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Abstract

A flow (continuous real action) on a compact orientable surface M of genus greater than
one (a sphere with at least two handles) has sufficient room for orbits to wrap around one of
the handles in an exotic fashion. Specifically, an orbit that is wrapping around one handle can,
between wraps, spend increasing amounts of time wrapping and unwrapping around a second
handle before returning to the first for the next wrap around it. As a result the omega limit set
of such an orbit can contain a simple closed curve of fixed points around the second handle in
spite of wrapping around the first handle. In an earlier paper (Colloq. Math. 84/85 (2000) 235),
the authors constructed such a flow from this perspective and studied its lift to the universal
covering space of the surface. In this paper it is shown that many of the properties of the
example are consequences of a general theory that extends classical limit cycle theory.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The analysis of flows on surfaces in this paper is based almost entirely on the
universal covering space M of the surface M. For a compact surface of genus at least
2, M is the interior of the unit disk and the covering transformations are hyperbolic
linear fractional transformations with 2 fixed points on the unit circle, K. The flow
on M lifts to M [9]. The orbits studied are those with lifts to M that limit to a fixed
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point ae K of a covering transformation 7. Because of the links between covering
transformations and the fundamental group of M, these orbits are wrapping around
M following a particular element of the fundamental group.

The circle orthogonal to KK determined by the fixed points ¢ and b of T is called the
axis of 7. The example in [12] has the property that the hyperbolic distance on M
between the lifted orbit and the axis of 7" is unbounded. This is how wrapping and
unwrapping about another handle manifests itself in the covering space. Other
examples of flows exhibiting this behavior are known. Anosov discusses such
examples in [2,3], and Nikolaev and Zuhzhoma devote a portion of Chapter 10 of
[14] to this phenomenon and examples of it. These examples are obtained using
existence theorems for flows and generally do not limit to a fixed point of a covering
transformation. Whereas the example in [12] that motivated this paper was
constructed by modifying the system of differential equations x =1,y =1 —)? to
obtain a flow on a cylinder with 2 holes (a sphere with 4 holes) and attaching 2
handles with simple flows on them.

The points in the omega limit set arising from sequences of points on the positive
orbit for which the hyperbolic distance of the lifts to the axis of 7" goes to infinity will
be called remote limit points. Bounded limit points will refer to those with a bounded
distance. This does not preclude the possibility that an omega limit point is both
bounded and remote. Our key result about these remote limit points is that they must
be fixed points.

There are a number of results showing that under certain hypothesis orbits stay a
bounded distance from a geodesic. For example, in 1995, Aranson, Grines, and
Zhuzhoma showed that if the set of fixed points of the flow on M is finite, then any
lifted orbit that limits to a point on K stays a bounded hyperbolic distance from a
geodesic with the same limiting point [7]. Consequently, if the set of fixed points of
the flow on M is finite, then the remote limit set is empty.

A second key result links the more usual bounded limit points of an orbit
with the Hausdorff limit of a sequence of lifted orbits, when the omega limit set
does not consist entirely of fixed points. If 77" is applied to the lifted positive
orbit which approaches «a as time goes to infinity, we obtain a sequence of lifts of the
same positive orbit. (We are assuming « is the attractive fixed point of 7'.) With the
addition of the point a, they become closed and thus compact subsets of the unit
disk. The second key result is that this is a convergent sequence of compact sets
with respect to the Hausdorff metric on the unit disk. Moreover, the portion
of the limit in M, the open unit disk, projects onto the bounded limit points
of the positive orbit in M. Even when this limit is not the lift of a true limit cycle,
the lifted orbit approaches it in the same way that it would approach a lift of a
limit cycle.

One application of the key results is the following: If y is in the omega limit set of x
and x has a lift that limits to a fixed point of a covering transformation, then either y
is periodic or the omega and alpha limit sets of y consist entirely of fixed points.
Although this is a well-known result for the sphere, the authors do not know of any
reference to it in this context. Moreover, Anosov ([2, Theorem 9]; [4, p. 131]) implies
that it was unknown as of 1995.
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It is also worth noting the connections with an earlier paper [11] by the first author
on toral flows. The existence of non-fixed or moving points in the omega limit set
played an important role in that paper and is the critical hypothesis in this one.
However, the results for genus 1 and genus at least 2 are strikingly different. On the
torus, when there are moving points in the omega limit set, there are no remote limit
points ([11, Theorem 5]). Thus what follows is truly a theory for surfaces of genus
greater than 1.

2. Main definitions

A flow or continuous real action on M is a continuous mapping ¢: M x R—> M,
where R is the reals, such that ¢(¢(x,1),s) = ¢(x,t+5) and ¢(x,0) = x forall xe M
and s,7eR. For convenience we will often follow the convention of writing x¢ for
¢(x,t). The set of fixed points of ¢ is F = {xe M: xt = x for all teR}. If x¢ F, then
we say x is a moving point. The orbit of x is defined by O(x) = {xt: teR}. The
positive orbit of x is defined by O (x) = {xt: >0}. The w-limit set of x is defined by

o(x) = Nz O (x1).

In particular, yew(x) if and only if there exists #,— oo such that xt,—y. The a-
limit set is defined similarly.

A local cross-section X of ¢ at a point xe M is a closed subset X of M containing x
such that the map (x, ¢) - xt is a homeomorphism of X x [—¢, ¢] onto the closure of
an open neighborhood V' of x for some ¢ > 0. If x is a moving point then there exists
a local cross section at x [13]. When M is a compact connected surface, 2 is a closed
arc [17].

Throughout this paper M will be a compact orientable surface of genus g > 1.
Thus the universal cover M of M is the Poincaré disk: the open unit disk with the
hyperbolic metric dj, derived from the differential

s — 2/dx? + dy?

1—x2—)2°

The flow on M lifts to a unique flow ¢ on M such that the covering projection
n: M—M is a homomorphism of flows, i.e., n(¢(%,1)) = (n(x),7), and every
covering transformation 7' of M is an automorphism of the flow ¢. Moreover,
n(X) € F if and only if £ F, where F denotes the fixed points of QNS These results are a
consequence of the homotopy lifting theorem and can be found in [9].

Furthermore, the group of covering transformations is a discrete group of
hyperbolic linear fractional transformations I', and M is homeomorphic to the
quotient space M/I'. Each TeT has exactly two fixed points, one is attracting and
the other is repelling. The fixed points of I" lie on the unit circle, denoted by K, and
are called the set of rational points. The segment of the Euclidean circle that passes
through the fixed points of TeI" and is orthogonal to K is called the axis of T. (All
diameters of KK and segments of Euclidean circles that are orthogonal to K are
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geodesics for the hyperbolic metric.) Each T el’ is an orientation preserving
isometry. A transformation T el is called primitive if T = S/, Sel’, implies that
il = 1.

