R

2
+
)=[bh,+.[. (3.14)

The spectrum of the Neumann realization in R2
+ is

Sp(PN
h, bA0 , R

2
+
)=[bG0h,+.[, (3.15)

with

0 < G0 < 1. (3.16)

The fact that the bottom of the spectrum of the Neumann problem is
strictly lower that the bottom of the problem in R2 will play a quite impor-
tant role in the discussion.

Remark 3.2. The analysis of the Dirichlet problem in the half-plane
appears also in the study of the quantum Hall effect. We refer to [DePu]
and to [FrGrWa] for more general domains.

Remark 3.3. The case of a domain with a corner was recently analyzed
in [Ja] and [Pan]. It is in particular proved that in domains with right
angles, we have

m (1)(b, W) [ G1b+o(b),

for some G1 satisfying:

0 < G1 < G0.

This inequality is obtained by the choice of a suitable quasimode. This G1

is the lowest eigenvalue of the Neumann realization in:

R2
++={(x1, x2) ¥ R2 | x1 > 0, x2 > 0}.

The localization of the ground state in the corners is also obtained by this
author.
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4. THE CASE OF THE DISC IN THE CONSTANT
MAGNETIC CASE

We first present the results by L. Erdős ([Er1], [Er2]) and give an
alternative proof for improving some of the statements. When considering
lower bounds, it is useful to mention the following result obtained by
L. Erdős :

Proposition 4.1. For any planar domain W and b > 0, we have

l (1)(b, W) \ l (1)(b, D(0, R)), (4.1)

where D(0, R) is the disk with same area as W,

pR2=Area(W),

and l (1)(b, W) is the lowest eigenvalue of the Dirichlet realization of the
Schrödinger operator with constant magnetic field b > 0.
Moreover the equality in (4.1) occurs if and only if W=D(0, R).

In the case of the disk, L. Erdős observes that l (1)(b, D(0, R)) is equal to
the lowest eigenvalue of the Dirichlet realization of the two dimensional
harmonic oscillator : −D+r2/4 in D(0, R).

This one is equal to 2l̂ (1)(]−R,+R[) where l̂ (1)(]−R,+R[) is the
groundstate energy of the one dimensional harmonic oscillator −(d/(dx2))+
1
4 x2 in the interval ]−R,+R[ with Dirichlet condition.

In the one-dimensional case, we can then apply semi-classical techniques
developped in this context in [Bo], [BoHe] for getting the following
improvement of [Er1] and [Er2]:

Proposition 4.2. In the case of Dirichlet conditions in ]−R,+R[, the
lowest eigenvalue of the Dirichlet realization of −d2/dx2+x2/4 satisfies, in
the limit R Q +.:

l̂ (1)(]−R,+R[)− 1
2 ’ 2

1
2p−1

2R exp(−1
2 R2). (4.2)

The proof is quite similar to the proof given in [Bo] (pp. 250–254) for
treating the Neuman case [Bo] (Formula (2.23)) and [BoHe]:

Proposition 4.3. In the case of Neumann conditions in ]−R,+R[, the
lowest eigenvalue of the Neumann realization of −d2/dx2+x2/4 satisfies, in
the limit R Q +.:

m̂ (1)(]−R,+R[)− 1
2 ’ −2

1
2p−1

2R exp(−1
2R

2). (4.3)
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As is expected, we observe that the boundary effect is very small as
R Q +.

l̂ (1)(]−R,+R[)− m̂ (1)(]−R,+R[) ’ 2
3
2p−1

2R exp(−1
2 R2),

as R tends to ..
Coming back to our initial problem, this gives using the scaling

invariance :

Proposition 4.4. In the regime R`b large, we have the asymptotic:

l (1)(b, D(0, R))−b ’ 2
3
2p− 1

2 b
3
2R exp1−bR2

2
2 . (4.4)

Remark 4.5. It is a natural question to ask for an isoperimetric
inequality in the case of Neumann, that is if the inequality m (1)(b, W) \
m (1)(b, D(0, R)) is true. But the recent results by Sternberg and coauthors
[BeSt], [PiFeSt] that we shall discuss here, compared with those of
Bauman–Phillips–Tang [BaPhTa], contradict this result. Playing with the
maximal curvature at the boundary and keeping fixed the area, one can
indeed (in the semiclassical regime) get a contradiction with this isoperime-
tric inequality (see Theorem 5.2 in this paper) in the regime b large.

Remark 4.6. In the paper by Baumann–Phillips–Tang [BaPhTa]
(Theorem 6.1, p. 24) (see also [PiFeSt]) the authors propose the following
asymptotic as b is large:

m (1)(b, D(0, R))=G0b−2M3
1
R

b
1
2+O(1). (4.5)

Here we recall that G0 is introduced in (3.13) and M3 > 0 is a universal
constant which will be made explicit in Appendix A (cf (A.6) and (A.9)).
We shall give an alternative proof in Section 11.

Remark 4.7. Another interesting result is the case of the exterior of the
disk. One can first observe that the bottom of the essential spectrum is
equal to b. One can show that, when b is large, there is at least one eigen-
value below b. Moreover the groundstate energy will satisfy:

m (1)(b, D(0, R)c)=G0b+2M3
1
R

b
1
2+O(1). (4.6)

This last result, which seems new, will be proven in Section 11.

Finally, let us observe that, due to the homogeneity, we get for free the
following semi-classical corollaries of respectively (4.4) and (4.5).
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Proposition 4.8. The lowest eigenvalue of PD
h, A0 , D(0, R) satisfies as h Q 0:

l (1)(h, b, D(0, R))−bh ’ 2
3
2p−1

2b
3
2h

1
2R exp 1−bR2

2h
2 . (4.7)

Proposition 4.9. The lowest eigenvalue of PN
h, A0 , D(0, R) satisfies as h Q 0:

m (1)(h, b, D(0, R))=G0bh−
2
R

M3b
1
2h

3
2+O(h2). (4.8)

5. SEMICLASSICAL QUESTIONS: FORMER RESULTS

We now consider the questions which are considered in superconducti-
vity. In the case of a bounded regular open set, del Pino, Felmer and
Sternberg [PiFeSt] obtain the following results.

Theorem 5.1. Let W … R2 be a bounded, open, simply connected domain
with a C. boundary “W. Let A be a potential in W such that B(x)=b > 0. If
uh is a sequence of groundstates for the Neumann realization of PN

h, A, W in W

associated with the lowest eigenvalue m (1)(h). Then, there exist h0 > 0 and
constants c1 > 0 and c2 > 0 such that

|uh(x)| [ c1 ||uh ||L.(W) exp(−c2h−1
2 dist(x, “W) ), (5.1)

for all x ¥ W.
Moreover if W is not a disc, then we have:

lim
hQ 0
h > 0

(min
x ¥ “W

|uh(x)|)=0. (5.2)

The second theorem proved by Bernoff–Sternberg [BeSt] (see also
[LuPa3]) gives an upper bound of m (1)(h). The localization (5.2) is a weak
version of a much stronger result which will be proved in Section 11.

Theorem 5.2. Under the assumptions of Theorem 5.1, we have:

m (1)(h) [ G0h−2omaxM3h
3
2+o(h

3
2). (5.3)

Here omax is the value of the maximal curvature which is assumed to be
strictly positive and M3 is a universal constant (cf (A.9)).

The proof is essentially a consequence of the construction of matched
solutions. Let us just mention that in suitable coordinates (s, t) (t=0
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defining the boundary) (see Appendix B) in a neighborhood of a point of
maximal curvature (s=0 defining this point), the solution takes the form:

u :=f(h−1
2 t) exp − ch−1

4s2 · exp ih−1[F0(s, t)+h
1
2F1(s, t)]. (5.4)

Note that it is coherent with the result given, in the case of the disc, by
Bauman–Phillips–Tang [BaPhTa] which was already discussed in (4.5). We
will come back to these two results in Sections 10 and 11.

This result is completed by a theorem by Lu–Pan [LuPa2] which is valid
for general magnetic fields:

Theorem 5.3.

lim
hQ+0

m (1)(h)
h

=min(G0bŒ, b). (5.5)

Remark 5.4. 1. Although it is not completely proved in these previous
contributions, the localization of the Neumann groundstate is far from the
boundary when

b < G0bŒ.

This will be shown in this paper.
2. When b > G0bŒ, one will show that the groundstate is localized

near the boundary. This is for example the case when the magnetic field is
constant (which is analyzed in [PiFeSt]).

3. It is interesting to have a better localization (than for example
(5.2) in the constant magnetic field case) inside the boundary. One can wait
for example for exponential decay outside the minima of |B|/“W assuming
they are isolated. Preliminary arguments are given by [PiFeSt] in the case
B=const. but we shall come back to the problem in Sections 10 and 11.

4. When bŒ > 0 and b=0, the analysis by [HeMo2] is relevant. The
case when bŒ=0 and |B(x)| > 0 in W is treated in [LuPa2].

5. Note that Giorgi–Phillips [GiPh] and Ueki [Ue2] give earlier
weaker lower bounds which have independent interest.

6. IMS TYPE DECOMPOSITION AND AGMON’S ESTIMATES

6.1. Preliminaries

We recall in this section the technique of the Agmon estimates and show
how they give rather easily rough results which will be improved later. In
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the semi-classical context, this technique was mainly developed by Helffer–
Sjöstrand [HeSj1], [HeSj4] but the inspiration comes from former results
due to many authors: Lithner, Agmon [Ag], and Simon [Si] among
others.

In the Dirichlet case, the inequality (1.4) was (at least when the condition
B(x) > 0 is satisfied) the starting point of the analysis of the decay. This is
no longer the case when Neumann boundary conditions are assumed, but
we can keep the general strategy as developped in [HeMo2].

We assume that W is a bounded, regular open set and that

B(x) > 0. (6.1)

One could also consider unbounded domains but in this case one has to
add some assumption at ., permitting the essential spectrum to be
localized.

6.2. Upper Bounds

Using suitable quasimodes, one can get:

m (1)(h) [ min(b, G0bŒ) h+Ch
5
4 . (6.2)

We will show an improved version of this property later but note that
Lu–Pan give at least the weaker

m (1)(h) [ min(b, G0bŒ) h+o(h), (6.3)

which is enough for our analysis of the decay. Note also that the upper
bound involving inf B can also be obtained by using [HeMo2].

Further improvements of (6.2) will be given in Theorem 9.1.

6.3. Lower Bounds

Let 0 [ r [ 1. We first claim that there exists C such that, for any e0 > 0,
we can, by scaling a standard partition of unity of R2, and by restricting it
to W̄, find a partition of unity qh

j satisfying in W,

C
j

|qh
j |

2=1, (6.4)

C
j

|Nqh
j |

2 [ Ce−2
0 h−2r, (6.5)

and

supp(qh
j ) … Qj=B(zj, e0hr), (6.6)
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where B(c, r) denotes the open disc in R2 of center c and radius r. Moreover,
we can add the property that:

either supp qj 5 “W=”, either zj ¥ “W. (6.7)

According to the two alternatives in (6.7), we can decompose the sum in
(6.4) in the form

C=C
int

+C
bnd

,

where ‘‘int’’ is in reference to the j ’s such that zj ¥ W and ‘‘bnd’’ is in refer-
ence to the j’s such that zj ¥ “W.

The second point is to implement this partition of unity in the following
way:

qN
h (u)=C

j
qh(qh

j u)−h2 C
j

|| |Nqh
j | u||2, -u ¥ H1(W). (6.8)

Here qN
h (or qN

h, A , if we want to keep the reference to the magnetic potential)
denotes the quadratic form

qN
h, A(u)=F

W

|h Nu−iAu|2 dx, (6.9)

and we recall that || · || denotes the L2-norm in W.
This formula is usually called IMS formula (see [CFKS]) but is actually

much older (see for example [Mel]).
If aN

h, A is the associated sesquilinear form, (6.8) is the consequence of the
identity, for any function q ¥ C.(W̄) and any u ¥ H1(W):

qN
h, A(qu)=Re aN

h, A(u, q2u)+h2 || |Nq| u||2L2(W) . (6.10)

We will also use later the property that, for any function q ¥ C.(W̄) and
any u in the domain of PN

h, A, W , that is for any u in the space D(PN
h, A, W)

:={v ¥ H2(W) | n · (“−iA) u/“W=0}:

qN
h, A(qu)=ReOPN

h, A, Wu | q2uPL2(W)+h2 || |Nq| u||2L2(W) . (6.11)

We can rewrite the right hand side of (6.8) as the sum of three (types of)
terms.

qh(u)=C
int

qh(qh
j u)+C

bnd
qh(qh

j u)−h2 C
j

|| |Nqh
j | u||2, -u ¥ H1(W).

(6.12)
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For the last term in the right hand side of (6.12), we get using (6.5):

h2 C
j

|| |Nqh
j | u||2 [ Ch2−2re−2

0 ||u||2. (6.13)

This measures the price to pay when using a fine partition of unity: If r is
large, the error is as big as h2−2r. We shall see later what could be the best
choice of r or of e0 for our various problems (note that the play with e0
large will be only interesting when r=1

2).
The first term in the right hand side of (6.12) can be estimated from

below by using (1.4). The support of qh
j u is indeed contained in W. So we

have:

C
int

qh(qh
j u) \ h C

int
F B(x) |qh

j u|2 dx. (6.14)

The second term in the right hand side of (6.12) is the more delicate and
corresponds to the specificity of the Neumann problem. We have to find a
lower bound for qh(qh

j u) for some j such that zj ¥ “W. We emphasize that zj
depends on h, so we have to be careful in the control of the uniformity.

Let z be a point in “W. The boundary being regular, we can, by a change
of coordinates in a small neighborhood of this point, rewrite the form qh, A

for u’s with support in this neighborhood of z:

qh, A(u)=F
x̃2 > 0

C gk, a(x̃)(ih“x̃k ũ+Ãk(x̃) ũ) · (ih“x̃a ũ+Ãa(x̃) ũ) det(g(x̃))
1
2 dx̃.

Here we can assume that the new cordinates of z are (0, 0) and we can
also assume that the matrix g is the identity at z:

gk, a(0)=dk, a.

Of course g depends on z, but all the estimates we could need on the
derivatives of g will be uniform in z.

The game is now to compare for u’s with support in a ball of the type
B(z, 2Ce0hr) qh, A with the quadratic form:

qh, Ã(ũ)=F
x2 > 0

|(ih“x1 − 1
2 B(z) x2) u|2+|(ih“x2+

1
2 B(z) x1) u|2 dx.

We have omitted for simplicity the tildes in the right hand side. The com-
parison is not direct but as an intermediate step, we have to use a gauge
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transformation (multiplication by exp−i(fj/h)) associated to a C. func-
tion fj such that

wA=wAnew, j
−dfj,

with

Anew, j(zj)=0,

|Anew, j(x)− 1
2 (B(zj)(−x2, x1))| [ C |x|2.

In this formula, wA is the one-form attached to the vector field A: wA :=
A1 dx1+A2 dx2. Let us emphasize that C is independent of j. Let us also
introduce for the next formula: A lin

j :=1
2(B(zj)(−x2, x1)).