Let Xe M and let % be the closed unit disk with Euclidean metric d, so % =
MUIK. The following definitions can be found in [1,6]. The lifted positive orbit
O (%) is unbounded if lim,_, ., d(%,Xt) = co. Note that if lim,_, ,, d;(¥,%t) = o0,
then its limit set does not belong to M. In order to study the asymptotic behavior of
0" (), we can extend the lifted flow to % by taking I to be fixed points of ¢.

Suppose ¢ (X) limits to a rational point, i.e., d(Xf,a) >0 as t— oo, where ae K is a
fixed point of some Terl. Let x = n(X), and let A be the axis of 7. We define the
following two subsets of w(x): wr(x), the remote limit set of x, and wg(x), the
bounded limit set of x.

or(x) ={yew(x)|there exists {#,},7,— c0 as n— o0,

such that xt,—y and d,(*t,, 4) > o0},

wp(x) ={yew(x)|there exists {#,},1,—> 0 as n— o0,
such that xt,—y and d,(%t,, 4) is bounded}.

Note that wg (x) Uwp(x) = w(x), wp(x) Nwr (x)#0 is not precluded, and wg (x) = 0
if and only if 0" (%) stays a bounded hyperbolic distance from A.

We will use the following notation found in [11] for segments of curves and orbits.
If C is a simple curve, hence homeomorphic to an interval, and ¢ and b lie on C, then
(a,b) will denote the open segment of C between a and b. If s, 7€ R, then [xs, x7],
will denote {x#: s<t<t} or {xt: 1<t<s}, according as s<t or 1<s. Then [a,b],
and (xs, xt), have the obvious meanings.

If T eI is primitive and Ta = a, then Sa = a for SeI implies S = T" [§8]. We will
often make use of the following consequence to determine the behavior of lifted
orbits.

Rational Boundary Point Principle: Let R be a positively invariant region in % such
that RN K = {a} and Ta = a for some primitive TeI". Suppose X€ R and Xt—a as
t— 0. If Sel and S¥e R, then (SX)t—a as t— 0, Sa = a, and S = T" for some n.
Thus any time we know that S# 7" for all n we have a contradiction.

3. Main results and examples

The two main results in this paper establish the fundamental properties of the
remote and bounded limit points. The first main theorem appears in Section 7.

Theorem 10. Let ¢ be a continuous flow on M. If there exists xe M with lift X such
that Xt—aelK, where a is rational, then wgr(x)cF.
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In Section 8 we show that the set of bounded limit points can be described using
positive orbits in the covering space M and the Hausdorff metric on %. The key idea

is a geometric limit set which is the Hausdorff limit of a sequence of copies of O (%)
by distinct elements of I'. The second main theorem is in Section 8.

Theorem 18. Suppose Xt—aeclK as t— oo and a is the attractive fixed point of TeI'. If
w(x) @ F, then the sequence {T"0" (%)}, converges on U to a geometric limit set L
with the following properties:

(@) TL=1L,

(b) L is an invariant set of the flow b,

(©) n(LnM) = wp(x),

(d) If K is a geometric limit set of OF(X) and (K~ M) F, then K = SL for some
Serl.

The simplest example to which these theorems apply is a limit cycle ¢(y) which is
not null homotopic. If w(x) = O(y), then wr(x) =0, wp(x) = O(y), and L is just a
universal covering of the periodic orbit O(y).

A slightly more interesting case is w(x) = {yo} U O(y1) U O(y,) such that yoe F and

a(yi) =4{»o} = o(y;) for i =1 and 2. Assume that the simple closed curve O(y) is

not null homotopic. Again, wg(x) = 0. If O(y,) is a null homotopic loop, then L will

consist of a universal cover of ((y), i.e., a component of 7~ (€(y,)) with a copy of
O(¥,) attached at each element of n~!(yy) of it. (L looks like an infinite string of
Christmas lights.) In particular, L is still a component of 7~ ! (w(x)) but is not simply
connected.

If we assume both O(y;) and ((y;) are not null homotopic and not homotopic,
the picture gets more complex. (Picture a figure eight on top of a two holed

doughnut with yy lying between the holes, with @(y;) going around the hole on the

left, and with ()(y;) going around the hole on the right.) Given yoen~!(y), there
exists y; such that a(j) = o and o(y;) = S1(Jo). Similarly, there exists j, such
that Oc(fz) =S (}70) and (,O(fz) =55 (}70) Set Ly= @(ﬁ])ua(fz) Then L =
U2 (8251)"(Lo). In this case L is not a component of n~'(m(x)). In fact the
component of 7~ ! (w(x)) containing J is a universal cover of w(x) and is invariant
under the subgroup Iy of I" generated by S; and S,. Thus Iy is a free group on two
generators. It follows that L alternatively follows lifts of the orbits of y; and y, with
points from 7! (yo) in between. Moreover, L is a simple curve in % joining the two
fixed points of >8] on K, and Xt —a where « is the fixed point of S,S;. Finally, the
component of 7~!(w(x)) containing J, contains infinitely many geometric limit sets
of the form SL, Sel’y, and two of the geometric limit sets can intersect at a point in
! (9o)-

The methodology in [12] can be used to construct a wide variety of examples with
R (x)#0. In the specific example in [12], wg(x) is a simple closed curve and w(x) is
not locally connected at every point of wgr(x). In this case L is of the form
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U~ ., T"(0(7)), where jt converges to rational points as ¢ goes to both oo and
—oo. It follows that wg(x) is a single orbit. We believe it is possible to construct a
similar example with wg(x) = O(y) and yr converging to irrational points of K as ¢
goes to both oo and — oo, but the details have not been completely worked out. In
this example wg (x) would be a set of fixed points homeomorphic to the space of a

Denjoy minimal set.

4. Control curves

In this section, we will examine control curves, the primary tools we use to
study wgr(x) and wg(x) when x is not periodic. Let ¢ be a continuous flow on M
and let ¥ be a section at a moving point XeM. If there exist >0 and a
covering transformation 7'el'I such that freTX and (X ,%1);n7T"2 = 0

for all neZ, then we can construct a simple curve J in M called a control curve
defined by

J=J T(% 2]y 0 (& T %))

neZ

The curve J divides M into two regions; one is positively invariant and the other is
negatively invariant. We denote these regions J* and J—, respectively. If we extend J
to %, then the limiting points of J are the fixed points of 7.

Suppose an orbit consecutively crosses two equivalent section ~ and HZX, where
H = K’ for some j > 0 and primitive transformation K. In the main result of this
section, Theorem 6, we will show that between crossing X~ and HX the orbit must
successively cross the sections KX, K*X, ..., K/~1X. Moreover, the pull-back of these
crossings to X is strictly monotone on 2. This is an analog for surfaces of the planar
result which states that if a non-periodic orbit crosses one section more than once,
then the crossings are strictly monotone. The proof will use several results about
control curves; the underlying issue in these results will only be the simplicity of J,
and the simplicity of =(J) will not be assumed. The results in this section play an
absolutely essential role in the main theorems.