Following line by line the computations of [HeMo2], we get:

qh, A(qh
j u) \ (1−Ch2he2−Ce0hr) qh[A lin

j ] 1exp−
i
h

fjq
h
j u2

−Ch−2he−2 || |x|2 qh
j u||2

\ (1−Ch2he2−Ce0hr) qh[A lin
j ] 1exp−

i
h

fjq
h
j u2

−Ch4r−2he−2 ||qh
j u||2.

We can now use the result concerning the half -plane in order to get:

qh, A(qh
j u) \ (1−Ch2he2−Ce0hr) hG0 F B(zj) |qh

j u|2 dx−Ch4r−2he−2 ||qh
j u||2.

(6.15)

We now put together all the estimates and obtain:

qh, A(u) \ h C
int

F B(x) |qh
j u|2 dx

+(1−Ch2he2−Ce0hr) hG0 C
bnd

F B(zj) |qh
j u|2 dx

−Ch4r−2he−2 C
bnd

||qh
j u||2

−Ce−2
0 h2−2r ||u||2. (6.16)
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We have now to optimize our choices of r, h and e, e0. If we just want to
get a lower bound of the spectrum, we can first write:

qh, A(u) \ h min(b, G0bŒ) ||u||2

−(Ch2h+1e2+Ce0hr+1+Ch4r−2he−2+Ce−2
0 h2−2r) ||u||2.

Taking r=3
8 , h=1

8 , e=e0=1, we get:

qh, A(u) \ (min(b, G0bŒ) h−Ch
5
4) ||u||2. (6.17)

So, taking u=u1
h , where u1

h is a groundstate, we obtain from (6.17):

Proposition 6.1. There exist constants C > 0 and h0 > 0 such that, for
all h ¥ ]0, h0]:

m (1)(h) \ (min(b, G0bŒ)) h−Ch
5
4 . (6.18)

This result is not optimal. We shall show in Theorem 9.1 a stronger
estimate of the remainder in O(h3/2). In the case of a constant magnetic
field, we shall actually determine the coefficient of h3/2 as suggested by the
computations of [BeSt] and [PiFeSt]. This will be done in Sections 10 and 11.

But for the control of the decay, we need also to take in (6.16) r=1
2 ,

h=1
8 , e=1 and e0 large. This gives an estimate which may look weaker but

will be more efficient.

Proposition 6.2. There exists C and h0 and, for all e0 > 0, there exists
C(e0) such that, for h ¥ ]0, h0], the following inequality

qh, A(u) \ h C
int

F B(x) |qh
j u|2 dx

−C(e0) h C
bnd

F |qh
j u|2 dx

−
Ch
e2
0

C
int

F |qh
j u|2 dx (6.19)

is satisfied, for all u ¥ H1(W).

6.4. Agmon’s Estimates

We continue to follow the proof given in [HeMo2] and will explain the
modifications needed in order to treat Neumann problems.
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We first observe that if F is a real and uniformly Lipschitzian function
and if u is in the domain of the Neuman realization of Ph, A, then we have
by a simple integration by part (see (6.10)):

Re7Ph, Au, exp
2F

h
1
2

u8

=Re71h
i
N−A2 u, 1h

i
N−A2 exp

2F

h
1
2

u8

=71h
i
N−A2 exp

F

h
1
2

u, 1h
i
N−A2 exp

F

h
1
2

u8−h >|NF| exp
F

h
1
2

u>
2

=qh[A] 1exp
F

h
1
2

u2−h >|NF| exp
F

h
1
2

u>
2

. (6.20)

We now take u=uh an eigenfunction attached to the lowest eigenvalue
m (1)(h). This gives:

m (1)(h) >exp
F

h
1
2

u>
2

=qh, A
1exp

F

h
1
2

u2−h > |NF| exp
F

h
1
2

u>
2

. (6.21)

It remains to reimplement the previous inequality in this new one and to
use the upper bound (6.2).

Let us take F(x)=a max(d(x, “W), h
1
2), where a > 0 has to be deter-

mined. Let us use Proposition 6.2. We first write:

qh, A
1exp

F

h
1
2

u2 \ h C
int

F B(x) :exp
F

h
1
2

qh
j u :

2

dx

− C(e0) h C
bnd

F :qh
j exp

F

h
1
2

u :
2

dx

−
Ch

e2
0

C
int

F :exp
F

h
1
2

qh
j u :

2

dx. (6.22)

Let us first consider the case B(x)=b. The inequality (6.2) becomes:

m (1)(h) [ G0bh+Ch
5
4 . (6.23)

Using (6.20), we finally obtain:

1b(1−G0)−Ch
1
4−

C

e2
0

−a22 C
int

F :exp
F

h
1
2

qh
j u :

2

dx [ C(e0) C
bnd

F |qh
j u|2 dx.

(6.24)
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Taking e0 large enough and

a <`b(1−G0)

we finally obtain the estimate

>exp a
d(x, “W)

h
1
2

uh
> [ C ||uh ||, (6.25)

for some new constant C > 0.
Note that we just need a weak upper bound of m (1)(h) in order to make

the argument correct. In particular, the remainder Ch
1
4 in (6.24) can be

replaced by o(1) without changing the argument. This is the upper bound
obtained in [LuPa2].

Let us now show how to go from an L2-estimate to an L.-estimate.
Using (6.21), we first get:

qh, A
1exp

F

h
1
2

u2 [ Ch >exp
F

h
1
2

u>
2

. (6.26)

This gives, together with (6.25), an estimate in H1 norm. Coming back to
the second order differential equation satisfied by exp(F/h1/2) and using
that F is constant near the boundary3, we can use the regularity of the

3 Actually, we need first to use a regularized F in order to make the argument rigorous.
Another way, would be to use Lp estimates.

Neumann problem for getting a control in H2. This gives finally (through
the Sobolev injection theorem) the proof in the constant magnetic field case
of the following theorem:

Theorem 6.3. Let us assume that the condition

G0bŒ < b (6.27)

is satisfied.
There exists C > 0, a > 0 and n ¥ R, such that if uh is the ground state of

PN
A, h, W , then:

exp a
d(x, “W)

h
1
2

|uh(x)| [ Ch−n ||uh ||L2, -x ¥ W. (6.28)

The condition (6.27) is always satisfied when B is constant because b=bŒ
and G0 < 1. In this case, this is essentially similar to the result of [PiFeSt],
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which was recalled in Theorem 5.1 modulo possibly a negative power of h.
These authors use indeed a normalization by the L.-norm.

The proof when B is not constant is essentially the same. The inequality
(6.24) becomes:

1b−G0bŒ−o(1)−
C

e2
0

−a22 C
int

F :exp
F

h
1
2

qh
j u :

2

dx [ C(e0) C
bnd

F |qh
j u|2 dx.

(6.29)

We can then conclude in the same way (modulo the proof of (6.2) which
will be given later or using the result of Lu–Pan (6.3)).

Remark 6.4. On the contrary, when b < G0bŒ the ground state decays
exponentially outside neighborhoods of points where B(x)=b.

Remark 6.5. In the case when the boundary has right corners (i.e. there
exists near these points of the boundary, a local diffeomorphism, whose
differential is a rotation at the corner), similar results can be proved4 using

4 See [Ja]. This is true at least for the H1 estimates. In the proof we describe above, one has
probably to be careful with the regularity theorems in domain with corners.

for example the distance to the corner points instead of the distance at the
boundary. We only need to show that: G1 < G0 in the case of a constant
magnetic field in order to have the following condition satisfied

G1b' < min(b, G0bŒ), (6.30)

where b' is the infimum of B(x) over the various right corner points. Other
results devoted to the case of three dimensional domains with regular
boundaries [LuPa5] or with edges and corners [Pan] appear recently.
These results were also announced in [LuPa4].

6.5. Decay Inside the Boundary

We first treat the ‘‘easy’’ case when (6.27) is satisfied and when B(x)
restricted to “W has only isolated minima. What we would like is to recover
in a more precise way the statements of [LuPa2] (Proposition 7.2 and
Theorem 7.3). Let us first remember what we got from (6.16) by taking
r=3

8 and h=1
8 .

qN
h, A(u) \ h C

int
F B(x) |qh

j u|2 dx+(1−Ch
1
4) hG0 C

bnd
F B(zj) |qh

j u|2 dx

−Ch
5
4 C
bnd

||qh
j u||2−Ch

5
4 C

int
||qh

j u||2. (6.31)
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We now apply this inequality with u=exp(Fh/h1/2) uh where uh is the
ground state.

This gives (cf (6.21)):

m (1)(h) >exp
Fh

h
1
2

uh
>2 \ qh, A
1exp

Fh

h
1
2

uh
2−>|NF| exp

Fh

h
1
2

uh
>2. (6.32)

Combining the two estimates and (6.2), we obtain:

0 \ h C
int

F (B(x)−G0bŒ−Ch
1
4 −|NF|2) :qh

j exp
Fh

h
1
2

u :
2

dx

+(1−Ch
1
4) hG0 C

bnd
F (B(x)−bŒ−Ch

1
4 −|NF|2) :qh

j exp
Fh

h
1
2

u :
2

dx.

(6.33)

We have just to choose a suitable F for getting the right estimate. Let us
remember that we have already obtained a good control inside W under the
condition G0bŒ < b. So it is enough to give a control in a neighborhood N
of “W of size ’ h3/8. Outside this neighborhood, we know indeed already
that the ground state is exponentially small. In this neighborhood, we can
assume that we have local coordinates (t, s) introduced in Appendix B (the
neighborhood being described by {(t, s) | 0 [ t [ Ch3/8}). Changing pos-
sibly the decomposition ;int+;bnd, we can assume that ;bnd(qh

j )
2 \ 1 on

this neighborhood and vanishes outside a neighborhood of the same type
NŒ. By taking F=a1q(t) d(s)=q(t) f(s) where d“W is the Agmon distance
inside “W to the set of minima’s attached to the degenerate Agmon metric
(B(s, 0)−bŒ) ds2, a1 is strictly positive and sufficiently small and q(t)
localizes near the boundary, we obtain, for some constant C > 0, the
inequality:

0 \C
bnd

F (B(s, 0)−bŒ−Ch
1
4 −C |fŒ(s)|2) :qh

j exp
F

h
1
2

uh
:2 dx. (6.34)

This leads to a decay5 in the form

5 We do not try to be optimal in the measure of the decay.

C
bnd

F :qh
j exp

F

h
1
2

uh
:2 dx [ Ce exp

e

h
1
2

||uh ||
2
L2 , (6.35)
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for any e > 0, or

F
N

:exp
F

h
1
2

uh
:2 dx [ Ce exp

e

h
1
2

||uh ||
2
L2 . (6.36)

Actually, we can extend this inequality to an h-independent tubular neigh-
borhood of “W. Combining with the decay outside “W, this leads to the
following localization theorem:

Theorem 6.6. Let

p(“W)={w ¥ “W | B(w)=bŒ}. (6.37)

Let us assume that G0bŒ < b. Then, there exists a1 > 0 and, for any e > 0,
constants C(e) and h0(e) such that a normalized groundstate uh satisfies

>exp
a1d̃(z, p(“W))

h
1
2

uh
> [ C(e) exp

e

h
1
2

, (6.38)

for all h ¥ ]0, h0(e)]. Here, the ‘‘distance’’ d̃ is defined by:

d̃(z, p(“W))=d(z, “W)+q(d(z, “W)) d“W(s(z)). (6.39)

As in [HeSj1], assuming the non degeneracy of the minima of s W
B(s, 0), one can probably improve the estimate and get the existence of
C > 0 such that:

>exp
a1d̃(z, p(“W))

h
1
2

uh
> [ C exp Ch−1

4 . (6.40)

Remark 6.7. This theorem gives an accurate version of the result given
in [LuPa2].

Of course these estimates are not sufficient to treat the problem con-
sidered in [PiFeSt], when B=const. > 0, where we would like to prove
localization near the points of maximal curvature. When B is constant, the
effect of localization is more difficult to show. We shall see that the effective
potential creating the localization is −h3/2o(s) where o(s) is the curvature
at the point s of the boundary. One hopes to show a decay in exp−k/h1/4

for some k defined on “W and related to the metric (omax −o(s)) g(s) ds2,
where g is some strictly positive density. But this supposes finer estimates
with remainders in o(h3/2), which will be given in Section 10.
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7. A SHARP SEMI-CLASSICAL ESTIMATE OF THE
GROUNDSTATE ENERGY FOR THE TWO

DIMENSIONAL MAGNETIC
DIRICHLET PROBLEM

7.1. Main Theorems

Let W … R2 be a regular bounded open set and let A=(A1, A2) in
C1(W̄; R2) such that

B(z) :=
“A2

“x
(z)−

“A1

“y
(z) \ 0. (7.1)

For any h ¥ ]0, 1], PD
h, A, W denotes the Dirichlet self-adjoint operator,

defined on L2(W), associated to (hD−A)2; (D=Dz=(Dx; Dy)).
The associated sesquilinear form will be denoted by qD

h, A, W :

qD
h, A, W (u)=||hDu−Au||2L2(W) , -u ¥ H1

0(W). (7.2)

The associated self-adjoint operator on L2(W) is

Ph, A, Wu=(hD−A)2 u, -u ¥ H2(W) 5 H1
0(W). (7.3)

When W=R2, this self-adjoint operator on L2(R2) will be denoted by Ph, A.
We recall that −i[hDx −A1, hDy −A2]=hB \ 0 leads to the estimate

h ||B1/2u||2L2(W) [ qh, A, W(u), -u ¥ H1
0(W). (7.4)

Theorem 7.1. If A ¥ C1(W̄; R2) and if B \ 0, then for any y ¥ ]0, h−1[,

h inf Sp(−yh2DD
W+(1−yh) B) [ inf Sp(PD

h, A, W ). (7.5)

Here −DD
W=PD

1, 0, W is the Laplace operator on W with Dirichlet bound-
ary condition and, for an operator P, Sp(P) denotes its spectrum. We will
omit the superscript D when there is no possible confusion.

Proof. The estimate (7.4) leads to

yhPh, A, W+(1−yh) hB [ Ph, A, W, -y ¥ [0, h−1]. (7.6)

Then we use (2.2) and this gives (7.5). L
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We will be interested in the special case when B(z) ¥ C3+M(W̄) satisfies,
for some z0 ¥ W,

B(z) > b :=B(z0) > 0, -z ¥ W̄0{z0}, (7.7)

and we assume that the minimum is non degenerate:

Hess B(z0) > 0. (7.8)

We introduce in this case the notation:

a=Tr(12 Hess B(z0))1/2. (7.9)

If we use the estimate (7.5) with y=a2/(4b2), then the assumptions (7.7)
and (7.8) and the well known result giving the semi-classical estimate of the
ground state of the Schrödinger operator

−yh2 DW+(1−yh) B

(see for example [HeSj1], [Si] or [He1]), guarantee that

inf Sp(−yh2 DW+(1−yh) B)=(1−yh) b+hy1/2a+O(h2)

=b+
a2

4b
h+O(h2). (7.10)

So from (7.10) and (7.5), we obtain the existence of a constant C > 0
such that:

hb+
a2

4b
h2−Ch3 [ inf Sp(Ph, A, W). (7.11)

This estimate is actually not optimal and will be improved by the following
theorem.