Throughout this section we will assume that X is a local section at some moving

point of ¢.

Lemma 1. Suppose there exist keZ, x > 1, and times ¢, 1€ R, o <7, such that Xoe€ X,
¥teT*X, and (%o,%1);nT"2 = O for all neZ. Let J be the control curve

defined by J = J,., T™([%o,Xt]5 0 (X0, T7"%1)y). Then T*J ~J #0 for all ) where
I<i<k -1

nez

Proof. Since (X0, X7) gNT"™ Y = 0 for all neZ, J is a simple curve. Suppose there
exists A, 1 <A<k — 1, such that T*J ~J = 0. Since J is connected, either T*J < J* or
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T*J=J~. Since M is orientable, and the extensions of J and T*J to % have the same
endpoints on K, T*J < J* implies that T/J* <J*. Thus T*J* <J*. But T*J = J
and hence T77*J* = J*, which is a contradiction. A similar analysis applies when
T*J<J~. Thus T"JnJ#0 for 1<i<k—1. O

An immediate consequence of Lemma 1 is the following corollary, whose proof we
leave for the reader.

Corollary 2. Suppose there exist keZ, k > 1, and o, teR, <7, such that XceX,
XteT*X, and ()Ea,fr)q;mT’”‘Z =0 for all neZ. For each A, with 1 <A<i — 1, there

exists s, 6 <s<t, such that Xse T'Y, where p =" 1 (mod k).

Lemma 3. Suppose £t—aclK as t— co. If 07 (X)X = {X}, then 0" (X) crosses HX
at most once for any HeT .

Proof. Suppose not. Then there exists Hel and s1,5,€R, 0<s;<s,, such that
XsieHY and Xs;e HX. Without loss of generality, we may assume that
(¥s1,%52);nHE =0. Let G be the Jordan curve defined by G=
[Xs1, Xs2] 5 L (%51, %s52) 5. Since O*(X) is unbounded, Int(G) is negatively invariant
and Ext(G) is positively invariant. Hence £eInt(G). Moreover, since 01 (X)n2 =
{%}, 2 =Int(G) and thus H~'%s; e Int(G) and H~'%s, e Int(G).

Next we check that H~'G<Int(G). If not, there exists s, s; <s'<s,, such that
H'%5'e(%s),%s0)yy and thus O (H™'X)<Ext(G). But this contradicts
H™'%s,eInt(G).

Since Xt—a as t— co, H'(£5,)t—»H 'aas t— oo, and so Int(H~'G) is negatively
invariant. Since ! is an isomorphism of flows, it must map negatively invariant regions
to negatively invariant regions. Thus H~!(Int(G)) = Int(H~'G) < Int(G). By Brouwer
Fixed Point Theorem, H~! has a fixed point in In#(G). This is impossible: the fixed
points of a transformation of I' lie on IK. Thus ¢ (%) crosses HX at most once. [

Proposition 4. Suppose there exist keZ,x > 0, and o, 1€ R, 0 <7, such that X6 € X and
XteT"*X.

(D) If (Xo,X1);nT"2 = 0 for all neZ, then x = 1.

(2) If 0" (%0) N X = {Xa}, then (¥0,%t); 0 T"E = for all m<0.

(3) If k =1 and O* (Xo) N2 = {Xa}, then (Xo,%0);nT"2 = 0 for all neZ.

Proof. (1) Suppose x > 1. By Corollary 2, there exists a time between ¢ and t where
0" (Xo) crosses a section which is a copy of X by a power of T, contradicting
(Yo,%1);nT"2 = 0. Thus k = L.

(2) Suppose not. Then there exist s, c<s<t, and M <0 such that fseTYX.
Without loss of generality, s is the first time less than 7 that ¢ (£) crosses a copy of ¥
by a negative power of T, i.e., (¥s5,%7); N T/% = § for all j<O0.
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Let 7’ be the first time greater than s that O (£) crosses a copy of X by a power of
T, say X' e TM' Y. Note that s<tv'<t. It follows that M’ > 0. Thus, by Part 1,
M —-M=1 But M >0 and M =M —1 imply that M>0, which is a
contradiction. Thus (X0, Xt); T2 = 0 for all m<0.

(3) Suppose not. Then there exist jeZ and s;eR, such that g<s; <7, and
Xs1eTVX. Choose s; to be the first time greater than ¢ that this occurs, i.e.,
(X0, %s1) 5N T"2 = 0 for all ne Z. By Lemma 3, O (%) crosses any translate of X at
most once. Thus either j > 1 or j<0: but j > 1 is impossible by Part 1 and j<0 by
Part2. O

Observation 5. If J is a simple control curve defined by

J = U xto,xt1 (Xlo,Til)El‘l)Z).

neZ

Then Xty and T~'Xt, divide X into three disjoint pieces:

(1) [®to, T~'%11]s, which is in J;

(2) the half open interval from T~'%t, to the endpoint of X that does not contain Xty,
which is in J* since t; > ty; and

(3) the half open interval from Xty to the endpoint of X that does not contain T~'Xty,
which in J~ since ty<ty.

Theorem 6. Suppose there exist keZ, k > 1, and ty, t, € R, t0<t,<, such that Xtye X,
Xt,eT*Z, and O (Rtg) "2 = {Xty}. Then there exists {; }/ 1y to<ty)<--- <t, such
that Xt;e T'E, {T~/X1;} is strictly monotone on X, and (Xt;, Xt} NgNT"E = 0 for all
nelf.

Proof. We will argue by induction on x. First consider the case where k = 2. Then
there exist times 7o <t, such that £tye X, £, e T2, and O (%)) n X = {Xto}. Let sy
be the first time greater than 7y that OF(X) crosses a translate of X by a positive
power of T, say %5, TV' X, where N, >1. Note that N; and s; exist since Xt, e T>X.
There exist a time so, fH<so<si, and NgeZ such that XspeT™X and
(Xs0, )Esl)q~5 NT"X = ( for all neZ. Note that Ny<0. By Proposition 4, Part 1, Ny —
No = 1. Thus Ny = 1 and Ny = 0. Since O (£t9) N2 = {Xto}, it follows that sy = .
We have found a time sy, f)<s| <t,, such that Xs; e T2. By Proposition 4, Part 3,
(Xto,X51) ;N T"Z = 0 and (xsl,xlz) NT"Y = for all neZ.