Theorem 7.2. If A ¥ C4+M(W̄; R2), with M \ 0, and if the hypotheses
(7.7) and (7.8) are satisfied, then there exists a constant C > 0 such that

−Ch19/8 [ inf Sp(Ph, A, W)−5b+
a2

2b
h6 h [ Ch5/2. (7.12)
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The upper bound in (7.12) follows from the following theorem.

Theorem 7.3. Under the assumptions (7.7) and (7.8), then the lowest
eigenvalue l (1)(h) of PD

h, A, W satisfies

l (1)(h) [ bh+
a2

2b
h2+O(h5/2), (7.13)

as h Q 0+.
Here a and b are introduced in (7.7) and (7.9).

The left hand side of the estimate (7.12) will follow as in (7.11) from (7.6)
but without using (2.2). The magnetic field near z0 will not be neglected. So
in (7.5) we will take Ph, A 1, W instead of −h2DW, where A1(z)=(−1

2 by, 1
2 bx).

For that, we will use the following theorem.

Theorem 7.4. Let A ¥ C3(W̄; R2) and V ¥ C3(W̄; R) such that, for some
z0 ¥ W,

B(z)=
“A2

“x
(z)−

“A1

“y
(z) \ B(z0)=b > 0, -z ¥ W̄ (7.14)

V(z) > V(z0), -z ¥ W̄0{z0},

Hess V(z0) > 0.

(7.15)

Let r ¥ [0, 1] be given and let us consider the Dirichlet operator

PD
h, A, V, W=PD

h, A, W −hB(z)+hrV(z).

Then there exists a constant C=Cr > 0 such that

: inf Sp(PD
h, A, V, W )−hrV(z0)+h1+r a2

V

2b
: [ Chd(r) (7.16)

with

d(r)=inf(32+
3
4 r, 2, 1+2r) (7.17)

aV=Tr(12 Hess V(z0))1/2, (7.18)

As a matter of fact, if we take in (7.6) y=h−1/2, then we get the following
corollary.

Corollary 7.5.

h1/2 inf Sp(PD
h, A, W−hB(z)+h1/2V(z) [ inf Sp(PD

h, A, W )

with V(z)=B(z).
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So (7.14) and (7.15) are satisfied, when (7.7) and (7.8) are satisfied.
Formula (7.16) with r=1

2 gives the lower bound of (7.12).

Remark 7.6.

1. Theorem 7.4 is valid for a constant magnetic field.
2. Under the assumptions of Theorem 7.2, Theorem 7.4 can also be

applied to Ph, A, W by taking r=1 and V(z)=B(z).

But in this case we get that

inf Sp(Ph, A, W)=hb+O(h2).

Remark 7.7. Theorem 7.4 is valid if we change the definition of Ph, A, V, W

into:

Ph, A, V, W=Ph, A, W−bh+hrV(z).

Remark 7.8. The results of Theorem 7.4, when r ¥ [0, 1[, are valid for
the modified Neumann operator PN, mod

h, A, V, W associated to the quadratic form,
defined on H1(W) by:

qN
h, A, V, W (u)=F

W

{|[hDx −A1(z)+i(hDy −A2(z))] u(z)|2+hrV(z) |(z)|2} dz.

It is also the case for the Neumann operator PN
h, A, W+hrV(z)−hb

associated to the quadratic form

qN
h, A, W (u)=F

W

{|h Du(z)−A(z) u(z)|2+[hrV(z)−hb] |u(z)|2} dz,

-u ¥ H1(W).

But the reader should not forget that (7.4) is not valid for Neumann
operator.

Let us prove this last remark. Let q be a cut-off function supported in W,
such that q(z)=1 in a neighborhood of z0.

Let us consider the partition of unity (Jj(z)), j ¥ {0, 1}:

J0(z)=q(z)[q2(z)+(1−q(z))2]−1/2,

J1(z)=(1−q(z))[q2(z)+(1−q(z))2]−1/2.
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Then, by the so called IMS Formula (see for example [HeMo2] or the
discussion in Section 6 (6.8 or (6.10)), there exists a constant C1 > 0, such
that

|qN
h, A, V, W (u)−[qN

h, A, V, W (J0u)+qN
h, A, V, W (J1u)]|

[ C1h2 ||u||2L2(W) , -u ¥ H1(W),

and, thanks to (7.15)), there exists d > 0 such that:

qN
h, A, V, W (J1u)−hrV(z0) ||J1u||2L2(W) \ dhr ||J1u||2L2(W) , -u ¥ H1(W).

Combining with the theorem, this gives the lower bound.
But the upper bound is an immediate consequence of the min-max

principle. We get indeed easily that

inf Sp(PN
h, A, V, W ) [ inf Sp(Ph, A, V, O)

for any open subset O of W containing z0.
The proof remains the same for the operator PN

h, A, W+hrV(z)−hb.
Later we will assume that z0=0 when giving the proof of the above

Theorems 7.2 and 7.4.

7.2. Some Estimates on Eigenfunctions
We take the hypotheses of Theorem 7.4. The quadratic form associated

to Ph, A, V, W is defined on H1
0(W) by:

qh, A, V, W(u)=qh, A, W+F
W

[−hB(z)+hrV(z)] | u(z)|2 dz

=F
W

{|[hDx −A1(z)+i(h Dy −A2(z))] u(z)|2+hrV(z) |u(z)|2} dz.

(7.19)

Let l(h) be an eigenvalue of Ph, A, V, W and uh be an associated eigenfunction.
Let fh(z) denotes the Agmon distance of z to the well

Uh={w ¥ W; hrV(w)−l(h) [ 0},

associated to the Agmon metric [hrV(w)−l(h)]+ dz2.

Proposition 7.9. For any e ¥ ]0, 1],

(1− e2) F
W

[hrV(z)−l(h)]+ e2efh(z)/h |uh(z)|2 dz

[ F
W

[hrV(z)−l(h)]− |uh(z)|2 dz. (7.20)
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Proof. As in [HeMo2], we use the formula (already used in (6.21)),

qh, A, V, W(efuh)=l(h) ||efuh ||
2
L2(W)+h2 ||efuh Nf||2L2(W) , (7.21)

for any real Lipschitz function f.
Observing that |Nfh(z)|2 [ [hrV(z)−l(h)]+ and using (7.4) and (7.21),

we get

F
W

{hrV(z)−l(h)− e2[hrV(z)−l(h)]+} e2efh(z)/h |uh(z)|2 dz [ 0,

which is exactly (7.20), if we observe that, in the support of [hrV(z)−l(h)]− ,
we have fh(z)=0. L

A rough upper bound of the ground state energy. We take a magnetic
potential A such that

A(z)=1
2(−by, bx)+O(|z|3). (7.22)

This is always possible thanks to (7.14) (see for example [HeMo1]).
Let us consider the test function u0

h(z)=q(z)e−b |z|2/(2h), where q a cut-off
function with support in W and q(z)=1 in a neighborhood of z0=0. We
get easily using (7.15) and (7.22) that

qh, A, V, W(u
0
h)−hrV(0) ||u0

h ||
2
L2(W) [ Ch1+r ||u0

h ||
2
L2(W) ,

so

inf Sp(Ph, A, V, W)−hrV(0) [ Ch1+r. (7.23)

So we have proved that, if l (1)(h) is a groundstate energy, then

l (1)(h)=hrV(0)+O(h1+r). (7.24)

Then, the assumption (7.15) ensures, by comparing the Agmon metric with
the one associated to the metric |z|2 dz2, that, for C large enough,

Chr/2 |z|2 [ fh(z), if h1/2C [ |z|. (7.25)

A direct consequence of (7.20) and (7.25) is the following lemma.

Lemma 7.10. For any fixed real k \ 0, || |z|k uh||L2(W) [ C(hk/2+h(k(2−r)+r)/4)
||uh ||L2(W).
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Proof of Lemma 7.10. Let C1 > 1 be fixed and large enough, and let us
define the following domains

W0, h={z ¥ W | |z| [ C1h1/2}, (7.26)

W1, h={z ¥ W | C1h1/2 [ |z| [ 2C1h (2−r)/4}, (7.27)

and

W2, h={z ¥ W | 2C1h (2−r)/4 [ |z|}. (7.28)

By (7.24), (7.25), (7.27) and (7.28), if C1 is large enough, then

hr |z|2/C [ hrV(z)−l (1)(h), -z ¥ W1, h 2 W2, h (7.29)

and

hrV(z)−l (1)(h) [ Chr |z|2, -z ¥ W1, h. (7.30)

Hence, by immediate comparison, we have for some constant C > 0,

fh(z) [ Chr/2 |z|2, -z ¥ W1, h. (7.31)

In particular this implies for some constant C > 0,

fh(z) [ Ch -W1, h. (7.32)

Using (7.29) and (7.20) with e=1/2, we first get:

hr F
W1, h

|z|2 |uh(z)|2 dz [ C F
W1, h

[hrV(z)−l (1)(h)] |uh(z)|2 dz

[ C F
W1, h

[hrV(z)−l (1)(h)] exp fh(z)/h |uh(z)|2 dz

[ C F
W

[hrV(z)−l (1)(h)]+ exp fh(z)/h |uh(z)|2 dz

[ 2C F
W

[hrV(z)−l (1)(h)]− |uh(z)|2 dz.

Now, we observe that the support of [hrV(z)−l (1)(h)]− is contained in
W0, h, and using the behavior of V in W0, h near 0 and (7.24), we get, for
z ¥ W0, h:

|hrV(z)−l (1)(h)| [ hr |V(z)−V(0)|+Ch1+r [ C̃h1+r.
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So we have proved, for some suitable constant C

hr F
W1, h

|z|2 |uh(z)|2 dz [ Ch1+r F
W

|uh(z)|2 dz.

Dividing by hr, we obtain:

F
W1, h

|z|2 |uh(z)|2 dz [ Ch1 F
W

|uh(z)|2 dz. (7.33)

This estimate and (7.27) leads to

F
W1, h

|z|2k |uh(z)|2 dz [ Ch (k−1)(2−r)/2 F
W1, h

|z|2 |uh(z)|2 dz

[ C̃h1+(k−1)(2−r)/2 F
W

|uh(z)|2 dz. (7.34)

For the integral on W2, h, we use also (7.20) with e=1/2. If

y(h)=sup{|z|2k [hrV(z)−l (1)(h)]−1
+ e−fh(z)/h; z ¥ W2, h},

then

F
W2, h

|z|2k |uh(z)|2 dz [ Cy(h) F
W2, h

[hrV(z)−lh)]+ efh(z)/h |uh(z)|2 dz

[ C̃y(h) F
W

[hrV(z)−lh)]− |uh(z)|2 dz

[ Ĉh1+ry(h) F
W

|uh(z)|2 dz.

For the estimate of y(h), we use (7.24), (7.25), (7.28) and (7.29). This leads to:

y(h) [ Ch−r sup{tk−1e−(h−1+r/2t)/C; h−1+r/2t \ 4C2
1}

[ C̃h−r+(k−1)(2−r)/2.

So there exists a constant C > 0 such that:

F
W2, h

|z|2k |uh(z)|2 dz [ Ch1+(k−1)(2−r)/2 F
W

|uh(z)|2 dz. (7.35)
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For the integral on W0, h, we use (7.26) and get:

F
W0, h

|z|2k |uh(z)|2 dz [ Chk F
W0, h

|uh(z)|2 dz. (7.36)

Hence Lemma 7.10 comes from (7.34)–(7.36). L

Proof of Theorem 7.4. Let us introduce

A1(z)=1
2(−by, bx)

and

V2(z)=V(0)+1
2z · (Hess V(0)) · z.

We can suppose that V(0)=0, so

Ph, A, V, W \ 0.

Note that we have also

V(z)−V2(z)=O(|z|3). (7.37)

So using (7.19), (7.22), and (7.37), there exists a constant C > 0, such that,
for any h ¥ ]0, 1] and any u ¥ H1

0(W),

|qh, A, V, W(u)−qh, A 1, V2 , W(u)|

[ C[(qh, A, V, W(u))1/2 || |z|3 u||L2(W)+|||z|3 u||2+hr || |z|3/2 u||2L2(W)].
(7.38)

The estimate (7.24) (with V(0)=0) of the ground state energy l (1)(h) of
Ph, A, V, W, Lemma 7.10 applied to the associated ground state uh and (7.38)
show that

|qh, A 1, V2 , W(uh)−l (1)(h) ||uh ||
2
L2(W) |

[ C[(l (1)(h))1/2 ||uh ||L2(W) ×|| |z|3 uh ||L2(W)+|||z|3 uh ||2+hr || |z|3/2 uh ||
2
L2(W)]

[ C̃[h2+h3(2+r)/4] ||uh ||
2
L2(W) . (7.39)

So

inf Sp(Ph, A 1, V2 , W) [ inf Sp(Ph, A, V, W)+Chd0(r),
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with

d0(r)=inf(32+
3
4 r, 2).

As the potentials A1(z) and V2(z) satisfy also the assumptions of
Theorem 7.4, we have in the same way:

inf Sp(Ph, A, V, W) [ inf Sp(Ph, A 1, V2 , W)+Chd(r).

Hence:

|inf Sp(Ph, A, V, W)− inf Sp(Ph, A 1, V2 , W)| [ Chd(r). (7.40)

But Proposition 7.9 and Lemma 7.10 are also available for the operator
Ph, A 1, V2 in R2. The groundstate of Ph, A 1, V2 has an exponential decay.

Lemma 7.10 applied to the groundstates of Ph, A 1, V2 and Ph, A 1, V2 , W leads
also to

|inf Sp(Ph, A 1, V2 )− inf Sp(Ph, A 1, V2 , W)| [ Chk, -k > 0. (7.41)

But one can explicitly compute the spectrum in the case of Schrödinger
operator with constant magnetic field and positive quadratic potential; see
for example [Mel] (Theorem 2.4, p. 121) for the lower bound of the
spectrum, or [MatUe] (Theorem 2.2, p. 222) and [Par]. In particular we
get

inf Sp(Ph, A 1, V2 )=mh(r), (7.42)

where:

mh(r)=hrV(z0)−hb+
h

`2
[hrtV+b2−[(hrtV+b2)2−4h2r dV]1/2]1/2

+
h

`2
[hrtV+b2+[(hrtV+b2)2−4h2r dV]1/2]1/2, (7.43)

with

tV=Tr(12 Hess V(z0)), (7.44)

dV=det(12 Hess V(z0)). (7.45)

A simple computation shows that:

mh(r)=hrV(z0)+h1+r a2
V

2b
+O(h1+2r). (7.46)

So (7.16) comes from (7.40), (7.41) and (7.42). L
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7.3. Polynomial Magnetic Approximation

We begin now the first step of the proof of Theorem 7.3. We recall that,
with r=1 and V(z)=B(z), we can write

Ph, A, W=Ph, A, V, W.

We assume that the hypotheses of Theorem 7.3 are satisfied. Let l (1)(h) be
a lowest eigenvalue of Ph, A, W and uh an associated eigenfunction. Let us
remember that we have proved (7.24) which becomes in our case

l (1)(h)=hb+O(h2). (7.47)

The estimate of Lemma 7.10 becomes

|| |z|k uh ||
2
L2(W) [ C(hk/2+h(k+1)/4) ||uh ||

2
L2(W) , -k \ 0. (7.48)

We can assume that the magnetic potential satisfies

div(A)=0 and A(0)=0. (7.49)

Let m ¥ Z a fixed integer, 1 < m < 4+M, and let us denote by Am the
Taylor expansion (up to order m) of the magnetic potential:

Am(z)= C
|a| [ m

za

a !
“
aA
“za

(0). (7.50)

Lemma 7.11. Let q ¥ C.0 (R2) be a cut-off function such that

supp q … W

and

0 ¨ supp(1−q).

Then there exists C and h0 such that

||(Ph, Am −l (1)(h)) quh || [ Ch (2m+3)/4 ||quh || , -h ¥ h0,

where || · ||=|| · ||L2(R 2).

Proof. Let us first prove that, if k ¥ Za is fixed, then

|| |z|k (hD−A) uh ||L2(W) [ Ch (2k+3)/4 ||uh ||L2(W). (7.51)
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Using that

(hD−A)[|z|2k (hD−A) uh]=l (1)(h) |z|2k uh −2ihk |z|2k−2 [z(hD−A)] uh,

and (7.48), we get that

|| |z|k (hD−A) uh ||
2
L2(W) [ Cl (1)(h) h (2k+1)/2 ||uh ||

2
L2(W)

+Ch || |z|k (hD−A) uh ||L2(W) || |z|k−1 uh ||L2(W).

So we deduce

|| |z|k (hD−A) uh ||
2
L2(W) [ Cl (1)(h) h (2k+1)/2 ||uh ||

2
L2(W)+Ch2 || |z|k−1 uh ||

2
L2(W) .

Using (7.47) and once more (7.48) we get (7.51).
Let us now write, (with Rm=A−Am). As div A=0, then div Rm=0 and

Ph, Am=Ph, A+2Rm(hD−A)+|Rm|2.

As |z|−m−1 Rm(z) is bounded in W, (7.48) and (7.51) show that

||(Ph, A m −l (1)(h)) q uh || [ Ch (2m+3)/4 ||uh ||L2(W).

We finally recall that a consequence of (7.48) is that, for any k ¥ Z,

||quh ||=(1+O(hk)) ||uh ||L2(W). (7.52)

This ends the proof of Lemma 7.11. L

Lemma 7.11 ensures that

distance(l (1)(h), Sp(Ph, A m)) [ Ch (2m+3)/4. (7.53)

Let us introduce:

Bm(z)= C
|a| [ m−1

za

a !
“
aB
“za

(0)=
“Am

2

“x
(z)−

“Am
1

“y
(z). (7.54)

Assumption (7.7) ensures that, if m > 2, then

C
|a| [ m−1

:“aBm

“za
(z) :Q+. as |z| Q.. (7.55)

So, a general result in the representation theory of nilpotent Lie algebra of
[HeNo1] says that Ph, A m has compact resolvent, (see [MoNo] or [HeMo1]
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for an analytic proof). More precisely, there exists a constant C such that,
for all v ¥ C.0 (R2),

C
|a| [ m−1

h (2|a|+2)/(|a|+2) >:“aBm

“za
(z) :

1/(|a|+2)

v>
2

[ C ||(hD−Am) v||2. (7.56)

Conversely, if lm(h) is an eigenvalue of Ph, Am satisfying (7.47), and if um
h is

an associated eigenfunction satisfying (7.48), then we will get as for (7.53),
that

distance(lm(h), Sp(Ph, A, W) [ Ch (2m+3)/4. (7.57)

So, if we want to analyze the bottom of the spectrum of Ph, A, W modulo an
error of order O(h (2m+3)/4), we just have to study the bottom of the spec-
trum of Ph, A m. In order to determine the coefficient of h2 in the expansion,
we will choose in the next subsections: m \ 4.

7.4. Some Simplifications

We make some simplifications which do not change the spectrum of
Ph, A, W or Ph, A m.

We can always take orthonormal coordinates in R2 such that, in a
neighborhood of z0=0,

B(z)=b+ax2+by2+O(|z|3). (7.58)

We can also choose a gauge A(z) such that

A1(z)=0 and A2(z)=bx+
a

3
x3+bxy2+O(z4). (7.59)

So Am
1 =0 and we can write

Am
2 (z)=bx+C

m

j=3
Sj(z), (7.60)

with

Sj(z)= C
|c|=j

Sj, czc,

and in particular:

S3(z)=
a

3
x3+bxy2.
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By scaling we get that

Sp(Ph, A m)=h Sp(Qh(z, Dz)), (7.61)

Qh(z, Dz)=D2
x+5Dy −bx−h C

m

j=3
h (j−3)/2Sj(z)6

2

.

We are now going to apply some metaplectic transformations. We recall
that these transformations are unitary and consequently preserve the spec-
trum of the operators. Note also that they preserve the functions of the
form f(z)=p(z) e iq1(z)−q2(z) with p and the qj polynomial, the qj real and
homogeneous of degree j, q2(z) > 0 if z ] 0.

Using Fourier-transform and translation and writing

Qh(z, Dz)=Qh(x, y, Dx, Dy),

we get that

Sp(Qh(z, Dz))=Sp(Qh(x, −Dt, Dx, t))

=Sp1Qh
1x+

t

b
, −Dt+

1
b

Dx, Dx, t22.
(7.62)

So

Sp(Ph, A m)=h·Sp(Hh(x, t, Dx, Dt)),

Hh(x, t, Dx, Dt)=D2
x+5bx+h C

m

j=3
h (j−3)/2Tj(x, t, Dx, Dt)6

2

,
(7.63)

with Tj(x, t, Dx, Dt)=Sj(x+t
b , −Dt+

1
b Dx). The differential operator T3

has the following form

T3(x, t, Dx, Dt)=xL(t, Dt)+M0(t, Dt)+M1(x, Dx)+M2(t, Dx, Dt)

+M3(x, Dx, Dt)+M4(x, t, Dx), (7.64)

where L(t, Dt) an operator with compact resolvent,

L(t, Dt)=
a

b2 t2+bD2
t ,

M0(t, Dt)=
a

3b3 t3+
b

b
tD2

t ,

M1(x, Dx)=
a

3
x3+

b

b2 xD2
x ,
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M2(t, Dx, Dt)=−2
b

b2 DxtDt,

M3(x, Dx, Dt)=−2
b

b
xDxDt,

M4(x, t, Dx)=
a

b
x2t+

b

b3 tD2
x .

Using the notation w=(x, t), we can write

Hh(w, Dw)=H0
h(w, Dw)+Wh(w, Dw), (7.65)

with

H0
h(w, Dw)=D2

x+x2[b+hL(t, Dt)]2, (7.66)

and

Wh(w, Dw)=+h C
4

a=0
[x(b+hL(t, Dt)) Ma(w, Dw)

+Ma(w, Dw) x(b+hL(t, Dt))]

+h3/2 C
m

j=4
h (j−4)/2[x(b+hL(t, Dt)) Tj(w, Dw)

+Tj(w, Dw) x(b+hL(t, Dt))]

+h2 5 C
4

a=0
Ma(w, Dw)6

2

+h
5
2 C
a, j

h (j−4)/2[Ma(w, Dw) Tj(w, Dw)+Tj(w, Dw) Ma(w, Dw)]

+h3 5C
m

j=4
h (j−4)/2Tj(w, Dw)6

2

. (7.67)

The operator H0
h(w, Dw) has compact resolvent and

Sp(H0
h(w, Dw))={mj, k(h)=(b+hmj)(2k−1); (j, k) ¥ (Na)2}, (7.68)

with

3mj=
d
b

(2j−1); j ¥Na4=Sp(L(t, Dt), (7.69)

and

d=(ab)1/2. (7.70)
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The eigenfuction of H0
h(w, Dw) associated to the eigenvalue mj, k(h) is

kh
j, k(w)=(m1)1/2 (mj, 1(h))1/2 jk((mj, 1(h))1/2 x) jj((m1)1/2 t), (7.71)

where the jj(x) are the normalized eigenfunctions of the harmonic oscillator
D2

x+x2,

jj(x)=pj(x) e−x2/2,

and pj(x) is the Hermite polynomial function of order j−1. We recall in
particular that:

p1(x)=p−1/2.

7.5. End of the Proof of Theorem 7.3

Then, by (7.65)–(7.71), we have

Hh(w, Dw) kh
1, 1(w)=m1, 1(h) kh

1, 1(w)+Wh(w, Dw) kh
1, 1(w), (7.72)

and we can write, using the expansion of Wh(w, Dw) given above in (7.67):

Wh(w, Dw) kh
1, 1(w)=hb[xM(w, Dw)+M(w, Dw) x] kh

1, 1(w)+O(h
3
2),
(7.73)

in L2(R2), where

M(w, Dw)=C
4

a=0
Ma(w, Dw).

Because we need only an upper bound, it is enough to consider:

dl :=Ohb[xM(w, Dw)+M(w, Dw) x] kh
1, 1(w) | kh

1, 1(w)P.

By (7.71), the function kh
1, 1(1, t) is even in the x variable, so the expan-

sion of the Ma(w, Dw) given below (7.64) entails

dl=bO[xM1(w, Dw)+M1(w, Dw) x] kh
1, 1 | kh

1, 1P

+bO[xM2(w, Dw)+M2(w, Dw) x] kh
1, 1 | kh

1, 1P

=b 752a

3
x4+

b

b2 x2D2
x+

b

b2 x D2
xx6 kh

1, 1
: kh

1, 1
8

−b 75 2b

b2 x Dxt Dt+
2b

b2 Dxxt Dt6 kh
1, 1
: kh

1, 1
8
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=2b 75a
3

x4+
b

b2 x2D2
x −i

b

b2 xDx
6 kh

1, 1

−52b

b2 x DxtDt−i
b

b2 tDt6 kh
1, 1
: kh

1, 1
8. (7.74)

As D2
x kh

1, 1=m1, 1(h)(1−m1, 1(h) x2) kh
1, 1 and x Dxkh

1, 1=im1, 1(h) x2kh
1, 1 , we

get from (7.74)

dl=2b 751a
3

−
b

b2 m2
1, 1(h)) x4+

2b

b2 m1, 1(h) x26 kh
1, 1
: kh

1, 1
8

−i
2b

b
O(2m1, 1(h) x2−1) t Dtk

h
1, 1 | kh

1, 1P. (7.75)

Let us recall the formulas

2 F x2e−x2 dx=p and 4 F x4e−x2 dx=3p.

From the first one and (7.71) with k=1, we get immediately that, for any
differential operator U(t, Dt),

O(2m1, 1(h) x2−1) U(t, Dt) kh
1, 1 | kh

1, 1P=0.

Using again the formulas, we get from (7.75)

dl=
3b

2m2
1, 1(h)
1 a

3
−

b

b2 m2
1, 1(h)2+2

b

b

=
1
2b

(a+b)+O(h).

(7.76)

Here we have used that m1, 1(h)=b+hm1.
Returning to the original metaplectic coordinates, we have found u1, h in

S(R2) and of norm 1 in L2(R2) such that:

75Ph, A m −hm1, 1(h)−
h2

2b
(a+b)6 uh, 1

: uh, 1
8 [ Ch5/2. (7.78)

Keeping in mind that (7.68) and (7.69) give that

hm1, 1(h)+
h2

2b
(a+b)=hb+h2 a2

2b
,
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with a=(a)1/2+(b)1/2, (7.77) and (7.57) show that:

inf Sp(Ph, A, W)) [ hb+h2 a2

2b
+Ch5/2.

The theorem is proved. L

8. ON THE DIRICHLET PROBLEM WHEN THE MINIMUM OF
THE MAGNETIC FIELD IS ACHIEVED ON THE BOUNDARY

8.1. Introduction

In this section, instead of the assumption (7.7), we consider the case
when there exists z0 ¥ “W such that

0 < b :=B(z0) [ B(z), -z ¥ W̄, (8.1)

is satisfied.
In particular, we have b=bŒ.
We assume W is a bounded open set of class C3 and that the magnetic

potential is of class C3. Let l (1)(h) be the groundstate energy of the
Dirichlet operator and let uh(z) ¥ H2(W) 5 H1

0(W) be an associated eigen-
function:

l (1)(h)=inf Sp(PD
h, A, W ),

PD
h, A, Wuh=l (1)(h) uh.

(8.2)

We know, thanks to (7.4) and (8.1), that

hb [ l (1)(h) (8.3)

and by (7.20) (with r=1 and V(z)=B(z)), we know also that

(1− e2) F
W

[hB(z)−l (1)(h)]+ e2efh(z)/h |uh(z)|2 dz

[ F
W

[hB(z)−l (1)(h)]− |uh(z)|2 dz, (8.4)

for any e ¥ ]0, 1], where fh(z) is the Agmon distance of z to the well

Uh={w ¥ W̄; hB(z)−l (1)(h) [ 0}

(associated to the metric [hB(z)−l (1)(h)]+ dz2).
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The purpose of this subsection is to get bounds of l (1)(h) and then to
exploit this upper bound and (8.4) for a more explicit asymptotic localiza-
tion of the eigenfunction.

8.2. Rough Lower Bounds

Let us start with lower bounds. The following estimate give the probably
correct behavior as h Q 0.

Proposition 8.1. Let us assume that the inequality

0 < b < B(z), -z ¥ W, (8.5)

is satisfied. Then, if NB(z0) ] 0, for any z0 ¥ “W such that B(z0)=b, then
there exists h0 > 0 and g0 > 0 such that

hb+h3/2g0 [ inf Sp(PD
h, A, W ), -h ¥ ]0, h0]. (8.6)

As a matter of fact, (7.6) with y=rh−1/2 leads to

rh1/2PD
h, A, W+(1−rh1/2) hB [ PD

h, A, W , -r ¥ [0, h−1/2]. (8.7)

If we use Kato’s inequality (2.2) we get that:

h inf Sp(−rh3/2 DD
W+(1−rh1/2) B) [ inf Sp(Ph, A, W). (8.8)

Here −DD
W=P1, 0, W is the Laplace operator on W with Dirichlet boundary

condition.
But the assumptions of Proposition 8.1 lead to existence of c0 > 0 such

that

c0t(z)+b [ B(z) (8.9)

for all z in a neighborhood of “W in W, where t(z)=dist(z, “W).
It is enough to take

0 < c0 < b1= min
x ¥ m(“W)

“nB(x),

where

m(“W) :={x ¥ “W | B(x)=b}. (8.10)

So, if r [ h−1/2/2,

h inf Sp 1 −rh3/2 DD
W+

c0
2

t(z)2+h(1−rh1/2) b [ inf Sp(PD
h, A, W ). (8.11)
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But it is easy to see (see for example [Mai]), that, for h small enough,

−C0rh3/2+(rh3/2)1/3 1c0
2
22/3 w0 [ inf Sp 1 −rh3/2 DD

W+
c0
2

t(z)2 , (8.12)

where w0 is the first eigenvalue of the Dirichlet problem on L2(R+),
associated to the Airy differential operator:

A(t, Dt) :=−
d2

dt2
+t. (8.13)

The constant C0 depends only on c0 and does not depend on r and h.
The estimates (8.11) and (8.12), with for example

r=1w0
1c0

2
22/3(3b)−123/2,

give the proof of (8.6).