It remains to be shown that 7 !'Xs, € (Xto, T~ xtz)x. Let p denote the endpoint of
¥ such that 77?31 €(%t,p) 5. Let Ji = U, cp T"([Fto, Ts1]5 0 (20, T~ %s1)y). Note
that J; is a simple control curve and TJ;" = J;'. Since t, > sy, it follows that X1, € J;
and so 7281, eJ|". By Observation 5, T~2%1, lies on the side of 7' %s; on X which
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does not contain X?,. Since we also know that T’Z)Etze(ftmp)z, it follows that
T '%s1 € (Xt9, T>X12) 5. Thus the result holds for k = 2.

Assume that the result holds for x = m > 2, i.e., if there exist #, t,,€R, to<t,,
such that £tpeX, Xt,e T2, and O (Xt9)nY = {Xty}, then there exists {tj};':ll,
ly<ti<-<ty, such that Xt;e VY, {T7/Xy} is strictly monotone on X, and
(X1}, Xt311) 5N T"2 = 0 for all neZ.

Now suppose that there exist times fy, i1, fo<tms1, such that XtyelX,
Rt €T X and OF (Rt9) n X = {£1y}. Let p denote the endpoint of X such that
T3t 1€ (Xto,p)5- Let t,, be the first time less than #,,.1 such that 0" (X) crosses
any translate of X by a nonnegative power of T less than m + 1, say %£t,e TVX,
where 0 <N <m. Note that N and ¢,, exist since X7y 2. Let t be the first time greater
than 7, that O (%) crosses a T-translate of X, say £1e TMX i.e., ()Elm,fr)& NT"Y =
0 for all neZ. Either M >m+ 1 or M <0. By Proposition 4, Part 2, M cannot be
negative. Hence M >=m + 1. By Proposition 4, Part 1, M — N = 1. Since M >=m + 1
and 0< N <m, it follows that N = m, M = m + 1, and hence t = 1,,,;. Thus we have
found a time 1, to<t,, <tms1, such that Xz, T"X. Note ()Ztm,izmﬂ)q;mT”Z =0
for all neZ by Proposition 4, Part 3.

We will now show that T—"%t,, € (£tg, T~ "V %t,,,1),. Let

T=J 7T " %t, T fi1] 5 O (T "%, T $111) ).

neZ

The control curve J is simple. Since 1) <t,,, XtoeJ. Thus 1, lies on the side of
T~"%t,, which does not contain 7-"*V%t,,, ;. We also have T~V 51,1 € (X, p)y-.
It follows that T-"'%t, € (Xtg, T~V %t,41) 5.

We may now apply the induction hypothesis to find a sequence of times { lj}}":_ll,
loy<t;<--<ty, such that X;e VX, {T7/Xt;} is strictly monotone on X, and
(X}, Xtj11) 50 T"2 =0 for all neZ. O

5. Recurrence and limit points

A point x in M is positively recurrent if xe w(x). On a surface of genus 0 we know
from classical Poincaré—Bendixson theory that positively recurrent points must be
periodic. The same is true for the Klein bottle, but not the torus and all surfaces of
genus greater than 1. It follows from the next theorem that when Xt —a as t— oo and
a is rational, then positively recurrent implies periodic.

The first author showed in [10] that when x was positively recurrent and not
periodic, then lim,_, ., Xt = a€ K. This result may also have been known to D. Anosov
about the same time. Aranson and Grines were the first to show that a was irrational
[6]. However, their paper assumes the flow is differentiable and the proof uses this
assumption when the author refers to a lemma [5, Lemma 3] in an earlier paper on
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structural instability. We include a new proof using the Rational Boundary Point
Principle that does not require differentiability. It then plays a critical role in the
main theorem of the next section and helps bring the paper to closure in the last
section.

Theorem 7. Suppose Xt—aeclK as t— co. If x is positively recurrent and not periodic,
then a is irrational.

Proof. Let X be a local section x and let 2 be the lift of X containing X. Because
Xt—aclK as t— o0, we can assume that 01 ()" 2 = {£}.

Because x is positively recurrent and not periodic, there exists Sel’ such that
XteSZ for some t > 0 and Xt# SX. By Theorem 6, we can assume S is primitive
and  J =J,., S"([% X]p0 (%, S7'%1);) is a control curve. In particular,
(X, %10)5 NS"E =0 for all n.

Now suppose a is rational and the attracting fixed point of the primitive
transformation T eI'. Then there are two cases: either S = T*! or S#T+!,

First suppose S = T*! and form the region R bounded by 0" (S~2%1), O (S%1),
and the piece of J joining S~2%t and SxXt. It is easy to check that R is positively
invariant and « is the only boundary point of R on [K. Because x is positively
recurrent, O (HX) crosses (£, S7'%t); and enters R for some Hel. Clearly, H#T"
for all n. But this contradicts the Rational Boundary Point Principle. Thus S# T+!.

Suppose xt is the first crossing of X so n(J) is a simple closed curve and HJ/nJ =
0 for all H#S" for some n. From the above we know that S# T*!. Because x is
positively recurrent, there exists a sequence of distinct H, € I' such that 0" (%) crosses
H,J as t— oo. Clearly H,J — a in the Hausdorff metric. Hence for large #n, the fixed
points @ and b of T lie on opposite sides of H,J.

Replacing X with Xte H,J and relabeling, we can assume that the fixed points of T
lie on opposite sides of J, i.e., the axes of T and S intersect. It follows that T¥J = J+,
aeTkJ*, and O (%) intersects T%J for all k > 0. In particular, O (X) intersects
TkS™ (%, S~ %1) 5 for some myeZ.

Now if my = my for some k<k’, we can use Theorem 6 to construct a new J' and
S’ = T*! which is impossible. So there exists |m;|>3. For convenience suppose
mp>3. Consider the region R bounded by O (%1),0" (T *%c), where
foe TFS™(£,5'%1)z, and the piece of J joining £t and T *Xg. As before R is
positively invariant and « is the only boundary point on K. Finally, SXte R for t > t
and hence, by the Rational Boundary Point Principle, S = 7" for some n, a
contradiction. [

6. The presence of moving points in wg(x)

Let x be a point on the surface M and let X be a lift of x in the universal covering
space M of M. Throughout this section we will assume that Xt —a el as — oo, and
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that a is rational, that is, a is the attracting fixed point of some primitive T eI, the
group of covering transformations for M. Clearly if this hypothesis holds for one lift
of x it holds for all of them.

The presence of non-fixed or moving points in w(x) will be a crucial hypothesis in
the main theorems of this paper because it guarantees a local section at a point in
o(x) and control curves constructed using lifts of the section and the positive orbit of
x. The key theorem in this section ensures that some of the moving points are in
wp(x) and consequently that there are T-invariant control curves.

Theorem 8. Suppose Xt—aclK as t— oo and a is rational. If w(x) contains a moving
point, i.e., w(x)Z F, then wp(x) contains a moving point and is not empty.