8.3. Rough Upper Bounds

The purpose of this subsection is to get an upper bound of l (1)(h) and
then to exploit this upper bound and (8.4) for a more explicit asymptotic
localization of the eigenfunction.

Theorem 8.2. If W … R2 is a bounded open connected set of class C3 and
if A belongs to C3(W̄, R2), then, under the assumption (8.1), there exists a
constant C and h0 such that

bh [ inf Sp(PD
h, A, W ) [ bh+Ch3/2(ln(h))2, -h ¥ ]0, h0[. (8.14)

The difficulty to get (8.14) without the logarithmic term comes from the
following fact. The model operator at a point of the boundary where B is
minimal is P+

h, A 0 :=Ph, A 0, R+×R with A0(z)=b
2(−y, x). It is easy to see that

inf Sp(P+
h, A 0)=bh inf

t ¥ R
inf Sp(HD, t)=bh,

where HD, t is the Dirichlet operator on R+ associated to

−
d2

du2+(t−u)2.
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Unlike the Neumann realization HN, t, the infimum in t of the ground state
energy of HD, t, which is equal to 1, is not achieved for finite t. So, in order
to construct a quasimode, we have to take t large and in this case the
groundstate eigenfunction of HD, t is localized exponentially near u=t.
But, in our model, W is bounded. So we can only work in W and we will
work (due to the scaling) in a domain such that 0 < h1/2u < e(W).

Here e(W) is a geometrical constant such that the distance to the
boundary in the domain {z ¥ W̄ | d(z, “W) [ e(W)} is regular.

Let us recall from Appendix A that, for the Neumann realization, the
infimum was obtained for some t0 in ]0,+.[.

Proof of Theorem 8.2. Let us work in the system of coordinates
recalled in Appendix B. The assumption (8.1) and the identities (B.7) and
(B.12) show that, in the right gauge,

:“Ã1

“t
+b(1−to(0))+t

“B̂
“t

(0, 0) : [ C(s2+t2), (8.15)

so we can assume that in K,

:Ã1(w)+tb 11−
t
2

o(0)2+t2

2
“B̂
“t

(0, 0) : [ Ct(s2+t2). (8.16)

Let us take the test function

u0
h(z)=e−ith s/ha−1/2(w) v0

h(w), (8.17)

with (w=(s, t)=k(z)), th ¥ R and v0
h ¥ C2

0(K; R) (to be chosen suitably).
So by (B3)–(B11),

qh, A, W(u
0
h)=F

K

3h2 51“v0
h

“t
22+(1−to(s))−2 1“v0

h

“s
226

+[a−2(th+Ã1)2+h2W](v0
h)

24 dw. (8.18)

Let C0 > 0 be fixed large enough. Let q ¥ C.0 (R; R) be a cut-off function
such that q(x)=1 if |x| < C0 and q(x)=0 if |x| > 2C0.

We choose

th=2C1/2
0 h1/2 |ln(h)| (8.19)
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and, with

hh(t)=b1/2h−1/2(t−b−1th)

v0
h(w)=b1/4h−3/8j1(hh(t)) q(|ln(h)|−1 hh(t))×f(h−1/4s).

(8.20)

Here j1 is defined by

j1(x)=p−1/2e−x2/2

and f is a function in C.0 (]−1
2 ,

1
2[; R) such that > f(x)2 dx=1.

So, if h is small enough, v0
h belongs to C.0 (K; R) and it is easy to check

from (8.16), (8.18)–(8.20) that there exist h0 ¥ ]0, 1/e[ and C1 > 0 such that

|qh, A, W(u
0
h)−hb ||u0

h ||
2
L2(W) | [ C1h3/2(ln(h))2, -h ¥ ]0, h0[. (8.21)

Moreover,

u0
h ¥ H1

0(W), and | ||u0
h ||L2(W) −1| [ Ch2. (8.22)

The properties (8.22) and (8.21) prove (8.14). L

Remark 8.3. If instead of (8.1) we have, for some z0 ¥ “W, assumption
(8.5), and if, for any such z0, we have: NB(z0) ] 0, then we get easily from
(8.4) and (8.14) the following localization of the groundstate eigenfunction.
There exist d ¥ ]0, 1[ C > 0 and h0 such that, for all h ¥ ]0, h0],

||exp dt(z)3/2/h1/2 |uh(z)| || [ Ch−C ||uh ||,

where we recall that t(z)=dist(z, “W).

9. ON THE GROUNDSTATE ENERGY OF THE
NEUMANN REALIZATION

9.1. The Upper Bound of the Groundstate Energy

Let W and A be as in Section 8. Let PN
h, A, W be the Neumann operator

associated to the quadratic form

qN
h, A, W (u)=F

W

|(hDz −A(z)) u(z)|2 dz -u ¥ H1(W). (9.1)
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Let us recall that we have defined

m (1)(h)=inf Sp(PN
h, A, W ) (9.2)

and

G0=inf
t ¥ R

inf Sp(HN, t). (9.3)

The operator HN, t is the Neuman operator on L2(R+) associated to the
differential operator D2

x+(x−t)2. We recall from Section 3 and Appendix
A that G0 is the lower bound of Neumann operator on R+×R associated
to D2

x+(Dy ±x)2.
Let us first prove a version of the first part of the theorem by Lu–Pan

recalled in Theorem 5.3 with a better control of the remainder.

Theorem 9.1. Under the assumptions of Theorem 8.2, but with (8.1)
replaced by

0 < bŒ=min
w ¥ “W

B(w), (9.4)

then there exists C0 > 0 such that

m (1)(h) [ G0bŒh+C0h3/2, -h ¥ ]0, 1]. (9.5)

Proof. The proof is similar to the one of Theorem 8.2. The adapted
coordinates near the boundary of Appendix B are still valid. We can
assume (B.11). Let

z0 ¥ “W such that B(z0)=bŒ. (9.6)

Then (8.15) is valid thanks to (9.4), so we can assume (8.16).
As in the proof of Theorem 8.2, we can take6 a test function u0

h(z) of the

6 Similar computations can be found in [BeSt].

form (8.17), where

v0
h(w)=(bŒ)1/4 h−3/8j0((bŒ)1/2 h−1/2t) q(t)×f(h−1/4s), (9.7)

th=(bŒ)1/2 h1/2t0, (9.8)

the function f is as in (8.20) and q(t) is a cut-off function such that
q(t)=1 if 0 [ t [ e0/2 and q(t)=0 if t \ e0.

The eigenfunction f0=ft0 is introduced in Appendix A. Using formulas
(B.3), (B.4) and (8.16), it is then easy to check that (A.1) and (9.7) imply
the existence of C > 0 such that:

|qN
h, A, W (u0

h)−G0bŒh ||u0
h ||

2
L2(W) | [ Ch3/2

|||u0
h ||L2(W) −1| [ Ch3/2.

(9.9)

So (9.9) proves (9.5). L
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9.2. Rough Lower Bound Estimates

Our aim is to find an equivalent of the estimate (7.4) for the Neumann
quadratic form. We will follow the methods of [HeMo2] .

Let (qc(z))c ¥ C be a partition of unity of R2. For example we can take

C=Z2, qc ¥ C.(R2; R) and

supp(qc) … c+[−1, 1]2, -c ¥ C,

C
c

q2
c(z)=1 and C

c

|Nqc(z)|2 <..

(9.10)

If y(h) is a function of h such that y(h) ¥ ]0, e(W)[, (e(W) is the geometric
constant related to “W, and introduced in Section 8), we will define the
functions

qc, y(h)(z)=qc(z/y(h)), -c ¥ C. (9.11)

So we get a new partition of unity such that

C
c

q2
c, y(h)(z)=1, C

c

|Nqc, y(h)(z)|2 [ Cy(h)−2, (9.12)

and supp(qc, y(h)) … y(h) c+[−y(h), y(h)]2.
Then, for any u ¥ H1(W), (see (6.8)), we have:

qN
h, A, W (u)=C

c

[qN
h, A, W (qc, y(h)u)−h2 || |Nqc, y(h) | u||2L2(W)]. (9.13)

Let us define

Cy(h)(W)={c ¥ C; supp(qc, y(h)) 5 W ]”}

C0
y(h)(W)={c ¥ Cy(h)(W); dist(supp(qc, y(h)), “W) > y(h)}

C1
y(h)(W)={c ¥ Cy(h)(W); dist(supp(qc, y(h)), “W) [ y(h)}.

(9.14)

We assume that

B(z) > 0, -z ¥ W̄. (9.15)

Then, for any u ¥ H1(W),

qN
h, A, W (qc, y(h)u) \ h ||B1/2qc, y(h)u||2L2(W) , -c ¥ C0

y(h)(W). (9.16)
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For any c ¥ C1
y(h)(W), we use the adapted coordinates and formulas (B.3)

and (B.4).
As in [HeMo2], from the identities (B.7) and (B.12), it is easy to find a

gauge such that

|Ã(w)+(B(zc, y(h)) t, 0)| [ Cy(h)2, (9.17)

for all w=w(z) such that z ¥ supp(qc, y(h)).
Here zc, y(h) is chosen in supp(qc, y(h)) such that B(zc, y(h)) is maximum on

supp(qc, y(h)).
Then using that G0 is a lower bound of the Neumann operator asso-

ciated to (Ds+t)2+D2
t , so

F
R×R+

[|(Ds+t) v|2+|Dtv|2−G0 |v|2] dw \ 0, -v ¥ C1
0(R×R+). (9.18)

Using also the property, deduced from (B.4), that

:F |v|2 dz−F |v|2 dw : [ Cy(h) F |v|2 dz, if supp(v) … W4y(h), (9.19)

we get easily from (9.17) and (9.18) that, -c ¥ C1
y(h)(W), -e ¥ ]0, 1/2], and

-u ¥ H1(W),

(1+e)[1+Cy(h)] qN
h, A, W (qc, y(h)u)

\ F [|(hDs+tB(zc, y(h)) qc, y(h)u|2+h2 |Dtqc, y(h)u|2] dw

−Ce−1(y(h))4 ||qc, y(h)u||2L2(W) ,

for any zc, y(h) ¥ supp(qc, y(h)) 5 W̄.
So, there exists C > 0, such that, for any e > 0,

(1+e)[1+Cy(h)] qN
h, A, W (qc, y(h)u)

\ hG0[1−Cy(h)] ||B1/2qc, y(h)u||2L2(W) −Ce−1(y(h))4 ||qc, y(h)u||2L2(W) . (9.20)

We can now get the following proposition.

Proposition 9.2. Under the assumptions of Theorem 8.2, with (8.1)
replaced by (9.15), then

qN
h, A, W (u) \ F

W

Wh(z) |u(z)|2 dz, -u ¥ H1(W), (9.21)
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for any h ¥ ]0, 1].
Here Wh is defined, for some constant C0 > 0, by

Wh(z)=hB(z) if dist(z; “W) > 2h3/8

=hG0B(z)−C0h5/4 if dist(z; “W) [ 2h3/8,

and G0 ¥ ]0, 1[ is defined by (9.3).

Proof. We take a partition of unity on R such that

k2
0, y(h)(t)+k2

1, y(h)(t)=1, |k −j, y(h)(t)| [ C/y(h), for j=0, 1, (9.22)

and

supp(k2
0, y(h)) … [y(h)/20,+.[, supp(k2

1, y(h)) … ]−., y(h)/10].
(9.23)

Then, for t=t(z)=dist(z; “W) in (9.22), we get as (9.13),

qN
h, A, W (u)=C

1

j=0
[qN

h, A, W ((kj, y(h) p t) u)−h2 || |N(kj, y(h) p t)| u||2L2(W)],

(9.24)

for any u ¥ H1(W), and as in (9.16) we have also

qN
h, A, W ((k0, y(h) p t) u) \ h ||B1/2(k0, y(h) p t) u||2L2(W) . (9.25)

Moreover by (9.12) and (9.14), we get:

C
c ¥ C

1
y(h) (W)

q2
c, y(h)(z)=1, -z ¥ supp(k1, y(h) p t). (9.26)

So, for any u ¥ H1(W),

qN
h, A, W ((k1, y(h) p t) u)

= C
c ¥ C

1
y(h) (W)

[qN
h, A, W (qc, y(h)(k1, y(h) p t) u)

−h2 ||(k1, y(h) p t) |Nqc, y(h) | u||2L2(W)]. (9.27)

Taking y(h)=h3/8 and in (9.20) e=h1/4, we deduce the estimate (9.21) of
Proposition 9.2, from (9.12), (9.20) and (9.22)–(9.27). L
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With Proposition 9.2 and Theorem 9.1, we can recover a more accurate
version of the result of [LuPa2]. We recall that:

b :=inf
z ¥ W

B(z) and bŒ := inf
w ¥ “W

B(w).

Corollary 9.3. Under the assumptions of Proposition 9.2 then the first
eigenvalue m (1)(h) of the Neumann operator PN

h, A, W satisfies the following
estimate.

Case 1. If

b < G0bŒ, (9.28)

there exists C1 > 0 and h0 > 0 such that

−Ch2 [ m (1)(h)−bh [ C1h2, -h ¥ ]0, h0]. (9.29)

Case 2. If

b > G0bŒ, (9.30)

there exists C2 > 0 and h0 such that

−C1h5/4 [ m (1)(h)−G0bŒh [ C1h3/2, -h ¥ ]0, h0]. (9.31)

Case 3. If

b=G0bŒ, (9.32)

there exists C2 > 0 and h0 such that

−C1h5/4 [ m (1)(h)−G0bŒh [ C1h2, -h ¥ ]0, h0]. (9.33)

Remark 9.4. Using Agmon’s estimates (see the next proposition), one
can actually improve in Case 1 the left hand side of (9.29) into

−C exp −
d

h
[ m (1)(h)−bh, (9.34)

for some d > 0 and for all h in ]0, h0].
In a particular case, this is related to (4.3).
Note also that for the proof of Case 3, we can use the proof of the upper

bound used in Case 1. In Case 3, the localization of the groundstate is, as
h Q 0, in the union of a small neighborhood of the boundary and of the set
where B=b.
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With the estimate (9.21) of Proposition 9.2 we can get also the local-
zation in energy of the groundstate eigenfunction u1

h(z) of PN
h, A, W as

Proposition 7.9.

Proposition 9.5. Under the assumptions of Proposition 9.2, for any
e ¥ ]0, 1],

(1− e2) F
W

[Wh(z)−m (1)(h)]+ e2efh(z)/h |u1
h(z)|

2 dz

[ F
W

[Wh(z)−m (1)(h)]− |u1
h(z)|

2 dz, (9.35)

for any real Lipschitz function fh on W̄ such that

|Nfh(z)|2 [ [Wh(z)−m (1)(h)]+ .

In Case 1 of Corollary 9.3, the estimate (9.35) and the one (7.20)
associated to the ground state of Dirichlet operator show that the first
eigenvalue of the Neumann operator PN

h, A, W is exponentially closed to the
one of Dirichlet operator Ph, A, W.

In Case 2 of Corollary 9.3, we can improve the localization of the
groundstate eigenfunction (9.35) by the following proposition.