Proof. The proof proceeds by assuming wg(x) <= F, dividing it into two cases, and
deriving a contradiction in each of them.

Let y be a moving point in w(x) and let X be a local section at y. Since we are
assuming wg(x) < F, it follows that yewr(x) and 2 nw(x) = Znor(x). If Zno(x)
has interior in X, then x is positively recurrent and not periodic. By Theorem 7 this is
impossible because a is rational. Either X nw(x) is perfect nowhere dense or contains
an isolated point; these are the two cases.

Let 2, A€ A, be the set of lifts of X to M. Let T eI be the primitive transformation
that has « as its attracting fixed point. Then ¢ (£) can intersect only a finite number
of the section %, which are a bounded distance S from A the axis of T because
wg(x)c F. In particular, 0F(X) can intersect only a finite number of 7"%; because
T"%; are equidistant from A4. This observation will play a crucial role in both cases.

Case 1: If Xnw(x) contains an isolated point, then, without loss of generality,
Znogr(x) ={y}. Then there exists a consecutive sequence of crossings x; =
xt; € O (x) such that 7, 00 and x; € O (x) N Xy, where X is one of the two pieces of
2 when y is removed. Clearly x; converges to y.

For each k form the curve J; = [xg, .Xk+1]d) U (Xkt1, Xk)y on M. Each Jy is a simple
closed curve and JynJy = 0 if k — k' is large. Let 2} be the lift of ¥ containing
Xr = Xt and let o = dh(fk,A). Since Xt—aelK as t— oo we may assume, without
loss of generality, that O (%,)nZo = {%}. By our initial observation, the
sequence o goes to infinity as k goes to infinity. Furthermore, we can find a
subsequence such that oy, <oy, for all i. By the above we can assume Ji, N Jy, = 0
for all i#j.

Since there are at most a finite number of non-homotopic disjoint simple closed
curves on M, we can assume the Ji, are all homotopic. Finally, the Ji, are not null

homotopic because ¢* (%) crosses any lift X, at most once by Lemma 3.
Next let J; be the loop following the orbit of x to xi;1, going along X to x; and
back to x along the orbit of x, i.e., [x, kaLbu(xHhxk)Zu[xk,x]¢. Clearly J; is

homotopic to Ji. Hence the J;are all homotopic. Let f}ﬂ be the lift of J; starting at
X. So there exists a single Sel such that SX is the end point of f;{i for all i. Hence
Rk 11€S2, SZi = Z)41 and the lift of Jj, starting at X, ends at S% .
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Now we can form the control curve Ji, = U, S"([%%, K1l 9 (X, SR 41 )fkn
which projects on Ji, in M.

Because gy, <oy,+1, we have that S# 7" for all n. Since Xt — a, which is not on the
axis B of S, d;,([)?kl,fk,,Jr]]d;,B)—»oo and d,(Z;,,B)— o0 as i— oo. Since S is an
isometry, d;l(fki,B) — o0 as i— o0. It follows that for large i the projection of jk,- on
M is not simple. But that projection is Ji, which, by construction, is simple, a
contradiction eliminating the first case.

Case 2: For the second case we suppose X nwgr(x) = C, a Cantor set. Then there
exist two consecutive crossings, say xt; and xt, of ¥ by O (x) such that
(xty,xt2)y "nwr(x)#0 and therefore is also a Cantor set because (*(x) can cross
2 only in the complementary intervals of C. It follows that J =
[xt1,xt2] g U (xt1,x12) 5 is a simple closed curve on M. Note that J cannot be not
null homotopic because (¢*(x) must cross [x71, xt>]y infinitely often.

Let J be a component of #~!(J) in M. So n|; is a universal cover of J and J is a
control curve. The construction of J guarantees that (07 (£) crosses infinitely many
distinct copies S;J, S;el’, with Xt;e€S,J and ;7 0. Because J is a simple closed
curve the S;J are nested and converge in the Hausdorff metric to «. In particular,
there exists an S eI such that the endpoints of SJ are on opposite sides of 4, the axis
of T.

Let 5 be the lift of £ on SJ which O (X) crosses, say at Xt3. Let X7, and %1, be the
lifts of x#; and xt,, respectively, in %, and let ¢; and @, be the limits as r— oo of
X;t, i=1,2. Clearly a; and a; are on opposite sides of 4. Now form the region R
bounded by O*(X11),0" (%212), (X111, %202)5, and the arc of K from a; to a»
containing a. Note R is positively invariant.

For large k, T*Z=R. It follows that TR R for large k. Since {T*a;} and
{T*a,} approach a from opposite sides this is only possible if ¢ (Xt3) crosses T¥Z
for large k. This is impossible since wg(x) = F, as we pointed out early in the proof.
This is the second contradiction and completes the proof. [

The following corollary guarantees the existence of a sequence of control curves
when w(x) contains a moving point.

Corollary 9. Suppose Xt—aclK as t— oo and a is rational. Let T eI be the primitive
transformation that has a as its attracting fixed point. If o(x) ¢ F, then there exists a
sequence of T-invariant control curves {J,},, constructed from 0" (X) and a lift of a
section X in M. Moreover, these control curves have the following properties:

(a) i <Jj and J, =J, |
®) g5, g and T T, .

Proof. By Theorem 8 there exists a moving point yewg(x). Let X be a section at y.
For any lift 2 of X, all of the sections 7" are equidistant to A, the axis of T'. Since
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yewg(x) it follows that there exists a lift & of X and a subsequence {7%Z} of
{172}, which intersects ¢ ().

In particular, we may assume, without loss of generality, that there exists {74},
Tk — 00 as k— oo, such that Xt € T2, x15 — y, and X7, € (xTk,y)y. Without loss of
generality, 7o = 0, ny = 0, and 0" (%) "2 = {x}. By Theorem 6, ¢ () consecutively
crosses all of the sections 7”2, n>0. Moreover, there exists {t,}, ty> o0 as n— oo,
such that Xt,eT"%, ()Ztn,iln+1)q;m "% =¢ for all meZ, xt,—y, and
X1 € (X, )y

For each n>0 setting

To=J T"(T " %tn, T™"ft11) 5 O (T "%, TV 31,11)5)

meZ

produces the required sequence of T-invariant control curves. [

7. The dynamics of remote limit points

In [12] we constructed an example of a flow on a surface of genus 2 with points x
such that £ —a, a rational, as — oo and such that wg(x)#0. If a is the fixed point
of Terl', then n(A), where 4 is the axis of T, is a simple closed curve in M. For x to
approach the points in wg(x) in our example, xz wrapped around a simple closed
curve f§ not homotopic to n(4) and then unwrapped. Consequently, the wrapping
and unwrapping near f§ forced f to lie in the fixed points of the flow. This was no
accident. Although wg(x) can be more complicated than a simple closed curve and
the wrapping and unwrapping is not visible in the proof, we show in this section that
the points in wg(x) are all fixed when « is rational, and the dynamics of the remote
limit points is uninteresting. An earlier version of this result with the assumption that
wp(x) contains a moving point appears in [15].

Theorem 10. Let ¢ be a continuous flow on M. If there exists xe M with lift X such
that Xt—ae K, where a is rational, then wgr(x)<=F.

Proof. If w(x)c=F, there is nothing to prove. If w(x)zF, then wg(x)zF by
Theorem 8. Let T be the primitive covering transformation in I that has a as its
attracting fixed point. Let X be a section at a moving point yewg(x). By Corollary 9
there exists a sequence of 7-invariant control curves. In particular, there exists a lift
S of ¥ and times fy<t; such that XtyeX, Xt;eTZX, xtje(xty,y)y, and J =
Unez T"([Rt0, ¥t1] 50 (10, T~'X1)5) is a control curve.

Now form the region R bounded by ¢ (£1,) and J', the piece of J from O (£1;) to

a,i.e., J = Um>0 T’”([)Eto,itl]&u(ito, Tﬁl.fll)f).
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Now suppose gewg (x). We will first show that if § is a lift of ¢, then §¢ R. We will
proceed by contradiction. Suppose € R. Let V' be a compact covering neighborhood

of ¢ in M such that the lift V containing § is contained itself in the interior of R.
There exists s > 0 such that xse }J and

dh(fsaA) > 2(dh(q~7A) + 5)’ (1)

where § is the hyperbolic diameter of a lift of V. There exists §; en~!(g) such that £s
and §, are contained in the same lift 7/} of V. Let H be the element of I" such that
H§, = . Clearly HV; = V and HXse R. By the Rational Boundary Point Principle,
H = T" for some n. Hence d(§,,A) = dy(§, A) which is impossible by (1).

Now we will obtain a similar contradiction by assuming ¢ ¢ F. Hence there exists a
section 2" at ¢g. Without loss of generality, we can assume 2’ nn(J) = . There exist
positive s; and s, such that xs; and xs, lie on the same side of ¢ in 2" and

dh()ab,/l) > 2(dp(Xs1, A) + 0), (2)

where § is the hyperbolic diameter of a lift of X'. Then £s;€ 2, where 2/ are the lifts
of 2’ such that q}eZN;. If HG, = §», then H#T" for all n by (2). Without loss of
generality, xs, lies between xs; and g on 2’. It now follows that H<Xs; € R because §;
and ¢>¢ R and 2’ can intersect the simple closed curve bounding R at most once. By
the Rational Boundary Point Principle, we have that H = T", the final contra-
diction. O

8. Geometric limit sets

Suppose w(x) is a periodic orbit which is not null homotopic, that is, w(x) is a
limit cycle. Let X be a lift of x. It is easy to see that Xt —a, a rational, as t— co. Then
a is the attracting fixed point of a primitive 7 el’. Further, it can be shown that
{T~"0"(%)}2, converges in the Hausdorff metric on % to a set L and L~ M is a lift
of the periodic orbit equaling w(x) = wp(x) because wg(x) = 0.

In this section we will show that the Hausdorff convergence of 770" (%) to a set L
is quite general, requiring only that w(x) is not contained in F, the set of fixed points.
(This result appeared in [15] under the more restrictive condition that wg(x) contains
a moving point.) It follows that 7L = L and n(LnM) = wg(x). Thus wg(x) is a
generalization of a limit cycle. In particular, the second author has shown [16] that
when (x) is locally connected, wgr(x) =0 and w(x) = wg(x) contains a simple
closed invariant curve which is not null homotopic. In contrast, wg(x) in the
previously cited example [12] is a single orbit, O(y), such that w(y) = a(y) = wr(x) is
a simple closed curve of fixed points which is not null homotopic.
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A geometric limit set of X is a Hausdorff limit of a sequence of copies of ¢ (X) by
distinct elements of I'. Note that the Hausdorff limit of S " () is the same as that

of Sk(9+ ()?)

Throughout this section we will assume that w(x)z F (and hence wp(x)zF),
Xt—aelK as t— o0, and that a is rational, i.e., a is the attracting fixed point of some
primitive T eI'. By Corollary 9, a sequence of T-invariant control curves J, can be
constructed from ¢ (%) and a lift £ of a section at a moving point in wg(x) in M. In
particular, there exists a sequence {f#,}, f,—o0 as mn— oo, such that
Xt,eT"E, ()Ztn,ianrl)q; NT"Y =0 for all meZ, xt,—y, and xt,, € (xtn,y)s. For
each n=0,

I = T (8t fti1] 0 ($tn, T Zi1) s).
ez

We define the following two subsets of %:

A=TF=

and

B=JJ, =7
Note that 94 = A~ B and 04 = OB by de Morgan.

Lemma 11. The sequence of control curves J,, converges to 0A in the Hausdorff metric
on U.

Proof. Let {J,, } be a convergent subsequence of {J,}, say J,, —J. From Part(a) of
Corollary 9 it follows that J<=JA.

Let ze 9A. Given ¢ > 0 there exists M, such that J, n B,(z) #0 for m> M, because
zeB and J; <J, . Since ze A, we also have J,) nB,(z) #0 for m>M,. Now, by
connectivity of B,(z), we have that J,nB,(z)#0 for m>M,. In particular,
Ju, O B:(2) #0 for large k. It follows that J N B,(z) #0 for all ¢ > 0 and zeJ.

Having shown that 94 is the only possible limit of a convergent subsequence of J,,,
it follows that J, converges in the Hausdorff metric to 04. O

Theorem 12. Suppose Xt—aelK as t— co and a is rational, and the attracting fixed
point of some primitive TeT'. If w(x) contains a moving point, then {T"0" (%)},

converges in the Hausdorff metric on .

Proof. By Theorem 8 there exists a moving point yewp(x). Let X be a local section
at y. By Corollary 9 we can construct the sequence of T-invariant control curves J,
to which Lemma 11 applies.
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Let L be the limit in the Hausdorff metric of a convergent subsequence of
{T"0*(X)}, say T"O0"(X)— L. As in the proof of Lemma 11 it suffices to show
that L = 0A.

Let ze L. There exists {s;}, s;— o0 as j— oo, such that 77" %s; »z. Each T7"Xs;
lies on some control curve in the sequence {J, }. The specific curve depends on s;. For
each s; there exists 7, € {tm} such that lyy <8j<Im;+1 and so T" Xs;eJy,. Note that
mj— o0 as j— 0. By Lemma 11, J,,, - 0A4. Hence ze 94 and L<=0A.