Proposition 9.6. Under the assumptions of Proposition 9.2 and if 7

7 The condition (9.36) involves only the infimum of B in a compact of W. We recall indeed
from (3.13) that G0 < 1.

G0bŒ < b, (9.36)

then, for any k ¥ Z, there exists Ck > 0 such that, -h ¥ ]0, 1],

F
W

t(z)k |u1
h(z)|

2 dz [ Ckhk/2 ||u1
h ||

2
L2(W) , (9.37)

and

F
W

t(z)k |(hDz −A) u1
h(z)|

2 dz [ Ckh1+k/2 ||u1
h ||

2
L2(W) , (9.38)

where t(z)=dist(z; “W) and u1
h denotes an eigenfunction associated to the

first eigenvalue of the Neumann operator PN
h, A, W .
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We can always find a function t̃(z) ¥ C1(W̄), such that t(z)/t̃(z) and
t̃(z)/t(z) are bounded on W. Actually, we can in addition take t=t̃ in the
neighborhood of “W.

So, forgetting the tilde for simplicity, we can assume that t(z) ¥ C1(W̄).
We can actually propose two proofs. The first one consists in applying

Theorem 6.3 together with (6.26), observing in addition that uk [ k! exp u,
for u \ 0. Let us now give an independent and more direct proof. We also
observe that the proposition is true for k=0. Let us now consider the case
when k \ 1.

As t(w)=0, -w ¥ “W, we have the formula

h F
W

t(z)k B(z) |u1
h |

2 dz

=i F
W

t(z)k [(hDy −A2) u1
h (hDx −A1) u1

h

−(hDx −A1) u1
h (hDy −A2) u1

h] dz

−hk F
W

t(z)k−1 5 “t
“x

(hDy −A2) u1
h −
“t
“y

(hDx −A1) u1
h
6 ū1

h dz.

(9.39)

We deduce from (9.39) that

h F
W

t(z)k B(z) |u1
h |

2 dz [ F
W

t(z)k |(hDz −A) u1
h |

2 dz

+Ch ||t (k−1)/2(hDz −A) u1
h ||L2(W)

×||t (k−1)/1u1
h ||L2(W). (9.40)

Writing that

F
W

t(z)k |(hDz −A) u1
h |

2 dz=F
W

(hDz −A) u1
h · (hDz −A) tku1

h dz

−ihk F
W

t(z)k−1 [Nt · (hDz −A) u1
h] ū1

h dz,

or

F
W

t(z)k |(hDz −A) u1
h |

2 dz=F
W

Ph, A, Wu
1
h · tku1

h dz

−ihk F
W

t(z)k−1 [Nt · (hDz −A) u1
h] ū1

h dz,
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we get

:F
W

t(z)k [|(hDz −A) u1
h |

2−m (1)(h) |u1
h |

2] dz :

[ Ch ||t (k−1)/2(hDz −A) u1
h ||L2(W) ×||t (k−1)/2u1

h ||L2(W). (9.41)

So we get from (9.40) and (9.41) that

F
W

t(z)k 1B(z)−
m (1)(h)

h
2 |u1

h |
2 dz

[ C ||t (k−1)/2(hDz −A) u1
h ||L2(W) ×||t (k−1)/2u1

h ||L2(W). (9.42)

The upper bound in (9.31), the assumption (9.36) which gives a lower
bound for B(x)−m (1)(h)/h and (9.42) give the existence of h0 > 0 such that,
for all h ¥ ]0, h0],

||tk/2u1
h ||

2
L2(W) [ C ||t (k−1)/2(hDz −A) u1

h ||L2(W) ×||t (k−1)/2u1
h ||L2(W). (9.43)

Now we can prove (9.37) by recursion.
If k=1, we use that

||(hDz −A) u1
h ||

2
L2(W)=m (1)(h) ||u1

h ||
2
L2(W) [ Ch ||u1

h ||
2
L2(W) .

We get from (9.43) that

||t1/2u1
h ||L2(W) [ Ch1/4 ||u1

h ||L2(W). (9.44)

In the same way, (9.41) and (9.44) give (9.37) for k=1.
Suppose now that m ¥ Z, m > 1 and that (9.37) is valid for k=m−1.

Then (9.43) with k=m and (9.37) for k=m−1 give

||tm/2u1
h ||L2(W) [ Chm/4 ||u1

h ||L2(W).

This estimate, together with (9.41) and (9.37) for k=m−1, prove the
estimate (9.37) for k=m. L

10. THE CASE OF CONSTANT MAGNETIC FIELD IN DOMAINS
WITH POSITIVE CURVATURE

The case of constant magnetic field has been intensively studied. In this
case, the upper bound in (9.31) was established in [BeSt], the lower bound
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in [BeSt] is less precise than our one in (9.31). But we can still improve the
lower bound in (9.31) when the magnetic field is constant.

10.1. Bounds modulo O(h
3
2)

Theorem 10.1. Suppose that W is a bounded open and connected set of
R2. If the magnetic field is constant: B=b, then there exists a constant
C0 > 0 and h0 > 0 such that m (1)(h), the first eigenvalue of the Neumann
operator associated to (hDz −A)2 satisfies

−C0h3/2 [ m (1)(h)−G0bh [ C0h3/2, -h ¥ ]0, h0], (10.1)

where G0 ¥ ]0, 1[ is defined by (3.13).

Proof. The upper bound was already obtained in (9.31). For the lower
bound, we use the notations of the proof of Proposition 9.2. Let u1

h a
normalized groundstate. We take

y(h)=h1/4. (10.2)

So (9.22)–(9.23) and (6.10) show that

|qN
h, A, W ((k1, y(h) p t) u1

h)−m (1)(h) ||(k1, y(h) p t) u1
h ||

2
L2(W) |

[ h2 || |N(k1, y(h) p t)| u1
h ||

2
L2(W) . (10.3)

On the other hand, if

||u1
h ||L2(W)=1,

we consequently obtain, thanks to (10.2), the condition on the support
(9.22) and (9.37),

||(k1, y(h) p t) u1
h ||L2(W)=1+O(hk), -k > 0. (10.4)

Similarly, one can show that:

||N |(k1, y(h) p t)| u1
h ||

2
L2(W) [ Ckhk, -k > 0. (10.5)

This leads to the existence of C > 0 such that:

|qN
h, A, W ((k1, y(h) p t) u1

h)−m (1)(h) ||(k1, y(h) p t) u1
h ||

2
L2(W) | [ Ch2. (10.6)
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The assumption that the magnetic field is constant allows us to choose a
gauge (in the adapted coordinates introduced in Appendix B), such that in
the formula (B.3) (cf. (B.6)), we have

Ã(w)=−bt 11−
t
2

o(s), 02 , (10.7)

which implies

|Ã(w)+(bt, 0)| [ Ct2. (10.8)

Using the formula (B.3), (B.4) and (9.37)) for k=1 and k=4, we get,
from (10.2)–(10.7), and the fact that m (1)(h)=O(h), the existence of C > 0
and h0 > 0 such that, for any h ¥ ]0, h0],

:F
R×R+

[|(hDs+bt)(k1, y(h)u
1
h)|

2+h2 |Dt(k1, y(h)u
1
h)|

2−m (1)(h) |k1, y(h)u
1
h |

2] dw :

[ Ch3/2. (10.9)

As

F
R×R+

[|(hDs+bt)(k1, y(h)(t) u1
h(s, t))|2+h2 |Dt(k1, y(h)(t) u1

h(s, t))|2] dw

\ G0bh F
R×R+

|k1, y(h)(t) u1
h(s, t)|2 dw, (10.10)

the estimates (10.4), (10.9) and (10.10) give the existence of C0 > 0 such
that

m (1)(h) \ G0bh−C0h3/2. L

10.2. Refined Lower Bounds
We are now able to prove the refined lower bound. We will add two

elements in comparison with the previous proof.
The first point is that we shall use the lower bound obtained in the case

of the disk which is recalled in Proposition 4.9. An alternative will be pre-
sented in the next section using the techniques of the previous subsection.
The second point will be to improve the remainder estimates.

Let us first come back to the case of the disk in the semi-classical
context. Proposition 4.9 (due to [BaPhTa]) and an homogeneity argument
give the existence of C > 0 such that

m (1)(h, b, D(0, R)) \ G0bh−
2
R

M3b
1
2 h

3
2 −Ch2R−2, (10.11)

if

BR2/h \ C.
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We observe also, by using the monotonicity with respect to R0, that the
same inequality is true, for any 0 < R0 < R, for the problem in
W(R0, R)={z ¥ D(0, R) | |z| > R0} with the Neumann condition at the
external boundary and the Dirichlet condition at the internal boundary.
Moreover Agmon’s estimates permit to control more precisely the expo-
nentially small variation of the lowest eigenvalue.

This is this second problem which is easier to compare with the general
one. So one can reduce rather easily the general problem to the analysis of
the problem in a tubular neighborhood of “W where the coordinates (t, s)
analyzed in Appendix B are defined.

In the case of the disk, we observe the relation

r=R−t, h=s/R,

which is coherent with

r drNdh=11−
1
R

s2 dsNdt.

In one case we have o=const. and in general o is not constant. So we have
mainly to compare the two situations. For this we shall introduce near the
boundary of W a partition of unity and compare in each ball meeting the
boundary the general case with the case with constant curvature. So with
the notation of Subsection 9.2, we introduce y(h)=hr, and a corresponding
lattice Cy(h). For the moment, we just introduce the condition r < 1

4 in order
that the error term due to the partition of unity in the IMS formula has the
right order.

Let us consider the balls near the boundary. This means that in the sums
over c which will be considered in the next considerations, we shall only
sum over the points of the lattice Cy(h) such that the corresponding balls are
contained in a fixed neighborhood of “W where we can use the special
coordinates. Let us denote by C −

y(h) this sublattice. We would like to use a
localized version of Proposition 9.6 in order to control the comparison with
the model. This is the aim of the following proposition.

Proposition 10.2. Under the assumptions of Proposition 9.2, then, for
any k ¥N, -h ¥ ]0, h0], there exist sequences (ak(c, h))c and (bk(c, h))c
uniformly bounded in a2 with respect to h, such that, -c ¥ C −

y(h) ,

F
W

t(z)k |qc, y(h)u
1
h(z)|

2 dz [ ak(c, h)2 hk/2 ||u1
h ||

2
L2(W) (10.12)

and

F
W

t(z)k |(hDz −A) qc, y(h) u1
h(z)|

2 dz [ bk(c, h)2 h1+k/2 ||u1
h ||

2
L2(W) . (10.13)
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Proof. The assertion (10.12) is a consequence of (9.37) and of the
property that there exists C such that:

C
c ¥ C

−

y(h)

q2
c, y(h) [ C.

For the second one we observe that:

F
W

t(z)k |(hDz −A) qc, y(h) u
1
h(z)|

2 dz [ 2 F
W

t(z)k |qc, y(h)(hDz −A) u1
h(z)|

2 dz

+2h F
W

t(z)k |Nqc, y(h)u
1
h(z)|

2 dz.

The first term of the right hand side is immediate to control using (9.38).
The second term is controlled by h2−2r+k/2c(c, h)2 with (c(c, h)) uniformly
in a2, that is satisfying ;c ¥ C −y(h) |c(c, h)|2 is bounded independently of
h ¥ ]0, h0]. So this is of the right order when r < 1

2 . L

Let us now consider the various errors which we have to control when
comparing with the case with constant curvature. We work near the
boundary in the adapted coordinates introduced in Appendix B. We have
to compare more carefully, for each c, the expressions > |(hDz −A) qc, y(h) u1

h |
2

(1−to(s)) ds dt and > |(hDz −Ac) qc, y(h) u1
h |

2 (1−to(sc)) ds dt, where (using
the notations of Appendix B)

Ã=−bt 1 −1−
t
2

o(s), 02 , Ãc=−bt 1 −1−
t
2

o(sc), 02 .

These errors are of the following type. The first term to consider is

r1(c, h)=O(hr) F t(z) |(hDz −A) qc, y(h) u1
h |

2 dz,

where we have used that o(s)−o(sc)=O(hr).
This should lead (using (10.13) with k=1) to a remainder of order

r1(c, h)=O(hr+
3
2) a1(c, h)2,

with ;c a1(c, h)2 < C, for some C independent of h.
The next type of term is like

r2(c, h)=O(hr) F t2 |(hDz −A) qc, y(h)u
1
h)| · |qc, y(h)u

1
h | dz.

or like

r3(c, h)=F t3 |(hDz −A) qc, y(h)u
1
h)| · |qc, y(h)u

1
h | dz.
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For r2, we can use Cauchy–Schwarz and (10.13) with k=4. This leads to:

r2(c, h)=O(hr+
3
2) a1(c, h) b4(c, h).

For r3, we can use Cauchy–Schwarz and (10.13) with k=6. This leads to:

r3(c, h)=O(h2) a1(c, h) b6(c, h).

The last type of remainder is

r4(c, h)=O(h2r) F t4 |qc, y(h)u
1
h |

2 dz,

which can be treated by (10.12) and leads to:

r4(c, h)=O(h2r+2) a4(c, h)2.

Summing up over c ¥ C −

y(h) , this shows that we will have the general case,
if we have the case of the disk with an error given by: O(hr+3/2)+O(h2−2r).
The optimal r seems to be obtained when: r+3

2=2−2r. This leads to the
choice r=1

6 and to an error in O(h
5
3).

So we have proved:

Theorem 10.3. If B=b and if o(w) > 0 for all w ¥ “W, then we have:

m (1)(h) \ G0bh−2M3omaxb
1
2h

3
2+O(h

5
3). (10.14)

Remark 10.4. We are obliged for the moment to assume that o(s) > 0.
This is not natural. We shall eliminate this artificial condition in the next
section.

10.3. Localization of the Groundstate

Proposition 10.5. Under the assumptions of Theorem 10.3, we have

qN
h, A, W (u) \ F

W

W1
h(z) |u(z)|2 dz, -u ¥ H1(W), (10.15)

for any h ¥ ]0, 1].
Here W1

h is defined, for some constant C0 > 0, by:

W1
h(z)=bh if dist(z; “W) > 2h

1
6

=G0bh−2M3b
1
2o(s) h

3
2 −C0h5/3 if dist(z; “W) [ 2h

1
6 .
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In particular, we have, using also the upper bound of m (1)(h):

qN
h, A, W (u1

h)−m (1)(h) \ F
W

(W1
h(z)−m (1)(h)) |u1

h(z)|
2 dz,

\ 2M3b
1
2h

3
2 F
Wy(h)

(omax −o(s)−C0h
1
6) |u1

h |
2 dz. (10.16)

As for the proof of Theorem 6.6 (cf. also (6.36)) we get:

Theorem 10.6. Under the assumptions of Theorem 10.3, one has the
following localization. There exist d > 0 and for any e > 0, Ce > 0 and he > 0
such that, for all h ¥ ]0, he]:

>exp d
d̂(x, n(“W), h)

h
1
4

u1
h
> [ Ce exp

e

h
1
4

. (10.17)

Here n(“W) is the set

n(“W)={z ¥ “W | o(z)=omax} (10.18)

of the points of maximal curvature

d̂(x, n(“W), h)=d̂“W(s(x), n(“W)) q(d(x, “W))+h−1
4d(x, “W), (10.19)

and d̂“W(s, n(“W)) is the Agmon distance to n(“W) attached to the metric
(omax −o(s)) ds2.

The proof is similar to the proof given in Section 6 (see also the course
[He1], Chap. 3).

As an immediate corollary, we have:

Corollary 10.7. Under the assumptions of Theorem 10.3, then, for any
neighborhood V(“W) of n(“W) in W̄, there exists g > 0 and C > 0 such that,
as h Q 0,

F
W0V(“W)

|u1
h(x)|2 dx [ C exp −gh−1

4 .

10.4. Upper Bounds Modulo O(h
7
4).

Let us recall in this section the result obtained in [BeSt] and established
more precisely in [PiFeSt].
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Proposition 10.8. When W is of class C4, there exists a constant C0 such
that

m (1)(h) [ G0bh−2M3omaxb1/2h3/2+C0h7/4. (10.20)

Here omax is the maximum of the scalar curvature of “W and M3 is defined in
(A.6).

Remark 10.9. In [BeSt], the authors propose a formal expansion
modulo o(h2). In [PiFeSt], the authors give a proof of the remainder in
O(h2) under the stronger assumption that there is one point where the cur-
vature is maximal is non degenerate. In [LuPa1], another estimate of the
remainder is obtained in their appendix. Our proof gives a better remainder
estimate than in [LuPa1], weaker than in [PiFeSt] but does not use an
assumption of non degeneracy.

Proof of Proposition 10.8. To prove (10.20), we take in the proof of
Theorem 9.1 a point z0 ¥ “W such that o(s(z0))=omax. We take instead of
(9.7), with the notations of Appendix A,

v0
h(w)=b1/4h−5/16gh(b1/2h−1/2t) q(t) ·f(h−1/8s), (10.21)

with

gh(x)=j0(x)−h1/2(b)−1/2 omaxk1(x). (10.22)

The functions q and f are as in (9.7), and

k1=R̃N, t0[H1j0 −K3j0], (10.23)

with

H1u(x)=(x−t0)3 u(x)−t2
0(x−t0) u(x)+u −(x),

and

K3=F
R+

(H1j0) j0 dx.

Here R̃N, t0 is the regularized resolvent which vanishes on j0 and is equal to
[HN, t0 −G0]−1 on {j0} + .

Using the lemma, one gets:

K3=−2M3.

Then k1(x) is a well defined real function. It is standard to show that
xkk1(x) ¥ L2(R+), -k ¥N.
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Let us introduce

Hh=a−2
0 (t) 5bt=11−

t
2

omax
2−h1/2b1/2t0

62+h2a−1
0 (t) Dt[a0(t) Dtu].

(10.24)

with a0(t)=1−omaxt.
We get easily that

:qN
h, A, W (v0

h)−h−1/2(b)1/2 F
R+

Hh(Uh(gh(t))) Uh(gh)(t) q2(t) dt : [ Ch7/4,

(10.25)

and that

| ||u0
h ||L2(W) −1| [ Ch1/2, (10.26)

with

Uh(g)(t)=(b)1/4 h−1/4g(b1/2h−1/2t), -g ¥ L2(R+).

Then, for any t ¥ [0, e] and for any g ¥ H2(R+),

|(Hhg−Hh
0 g(t)−Hh

1 g)(t)| [ C[t2(bt−h1/2b1/2t0)2+t3 |(bt−h1/2b1/2t0)|

+t4+ht |(bt−h1/2b1/2t0)|+ht3] |g(t)|,
(10.27)

with

Hh
0 g=(bt−h1/2b1/2t0)2+h2 D2

t g

and

Hh
1 g=2tomax(bt−h1/2b1/2t0)2−bomaxt2(bt−h1/2b1/2t0)+ih2omax Dtg.

So

(Uh)aHh
0U

h=bh[L+G0],

and

(Uh)a Hh
1U

h=b1/2omaxh3/2H1.

The estimates (10.25) and (10.27) (applied to g=gh ) prove easily the
existence of C > 0 such that

|qN
h, A, W (u0

h)−[G0bh−2M3omaxb1/2h3/2] ||u0
h ||

2
L2(W) | [ Ch7/4 ||u0

h ||
2
L2(W) ,

and (10.20) follows. L
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11. AN ALTERNATIVE PROOF AND EXTENSION TO
NON-CONVEX DOMAINS

The previous proof was based on a result by Baumann–Phillips–Tang
[BaPhTa] (see also [PiFeSt] for an alternative proof). We give now a
more direct proof which permits to avoid the unnatural technical condition
o(w) > 0. This could in particular be applied to the Neumann problem in
the exterior of the disk.

Theorem 11.1. When W is of class C4, Theorems 10.3 and 10.6 are true
without the assumption that the curvature is always strictly positive.

We begin as in the proof of the left-hand side of (10.1). Instead of (10.2),
we take

y(h)=hd with 1
6 [ d < 1

2 (11.1)

(d will be fixed later), so (10.6) and (10.4) are still valid. We can no longer
use the result of [BaPhTa] and it will not be enough to localize in balls (or
squares) and we choose to localize in rectangles of size hd in the normal
direction and of size h1/6 in the tangential direction.

We use the partition of unity defined in (9.10)–(9.12) and we get as in
(9.27)

qN
h, A, W (k1, y(h)u

1
h)= C

c ¥ C
1
y(h) (W)

qN
h, A, W (qc, h1/6k1, y(h)u

1
h)

−h2 C
c ¥ C

1
y(h) (W)

|| |Nqc, h1/6 | k1, y(h)u
1
h ||

2
L2(W) . (11.2)

We deduce from (11.2) that

:qN
h, A, W (k1, y(h)u

1
h)− C

c ¥ C
1
y(h) (W)

qN
h, A, W (qc, h1/6 k1, y(h)u

1
h) : [ Ch5/3 ||k1, y(h)u

1
h ||

2
L2(W) .

(11.3)

But it is easy to see from (B.18) that, for any c ¥ C1
y(h)(W),

:qN
h, A, W (qc, h1/6 k1, y(h)u

1
h)−F

K(c, h)
ac(t)[h2 |Dt(qc, h1/6 k1, y(h)u

1
h)|

2

+(1+2oct) |(hDs −Ac(t))(qc, h1/6 k1, y(h)u
1
h)|

2] ds dt :

[ Ch1/6 F
W

[t |(hD−A)(qc, h1/6 k1, y(h)u
1
h)|

2+(t3+t4) |qc, h1/6 k1, y(h)u
1
h |

2] dz.

(11.4)

MAGNETIC BOTTLES IN CONNECTION WITH SUPERCONDUCTIVITY 665



Here K(c, h)=]−2h1/6+sc, sc+2h1/6[×]0, hd[, where sc=s(zc) for some
zc ¥ “W such that -z ¥ supp(qc, h1/6), |s−sc | [

3
2 h1/6.

Moreover,

oc=o(sc),

ac(t)=1−oct,

Ac(t)=−bt 11−
oc

2
t2 .

We proceed like in Subsection 10.2 for the control of this remainder.
Summing (11.4) and taking into account (9.26), (11.3), (9.37) (with
k=1, 2) and (10.4) or alternatively using Proposition 10.2, we get that

:qN
h, A, W (k1, y(h)u

1
h)− C

c ¥ C
1
y(h) (W)

F
K(c, h)

ac(t)[h2 |Dt(qc, h1/6 k1, y(h)u
1
h)|

2

+(1+2oc t) |(hDs −Ac(t))(qc, h1/6 k1, y(h)u
1
h)|

2] ds dt :

[ Ch5/3 ||k1, y(h) u
1
h ||

2
L2(W) . (11.5)

Our result being semi-classical (h Q 0), we assume that 2h1/6 [ p for simplicity.
Let us consider, for some c ¥ C1

y(h) , the term appearing in the left hand
side of (11.5):

F
K(c, h)

ac(t)[h2 |Dt(qc, h1/6 k1, y(h)u
1
h)|

2

+(1+2oc t) |(hDs −Ac(t))(qc, h1/6 k1, y(h)u
1
h)|

2] ds dt.

We get, by taking the partial Fourier transform s W k, that, for any c in
C1
y(h)(W),

F
K(c, h)

ac(t) [h2 |Dt(qc, h1/6 k1, y(h)u
1
h)|

2

+(1+2oc t) |(hDs −Ac(t))(qc, h1/6 k1, y(h)u
1
h)|

2] ds dt

\ mc1(h) F
K(c, h)

ac(t) |qc, h1/6 k1, y(h)u
1
h |

2 ds dt, (11.6)

with

mc1(h)=inf
k ¥ Z

inf Sp(HN, D
h, c, k). (11.7)
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Here HN, D
h, c, k is the self-adjoint operator on L2(]0, hd[; ac(t) dt) associated to

the differential operator

Hh, c, k=h2a−1
c (t) Dt(ac(t) Dt .)+(1+2oc t)(hk−Ac(t))2, (11.8)

with domain

D(HN, D
h, c, k)={v ¥ H2(]0, hd[); vŒ(0)=v(hd)=0}. (11.9)

As

: ||qc, h1/6 k1, y(h)u
1
h ||

2
L2(W) −F

K(c, h)
ac(t) |qc, h1/6 k1, y(h)u

1
h |

2 ds dt :

[ Ch1/6 ||t1/2qc, h1/6 k1, y(h)u
1
h ||

2
L2(W), (11.10)

we get from (11.5), (11.6) and (11.10) that

qN
h, A, W (k1, y(h)u

1
h) \ ( inf

c ¥ C
1
y(h)(W)

mc1(h))

×[||k1, y(h)u
1
h ||

2
L2(W) −Ch1/6 ||t1/2k1, y(h)u

1
h ||

2
L2(W)]

−Ch
5
3 ||k1, y(h)u

1
h ||

2. (11.11)

Then (9.37) (with k=1), (10.4) and (11.11) show the existence of C and h0

such that, for all h ¥ ]0, h0],

qN
h, A, W (k1, y(h)u

1
h) \ ( inf

c ¥ C
1
y(h)(W)

mc1(h))[1−Ch2/3] ||k1, y(h)u
1
h ||

2
L2(W)

−Ch
5
3 ||k1, y(h)u

1
h ||

2
L2(W) . (11.12)

The estimates (10.6), (10.4) and (11.12) prove that

m1(h) \ inf
c ¥ C

1
y(h)(W)

mc1(h)[1−Ch2/3]−Ch
5
3 . (11.13)

But it is easy to see, noting that c appears only through o(sc) which stays in
a compact interval, that there exists C > 0 such that, for all c,

mc1(h) [ Ch. (11.14)

So (11.13) and (11.14) give us the existence of C > 0, such that:

m (1)(h) \ inf
c ¥ C

1
y(h)(W)

mc1(h)−Ch5/3. (11.15)

Therefore it remains to analyze mc1(h).
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By scaling, that is using the change of variables t=h1/2 b−1/2t̃, we have
just to study, for any t ¥ R and for any a ¥ [−C, C], the ground state
energy of the self-adjoint operator HN, D, t

h , which is defined as an
unbounded operator on L2(]0, b1/2hd−1/2[; (1−h1/2at) dt), by associating to
the differential operator

Ht
h=D2

t +(t−t)2+ih1/2a(1−h1/2at)−1 Dt+2h1/2at 1 t−t−h1/2a
t2

2
22

−h1/2at2(t−t)+ha2 t4

4
, (11.16)

the realization whose domain is

D(HN, D, t
h )={v ¥ H2(]0, b

1
2hd−1/2[); vŒ(0)=v(b

1
2hd−1/2)=0}. (11.17)

Note that HN, D, t
0 still depend on h by its domain and that Ht

h depend
actually on ah1/2.

If a=b−1/2oc and t=−h1/2b−1/2k, then

Sp(HN, D
h, c, k)=bh Sp(HN, D, t

h ). (11.18)

We choose

d ¥ ] 1
4 ,

1
2[. (11.19)

We observe that this is compatible with (11.1) In this case, it is easy to see
that

|mj(H
N, D, t
h )−mj(H

N, D, t
0 )| [ Ch2d− 1

2 (1+mj(H
N, D, t
0 )). (11.20)

For a bounded from below self-adjoint operator T with compact resolvent,
(mj(T)) denotes its increasing sequence of eigenvalues.

But the mini-max principle (by the same argument as for a Dirichlet
problem) says that

m1(H
N, D, t
0 ) \ m(t)=m1(HN, t), (11.21)

where HN, t is the Neumann operator on L2(R+) defined in (9.3).
The exponential decay at infinity of the eigenfunctions of HN, t and the

uniform decay of the lowest eigenfunction for (h, t) ¥ ]0, h0]×[−J,+J]
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of HN, D, t
0 show also that, for any fixed j ¥N and J > 0, there exists

Cj, J > 0 such that

|mj(H
N, D, t
0 )−mj(HN, t)| [ Cj, Jh2, -(h, t) ¥ ]0, h0]×[−J, J]. (11.22)

Now, let us remind (see Appendix A) that the calculus of [DaHe] is valid
for HN, t.

Therefore (11.20), (11.21), (11.22) and (A.4) prove that there exists g > 0
such that

m1(H
N, t
h ) \ G0+h2d− 1

2 , -t, |t−t0 | \ ghd−
1
4 . (11.23)

Now, if |t−t0 | [ ghd−1/4, we use the asymptotic expansion of eigenvalues
for the perturbation of a self-adjoint operator in Chapter 1 of [MoPa] to
determine m(t) and jt modulo |t−t0 |3.

Let us recall how the method works. We expand HN, t, the eigenvalue
m(t) and the eigenvector jt around t0 in powers of (t−t0). This leads to
formal expansions and we keep as approximate eigenvector the expansion
of order 2. So we take

ft(t)=jt0 (t)+2(t−t0) R̃N, t0[(t−t0) jt0 (t)]

+4(t−t0)2 R̃N, t0{(t−t0) R̃N, t0[(t−t0) jt0 (t)]−d2 jt0 (t)}
(11.24)

with

d2=F
R+

(t−t0) R̃N, t0[(t−t0) jt0 (t)]×jt0 (t) dt. (11.25)

We recall that R̃N, t0 is the regularized inverse introduced during the
proof of Proposition 10.8 and we observe for further use that, using the
strict positivity of R̃N, t0 on the orthogonal to R ·jt0 ,

d2 > 0. (11.26)

We get easily that

||[D2
t +(t−t)2] ft(t)−[G0+(t−t0)2 (1−4d2)] ft(t)||L2(R+) [ C |t−t0 |3.

(11.27)

Let us now consider the construction of an approximate eigenvector for
HN, t

h . We first observe that

F
R+

[iDt+2t(t−t0)2−t2(t−t0)] jt0 (t)×jt0 (t) dt

=−2 F
R+

(t−t0)3 j2
t0

(t) dt=−2M3.
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We now introduce:

fh
t(t)=qh(t){ft(t)−h1/2aR̃N, t0{[iDt+2t(t−t0)2

−t2(t−t0)+2M3] jt0 (t)}}. (11.28)

Here qh(t)=q(h−d+1/2t) where q is a smooth cutoff function satisfying
q(t)=1, if t < 1/2, and q(t)=0, if t > 1.