To show that 94 c L, let we A. If we T"X for some n, then we L. If w¢ 7”2, then
choose & > 0 such that B,(w) nT"% = 0 for all n and B,(w)nJ; = §. There exists m
such that J,, n B.(w)#0 and Tk(flm,itmﬂ)(f; N B,(w)#0 for some k.

For n > m construct the simple closed curve

Gy = T[R9, 1] 5 O [T 7"ty TRt

U [Rto, T"Xty] s U [Xt1, T "Xtyi1] 75 }-

Note that Tk(ftm,)ztm+1)¢; is in the interior of G, for n > m, and hence B.(w)
also intersects the interior of Gj,. Since the interior of G, is contained in J,,
it does not contain B,(w) because wedA. By the choice of e,
B.(w)n TH™(T~"%t,, T™"8thr1) g #0 for all n > m because B,(w) is connected.

Using the fact that k + m is fixed and n (n > m) is arbitrary, for n; > k + m we can
find a sequence of times {s;}, s; > 00 as j— oo, such that 77" Xs;—w and so we L.
Hence 04 <L and thus L = dA. Since the argument was independent of choice of
convergent subsequence of {7T7"(0" (%)}, we have that T (X) converges in the
Hausdorff metric to 04. [

We now set L = lim,,_,,, 7"0"(X) when w(x)zF. It follows that TL = L and
that for Ser,

SL=S lim T"0*(%)

n— oo

= lim ST "0 ()

n— oo

= lim ST"S" 'S0 ()

n— oo
= lim (STS)"0*(S%).

n— o0

So SL is a geometric limit set for all SeT.

Remark 13. Let Sy be a sequence of distinct elements of I, and let C be a compact

subset of M, and let {wy} be a sequence of points in C. If Sywy. converges to z, then
zelK.
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Proof. C is contained in a finite number of compact fundamental domains as is any
compact subset of M. Hence, given 0<r<1, S;C must be outside of {z: |z|<r} for
large k. In particular, r<z<1 for any r, O<r<1. O

Remark 14. Let K = lim,_, ., SxO" (X) be a geometric limit set of O (X). Then K is
invariant under the flow ¢ and n(K n M) < wo(x).

Proof. Let we KN M. Then there exists {t;} such that lim;_ ., SiXtx =w. By
Remark 13, 1ty —> o0 as k— oo. Hence given ¢, 14 +¢t— oo and wre K. Clearly,
n(w)ew(x). O

Proposition 15. n(Ln M) = n(SLnM) = wg(x) for all SeT.

Proof. If yewg(x), then there exists s; /" oo such that xsp —y and dj(%si, 4) < p for
some f§ > 0 where 4 denotes the axis of 7. Let we 4 and let C; and C, be hyperbolic
lines perpendicular to 4 at w and Tw. Then there exists n; such that 7" Xs; is
between C; and C(,. Without loss of generality, ny” o0 and T " Xs;—7J.
(dp(T™Xsy, A) = dp(Zsr, A) < guarantees a convergent subsequence which must
converge to a point in n~!(y) because xs; —y.) Since T-"*O" (%) converges to L,
yelL.

Now suppose yeLn M. Then d, (7, A)<p for some f# > 0. There exists Xs, such
that 7"Xs, — y. By Remarks 13 and 14 5, — o0 and n(y) e w(x). Since dy(Xs,, A) =
dy(T"Xs,, A) < p for large n, it follows that yewg(x). O

Theorem 16. If K = lim,,_, ,, SxO" (X) is a geometric limit set, then either

(1) K = SL for some Sel or
() n(KnM)cwgr(x).

Proof. We know that n(KnM)cw(x). Suppose n(K N M) wgr(x), so there exists
y€K such that n(y) ¢ wr(x), J = limg_, o, SpXtx. It follows that dj(¥tx, 4A) <f and
dh(Sk‘lﬁ, X1) > 0. Choose ny so that T" Xt is between C; and C, as before. Then
dp (TS, 9, T~ %11) >0 and, without loss of generality, because dj,(Xtx, 4) < for
all k, T~" Xt — y, such that n(y;) = n(y). It follows that Sy; = j for some Sel and
TS, = S~! for large n because TS, ' j—p;. Thus Sy = ST and K = SL.

If K=SL, then n(KnM) = wg(x)zF and n(KnM)zwr(x) because, by
Theorem 10, wr(x)cF. O

Proposition 17. If yewr(x) and y¢ wg(x), then there exists a geometric limit set K
such that yen(KnM)c g (x).

Proof. Let y = limy_ o, X7, 14— 00, and d,(X14, A)— 0. Choose n; such that
T "Xt 1s between C; and C,, constructed as in the proof of Proposition 15 and
T "Xt —z. Note ze L and |z| = 1.
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Let yen~!(y) and choose Sy eI so that d, (S, T~"£ty, §) is minimal. By taking a
subsequence we can assume ST~ " (" (%) - K. Hence y is in the geometric limit set
and n(KnM)#wg(x) because yé¢wg(x). Therefore by Theorem 16 we have
n(KnM)cogr(x). O

The following theorem summarizes the results of this section.

Theorem 18. Suppose Xt—aelK as t — o0 and a is the attractive fixed point of TeI'. If
w(x) @ F, then the sequence {T™"0" ()}, converges in the Hausdorff metric on U to
a set L with the following properties:

(a) TL = L,

(®) L is an invariant set of the flow ,

(©) n(LnM) = wp(x),

(d) If K is a geometric limit set of O (X) and (K~ M) F, then K = SL for some
Serl.

9. Asymptotic results for L and wg(x)

In this section, we describe the asymptotic behavior of points in both the
geometric limit set L and wg(x) under the usual assumptions. Specifically, X is a lift
of a point x in M such that X¢t— a, where a is a rational point of I, as t— oo, and T
will denote a primitive element of I" with attractive fixed point a.

Lemma 19. Suppose w(x)@F, J = ., T"[¥, Xs]; 0 (X, T-'%5), is a control curve
in M, and X is another local section of ¢ such that ¥ ~J = 0. Then the following hold:

(@) T"OT (X)X contains at most one point, and
(b) LnZX contains at most one point.

Proof. Either X<=J~ or X<=J". If ¥ =J~, then both intersections are empty because
T"0"(X)cJ+ and LcJ*t. Hence we can assume XcJ*.

Part (a). We can assume n = 0 without loss of generality. If the conclusion is false,
then there exist ¢ and 7, s<o <7, such that Xo, X1€2. We can also assume without
loss of generality that (¥, X1);n2 = 0. Let G be the Jordan curve

G = [Xo, X1]5 U (Fo, £1)5.