In the same way as for the proof of (11.27), we get from (11.16) and
(11.24):

||[HN, t
h −[G0+(t−t0)2 (1−4d2)−2ah1/2M3] fh

t(t) ||L2(R+)

[ C[|t−t0 |3+h1/2 |t−t0 |]. (11.29)

Note that we have used the exponential decay of jt0 that gives also

| ||fh
t ||L2(R+) −1| [ C[|t−t0 |+h1/2]. (11.30)

The estimates (11.29) and (11.30) show that, if |t−t0 | [ ghd−1/4, then

dist([G0+(t−t0)2 (1−4d2)−2ah1/2M3]; Sp(HN, t
h ))

[ C[|t−t0 |3+h1/2 |t−t0 |]. (11.31)

The localization of the eigenvalues given by (11.20) and (11.22) shows that
the nearest eigenvalue of HN, t

h minimizing (11.31) is m1(H
N, t
h ), so we have

|m1(H
N, t
h )−[G0+(t−t0)2 (1−4d2)−2ah1/2M3]|

[ C[|t−t0 |3+h1/2 |t−t0 |]. (11.32)

But the asymptotic expansion of m(t) in powers of (t−t0) shows that

2(1−4d2)=mœ(t0) > 0. (11.33)

Note also that, using (11.26), we have:

mœ(t0) < 2. (11.34)

Therefore (A.4), (11.32) and (11.33) prove that, if |t−t0 | [ ghd−1/4, then

m1(H
N, t
h ) \ G0+(t−t0)2

1−4d2

2
−2ah1/2M3 −Ch1/2 |t−t0 |. (11.35)

So (A.4), (11.23) and (11.35) show that, for any d ¥ ]1
4 ,

1
2[,

m1(H
N, t
h ) \ G0 −2ah1/2M3 −Chd+

1
4 . (11.36)
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We conclude by observing that (11.7), (11.15), (11.18) and (11.36) (with the
choice of d=5/12) give the lower bound (10.14). L

12. CONCLUSION

We have completed the results obtained by Lu–Pan [LuPa1], [LuPa2],
Baumann–Phillips–Tang [BaPhTa], Bernoff–Sternberg [BeSt] and Del
Pino–Felmer–Sternberg [PiFeSt]. We have in particular achieved the proof
that, in the case of a constant magnetic field, the groundstate is localized
near the points of maximal curvature. This leaves open the question of
localization of the groundstate in the case where there is more than one
isolated point of maximal curvature. We have also completed the analysis
of the Dirichlet probem initiated in our paper [HeMo2], whose intial
motivation was a paper by Montgomery [Mon].

The analysis of the intermediate boundary conditions between Dirichlet
and Neumann could be interesting (see [LuPa3], [HoSm1] and [HoSm2])
and is physically relevant.

Let us mention for connected results (relative to excited states) the
heuristic results by K. Hornberger and U. Smilansky [HoSm1] and
[HoSm2] concerning bulk states and edge states.

As a result of the analysis we have presented, let us also mention that it
is interesting to look at the exterior problem. In particular, in the constant
magnetic field case, one can show that in an interval of the form to
[G0bh+O(h3/2), hb[, we have a discrete spectrum corresponding to states
localized near the boundary (edge states).

Moreover the case of piecewise C. domains has to be achieved in order
to complete the results of Jadallah [Ja] (see [LuPa4] and references
therein).

The analysis of the case of dimension 3 has been less analyzed (although
see [LuPa4] and [LuPa5]) and it would be interesting to see what replaces
the curvature in this case.

As suggested by J. Sjöstrand (and also used in the numerical computa-
tions of [HoSm1]), it could be interesting to develop a theory of reduction
to the boundary.

Computations performed by K. Hornberger and U. Smilansky8 for special

8 Many thanks to U. Smilansky and K. Hornberger for accepting to analyze our problem
with their numerical program.

domains confirm (for b=1 and h=0.1) the semi-classical prediction.
Finally, in the spirit of Lu–Pan, the analysis of the non-linear problem in

superconductivity motivating this analysis has to be continued.
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APPENDICES

A. On an Important Family of Ordinary Differential Equations

Let us recall for the comfort of the reader the main properties (mainly
due to [DaHe] and [BeSt]), concerning the Neumann realization of HN, t

in L2(R+) associated to D2
x+(x−t)2. We denote by m̂ (1)(t) the lowest

eigenvalue of HN, t and by jt the corresponding strictly positive normal
eigenvalue. More simply we will write m(t) instead of m̂ (1)(t) in this
appendix. It has been proved that the infimum inft ¥ R inf Sp(HN, t) intro-
duced in (9.3) is actually a minimum [DaHe]. Then one can show [DaHe]
that there exists t0 > 0 such that m(t) continues to decay monotonically till
some value G0 < 1 and is then increasing monotonically and tending to 1 at
+.. So it was obtained that

G0=inf Sp(HN, t0), (A.1)

and moreover (see [DaHe] or the proof of Lemma A.1 below) that:

G0=t2
0 . (A.2)

It is indeed proved in [DaHe] that

mŒ(t)=−[m(t)−t2] jt(0)2. (A.3)

To get (A.3), we observe that, if y > 0, then

0=F
R+

[D2
t jt(t)+(t−t)2 jt(t)] jt+y(t+y) dt

=−jt(0) j −t+y(y)+(m(t+y)−m(t)) F
R+

jt(t) jt+y(t+y) dt.

We then take the limit y Q 0 to get the formula.
From (A.3), it comes that

mœ(t0)=2t0 j2
t0

(0) > 0. (A.4)

Here we recall that m(t0)=t2
0=G0 is the strict minimum of t W m(t) on R.

Let jt0 (x) be the normalized strictly positive eigenfunction of HN, t0

associated to the eigenvalue G0.
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We use more simply the notation j0 instead of jt0 .
It is easy to see that j0(x) belongs to S(R+). In particular we have

j0 ¥ H2(R+), j −0(0)=0 and xkj0(x) ¥ L2(R+), -k ¥N. (A.5)

We now described some formulas appearing in [BeSt]. Let Mk denote the
centred moment, of order k of the probability measure j2

0(x) dx:

Mk=F
R+

(x−t0)k j2
0(x) dx. (A.6)

We begin by recalling how one can calculate the moments Mk , as done in
[BeSt].

Lemma A.1. The moments can be expressed by the following formulas:

M0=1, M1=0, (A.7)

M2=
G0

2
, (A.8)

M3=
j2

0(0)
6

> 0. (A.9)

More generally, if k > 3, we have

4kMk=(k−1){4t2
0 Mk−2+(k−2)[(−t0)k−3 j2

0(0)+(k−3) Mk−4]}.
(A.10)

Proof of Lemma A.1. We use the arguments of [BeSt]. Let L be
defined by:

L=HN, t0 −G0 .

We first observe the identity

L(2pj −0 −p −j0)=j0[p (3)−4((x−t0)2−G0) p −−4(x−t0) p], (A.11)

for p ¥ C2(R+), and

F
+.

0
j0 Lv dx=j0(0) vŒ(0), -v ¥ H2(R+) 5 L2(R+; x2 dx). (A.12)

So, for any polynomial function p,

F
+.

0
j0L(2pj −0 −pŒj0) dx=j2

0(0)[2p(0)(t2
0 −G0)−p (2)(0)]. (A.13)

MAGNETIC BOTTLES IN CONNECTION WITH SUPERCONDUCTIVITY 673



When p is the constant polynomial (=1), (A.11) and (A.13) show that
M1=−j2

0(0)(t2
0 −G0)/2, as we know that M1=0 and j0(0) ] 0, we can

recover (A.2): t0=G1/2
0 .

For p(x)=x−t0 and then for p(x)=(x−t0)2, we get in the same way
the value of M2 and M3. The general case is obtained by considering
p(x)=(x−t0)k−1. L

B. Coordinates Near the Boundary

For the most accurate estimates, we need to introduce rather standard
adapted coordinates9 near the boundary. Let a be the length of the bound-

9 See for example [PiFeSt].

ary “W and I=]− a

2 ,
a

2]. Let M ¥ C3(I; “W) be a parametrization of “W
such that M(0)=z0 and s is the distance inside “W between M(s) and z0.
We denote by

T(s) :=MŒ(s)

the unit tangent vector of “W at M(s) and the scalar curvature by o(s),
which can be defined by

TŒ(s)=o(s) N(s),

where N(s) is the interior normal unit vector of “W at M(s).
Moreover the parametrization is chosen positive:

det(T(s), N(s))=1, -s ¥ I.

From N·T=0 and N·N=1, we get first NŒ ·T+N·TŒ=0 and
N·NŒ=0.

Consequently, we get:

NŒ(s)=−o(s) T(s).

For any z ¥ W̄, we denote by t(z) the standard distance of z to “W:

t(z)= inf
w ¥ “W

|z−w|.

So, there exists e0 > 0 and a diffeomorphism of class C3,

k: We0 Q S1
a/(2p) ×]0, e0[,

such that k(z)=w=(s(z), t(z)) and |z−M(s(z))|=t(z).
We have denoted, for small enough e, by We the tubular neighborhood

of “W

We :={z ¥ W; dist(z, “W) < e}

and S1
r is the circle of radius r is identified with [−pr, pr[.
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So we have the identity

z=M(s(z))+t(z) N(s(z)), -z ¥ We0 . (B.1)

From this equality, it is easy to check that

T(s(z))=[1−t(z) o(s(z))] Ns(z) and N(s(z))=Nt(z). (B.2)

So for all u ¥ H1(W) such that supp(u) … We0 ,

F
w

|(hDz −A) u|2 dz

=F
K

[|(hDt −Ã2) v|2+(1−to(s))−2 |(hDs −Ã1) v|2](1−to(s)) dw

(B.3)

and

F
w

|u|2 dz=F
K

|v|2 (1−to(s)) dw (B.4)

with v(w)=u(k−1(w)), K=I×]0, e0[, w=(s, t) and dw=ds dt.
The magnetic potential Ã satisfies

Ã1 ds+Ã2 dt=A1 dx+A2 dy.

So

5“Ã2

“s
(w)−

“Ã1

“t
(w)6 dsNdt=B(z) dxNdy=B̂(w)[1−to(s)] dsNdt,

(B.5)

with k(z)=w and B̂ is defined by:

B̂(w)=B(z). (B.6)

This gives:

“Ã2

“s
(w)−

“Ã1

“t
(w)=B(k−1(w))[1−to(s)]=B̂(t, s)(1−to(s)). (B.7)
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Then we get the identity between differential operators

(hDz −A)2=a−1[(hDs −Ã1) a−1(hDs −Ã1)+(hDt −Ã2) a(hDt −Ã2)],
(B.8)

where a(w)=1−to(s).
The usual Hilbert space L2(We0 ) is transformed to L2(K; a dw). The

unitary transform U from L2(We0 ; dz) into L2(K; dw), defined by:

U(u)(w)=a1/2(w) u(k−1(w)), (B.9)

allows us to work in L2(K) and then we get the new identity between
differential operators

a1/2(hDz −A)2 a−1/2=(hDs −Ã1) a−2(hDs −Ã1)+(hDt −Ã2)2+h2W,
(B.10)

where W is a scalar function given by:

W(w)=a−1
2
“
2

“t2
a1/2+a−5/2 “

2

“s2
a1/2−4a−3 5 “

“s
a1/262.

A small computation gives:

W(s, t)=−
1
4

a−2o2−
t
2

a−3o'−
5
4

t2a−4(oŒ)2.

In the new coordinates and using a gauge transform, we can always
assume that the magnetic potential has no normal component in a neigh-
bourhood of “W:

Ã2=0. (B.11)

In this case, we have

“tÃ1=−B̂(t, s)(1−to(s)), (B.12)

where B̂ was introduced in (B.6).
These changes may be useful for analyzing the situation near the

boundary.
For example, in the Dirichlet case, with the additional condition that the

functions are supported near the boundary, we get the identity

qD
h, A, W(u)=q̃D

h (v), (B.13)
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with v=Uu, u ¥ H1
0(W), supp u … We(W) and

q̃D
h (v)=F a−2 |(hDs −Ã1) v|2 dt ds

+F |hDtv|2 dt ds

+h2 F W(t, s) |v|2 dt ds. (B.14)

But one has to be careful in the Neumann case, because U does not
respect the Neumann condition. In any case, one can use the identity

qN
h, A, W(u)=q̃D

h (v), (B.15)

with v=Uu, u ¥ H1(W), supp u … We(W) and

q̃N
h (v)=F a−2 |(hDs −Ã1) v|2 dt ds

+F |hDtv|2 dt ds

+h2 F W(t, s)|v|2 dt ds

− 1
2oh2 F

t=0
|v(s, 0)|2 ds. (B.16)

It could be dangerous to forget the last term (boundary term) in
Formula (B.16), when analyzing the asymptotic behavior as h Q 0 of the
ground state energy. Its contribution is indeed of order O(h

3
2). On the con-

trary, the contribution of the third term appears only in the remainder with
the order O(h2). We emphasize that the minimizer of the last functional
does not satisfy the usual Neumann condition but the distorted Neumann
condition:

(“tv)(s, 0)=−1
2 o(s) v(s, 0). (B.17)

This is actually quite natural if we think of the relation v=Uu.
The constant magnetic field case. In the neighborhood of “W, We0 , we

have (cf (B.8)):

PN
h, A, Wu=a−1 31hDs+bt 11−

t
2

o(s)22

×5a−1 1hDs+bt 11−
t
2

o(s)22 u6+h2Dt(aDtu)4. (B.18)
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discussions and to K. Hornberger for the nice pictures he transmitted to us.

REFERENCES

[Ag] S. Agmon, ‘‘Lectures on Exponential Decay of Solutions of Second Order Elliptic
Equations,’’ Math. Notes, Vol. 29, Princeton University Press, Princeton, NJ, 1982.

[AHS] J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields I,
Duke Math. J. 45 (1978), 847–883.

[BaPhTa] P. Bauman, D. Phillips, and Q. Tang, Stable nucleation for the Ginzburg–Landau
system with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), 1–43.

[BeHeVe] Y. Belaud, B. Helffer, and L. Véron, Long-time vanishing properties of solutions
of some semi-linear parabolic equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire, in press.

[BeSt] A. Bernoff and P. Sternberg, Onset of superconductivity in decreasing fields for
general domains, J. Math. Phys. 39 (1998), 1272–1284.

[Bo] C. Bolley, Modélisation du champ de retard à la condensation d’un supracon-
ducteur par un problème de bifurcation, M2AN 26, (1992), 235–287.

[BoHe] C. Bolley and B. Helffer, An application of semi-classical analysis to the asymp-
totic study of the supercooling field of a superconducting material, Ann. Inst. H.
Poincaré Phys. Théor. 58 (1993), 169–233.

[Ch] S. J. Chapman, Nucleation of superconductivity in decreasing fields, European J.
Appl. Math. 5 (1994), Part 1, 449–468, Part 2, 468-494.

[CFKS] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, ‘‘Schrödinger Operators,’’
Springer-Verlag, Berlin, 1987.

[DaHe] M. Dauge and B. Helffer, Eigenvalues variation I, Neumann problem for Sturm–
Liouville operators, J. Differential Equations 104 (1993), 243–262.
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