Note that G and its interior are in J* and thus neither X nor « is in the interior of
G. But either O (£1) or (O (£0) is trapped in the interior of G, which is impossible.
Part (b). Now suppose y; and y;, are distinct points in X n L. Then there exist
sequences g, and 7, going to infinity such that 7"X¢,—y; and T~"Xt,—y;. Then
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for large n both T7"X¢, and T"Xt, are in X(—¢,¢) = {zt: ze X and [t|<e&} for small
positive ¢. Because y; # y, it is now apparent that, for large n, O* (T "X) crosses X
twice, contradicting Part (a). O

It follows from the lemma that if ze L, then «(z) and w(z) can only contain fixed
points including points in I, which are fixed in the extended flow. Two natural
questions arise that we will answer. First, since n(z) is a typical point in wg(x) when
zeL, are the limit points of 7(z) also only fixed points? Second, if wg(x)NF =0,
does zt approach points of [ as t— + oo, when ze L?

The first question is answered in the main theorem of this section:

Theorem 20. Let x be a point in M and let ye w(x). Suppose Xt—a ast— oo and a is a
rational point of K. If vew(y)va(y) and v¢ O(y), then ve F. More generally, y is
either a periodic point or o(y)vw(y)=F.

Proof. Of course we need only consider y¢ F, so w(x)z F. Thus yewp(x) and there
exists Je Lnn~'(y). There exists tx — 4 oo such that yt; —uv.

First, if yt; has a bounded subsequence then there exists e w(J)wa(y). By the
previous remarks #e F and (%) = veF.

Next we consider the case where jr; does not have a bounded subsequence.
Suppose v¢ F and let X be a local section at v, 2 a lift of X, and 5eZnn~'(v) to
establish a reference point in M. Choose X small enough so that Xnn(J;) = 0, for
some J; constructed at j using ¢*(%). Then SXJ; = 0 for all SeI" and Lemma 19
can be applied. There exists a sequence S; of distinct elements of I' such that
)7‘Ek € Ski.

Because yelL, y=lim,,_ . T "Xo, for some o, — oo. Hence there exists a
subsequence of integers my (by continuity in initial conditions) such that
T3 (0m, +rk)eSkf and oy, + 1 — 0. Clearly x(o,, + %) —>v and since v¢ F,
vewp(x) and d, (T~ X(om, + 1), A) < f5, where, as usual, 4 is the axis of T.

Construct C; and C; as in the proof of Proposition 15 and choose n; such that
T "%y, + rk)eT”kSkf lies between C; and C,. Because these points are also
within S of A, we can assume this sequence converges to #; €S2, for some Sel.
Hence, for large k,

T"SE = S%
and
Tyt e S5

This contradicts Lemma 19 because TL = L and v¢ ((y), proving the first part.
Finally, w(y) must contain a minimal set X . If X is not a fixed point, then no point
in X can be fixed and X <@(y) by the first part of the theorem. It follows that
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X = 0(y) is a periodic orbit. The same argument applies to o(y) to complete the
proof. [

Suppose y is a periodic point in w(x). Then from Lemma 19 we know y is not
periodic. So the orbit of y is not null homotopic and yr—»wtelK as t— 4+ co. If
T(wt)#wt | then yewg(x) which is impossible by Theorem 10. Hence y¢ converges
to the fixed points ¢ and b of T as t— + oo. The technique used to prove Lemma 1
applies to prove that T70(y) = O(y). From Lemma 11 and Theorem 12 we know that
L can be obtained as a limit of control curves J, constructed using a local section X
at y. Using the notation for and the structure of these control curves as described
preceding Lemma 11, it follows that the periodicity of y forces ¢, — t, to converge
to the period of y. It subsequently follows that given & > 0, J,, is within ¢ of O () for
large n. Hence L= @(y) and L = O(y) because L is invariant. It follows from more
general comments in the next paragraph that n(L) = w(x) when y is periodic in
o(x).

Clearly, {a, b}, the fixed points of T, are always contained in L. It is easy to verify
that LK = {a,b} if and only if wr(x) =0 if and only if ¢ (%) is a bounded
hyperbolic distance from A4. Orbits of this type are studied in [15,16]. In particular,
the significance of w(x) being locally connected is exploited.

Returning to the more general situation, suppose ye L and |yt| -1 as t— oo. If yt
does not converge to a point in K, then @(y) in the extended flow on K contains an
open interval / < K. Since y is clearly not fixed, we can construct a control curve J
using a local section at j and (¢ (X). Then there exists a copy SJ, SeTl’, such that
both endpoints of SJ are in . Since O(y) can cross SJ at most once, all of I cannot
be in w(y). Therefore, when |yz|—> 1 as t— oo, jf must converge to some w in K as
t— oo0. Similar remarks apply when |jf|—1 as t— — co.

Now consider any ye L such that jt->welK as t— co. If Tws#w, then it is easy to
see that w(y) cwgr(x) = F where y = n(y). If, on the other hand, 7w = w, then by
Theorem 20 either y is periodic, in which case L= 0(y) and O(y) = w(x), or
a(y)vo(y)=F.

It is possible to construct examples such that for je L, yt—a as t— oo and o(y) is
a simple closed curve of fixed points homotopic to m(A), where as usual A4 is the
axis of T. (Attach tori to teach end of the cylinder flow on page 239 of [12].)
In this example wr(x) =@ and w(x) is not locally connected at each of the fixed
points.

We will conclude by applying our results to two different restrictions on the fixed
points in w(x), one new and one classical.

First, suppose that wp(x)nF = 0. It follows from Lemma 19 that |j7|—1 as
t— + oo and then pr—w* e K as 1— + oo. It is not difficult to verify that either both
wt and w™ are fixed by T or neither is fixed by T (we are not assuming that wt#£w™)
and that the sequence of orbits 770" (X) all lie on the same side of O(¥), yeL. It
follows that L and hence wg(x) contain at most a countable set of orbits.

In the example [12], L contains a countable number of orbits with rational limit
points in K and wg(x) consists of exactly one orbit. Suppose there are no fixed points
in wg(x) and let ye L. Then yt tends to a point be K as t— oo. If b is rational and the
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attractive fixed point of Se ', then S™"0(y) converges to K in the Hausdorff metric,
by the same arguments in Section 7 used to show that the J,,’s converge. Clearly, K is
contained in the fixed points and SK = K. Although K need not be a simple closed
curve as in the example, it is a more general analogous phenomenon.

The results in the previous section show that x approaches the orbits in (L M)
very similarly to the way an orbit wraps around a limit cycle. In fact, the theory for
ogr(x), L, and wg(x) incorporates the basic limit cycle facts.

Second, suppose w(x) N F = 0, then wg (x) = @ by Theorem 10 and w(x) = wp(x).
Let yewg(x). By Theorem 20, y is periodic and in the subsequent discussion we
showed that L= @(y) for some yen '(y) and o(x)= wp(x)=n(LnM)=
n(0O(¥)) = O(y). Thus w(x) is a limit cycle when w(x) " F = @ and Xt — a, a rational,
as t— 0.
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