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PACS:
04.20.Jb
04.40.Nr
04.50.+h

We introduce a class of rotating magnetically charged string solutions of the Einstein gravity with
a nonlinear electrodynamics source in four dimensions. The present solutions has no curvature singularity
and no horizons but has a conic singularity and yields a spacetime with a longitudinal magnetic field.
Also, we investigate the effects of nonlinearity on the properties of the solutions and find that for the
special range of the nonlinear parameter, the solutions are not asymptotic AdS. We show that when
the rotation parameter is nonzero, the spinning string has a net electric charge that is proportional to
the magnitude of the rotation parameter. Finally, we use the counterterm method inspired by AdS/CFT
correspondence and calculate the conserved quantities of the solutions.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Topological defects are inevitably formed during phase transi-
tions in the early universe, and their subsequent evolution and
observational signatures must therefore be understood. The string
model of structure formation may help to resolve one of cosmo-
logical mystery, the origin of cosmic magnetic fields [1]. There is
strong evidence from all numerical simulations for the scaling be-
havior of the long string network during the radiation-dominated
era. Apart from their possible astrophysical roles, topological de-
fects are fascinating objects in their own right. Their properties,
which are very different from those of more familiar system, can
give rise to a rich variety of unusual mathematical and physical
phenomena [2].

On another front, nonlinear electromagnetic fields are subjects
of interest for a long time. For example, there has been a re-
newed interest in Born–Infeld gravity ever since new solutions
have been found in the low energy limit of string theory. Static
and rotating solutions of Born–Infeld gravity have been considered
in Refs. [3–5].

In this Letter, we turn to the investigation of spacetimes gen-
erated by static and spinning string sources in four-dimensional
Einstein theory in the presence of a nonlinear electromagnetic field
which are horizonless and have nontrivial external solutions. The
basic motivation for studying these kinds of solutions is that they
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may be interpreted as cosmic strings. Cosmic strings are topo-
logical structure that arise from the possible phase transitions
to which the universe might have been subjected to and may
play an important role in the formation of primordial structures.
A short review of papers treating this subject follows. Solutions of
Einstein’s equations with conical singularities describing straight
strings can easily be constructed [6]. One needs only a spacetime
with a symmetry axis. If one then cuts out a wedge then a space
with a string lying along the axis is obtained. A nonaxisymmetric
solutions of the combined Einstein and Maxwell equations with
a string has been found by Linet [7]. The four-dimensional hori-
zonless solutions of Einstein gravity have been explored in [8,9].
These horizonless solutions [8,9] have a conical geometry; they
are everywhere flat except at the location of the line source. The
spacetime can be obtained from the flat spacetime by cutting out a
wedge and identifying its edges. The wedge has an opening angle
which turns to be proportional to the source mass. The extension
to include the Maxwell field has also been done [10]. Static and
spinning magnetic sources in three and four-dimensional Einstein–
Maxwell gravity with negative cosmological constant have been
explored in [11,12]. The generalization of these asymptotically AdS
magnetic rotating solutions to higher dimensions has also been
done [13]. In the context of electromagnetic cosmic string, it has
been shown that there are cosmic strings, known as supercon-
ducting cosmic strings, that behave as superconductors and have
interesting interactions with astrophysical magnetic fields [14]. The
properties of these superconducting cosmic strings have been in-
vestigated in [15]. Solutions with longitudinal and angular mag-
netic field were considered in Refs. [16–19]. Similar static solutions
in the context of cosmic string theory were found in Ref. [20]. All
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of these solutions [16–18,20,21] are horizonless and have a con-
ical geometry; they are everywhere flat except at the location of
the line source. The extension to include the electromagnetic field
has also been done [22,23]. The generalization of these solutions in
Einstein gravity in the presence of a dilaton and Born–Infeld elec-
tromagnetic fields has been done in Ref. [24].

Another example of the nonlinear electromagnetic field is con-
formally invariant Maxwell field. In many papers, straightforward
generalization of the Maxwell field to higher dimensions one es-
sential property of the electromagnetic field is lost, namely, con-
formal invariance. Indeed, in the Reissner–Nordström solution, the
source is given by the Maxwell action which enjoys the conformal
invariance in four dimensions. Massless spin-1/2 fields have van-
ishing classical stress tensor trace in any dimension, while scalars
can be “improved” to achieve T α

α = 0, thereby guaranteeing invari-
ance under the special conformal (or full Weyl) group, in accord
with their scale-independence [25]. Maxwell theory can be stud-
ied in a gauge which is invariant under conformal rescalings of the
metric, and at first, have been proposed by Eastwood and Singer
[26]. Also, Poplawski [27] have been showed the equivalence be-
tween the Ferraris–Kijowski and Maxwell Lagrangian results from
the invariance of the latter under conformal transformations of
the metric tensor. Quantized Maxwell theory in a conformally in-
variant gauge have been investigated by Esposito [28]. In recent
years, gravity in the presence of nonlinear and conformally invari-
ant Maxwell source have been studied in many papers [29,30].

The outline of our Letter is as follows. We give a brief review
of the field equations of Einstein gravity in the presence of cosmo-
logical constant and nonlinear electromagnetic field in Section 2.
In Section 3 we present static horizonless solutions which produce
longitudinal magnetic field, compare it with the solutions of the
standard electromagnetic field and then investigate the properties
of the solutions and the effects of nonlinearity of the electromag-
netic field on the deficit angle of the spacetime. Section 4 will be
devoted to the generalization of these solutions to the case of ro-
tating solutions and use of the counterterm method to compute
the conserved quantities of them. We finish our Letter with some
concluding remarks.

2. Basic field equations

Our starting point is the four-dimensional Einstein-nonlinear
Maxwell action

IG = − 1

16π

∫
M

d4x
√−g

(
R − 2Λ − αF s)

− 1

8π

∫
∂M

d3x
√−γ Θ(γ ), (1)

where R is the scalar curvature, Λ is the cosmological constant,
F is the Maxwell invariant which is equal to Fμν F μν (where
Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic tensor field and Aμ

is the vector potential), α and s is a coupling and arbitrary con-
stant respectively. The last term in Eq. (1) is the Gibbons–Hawking
surface term. It is required for the variational principle to be well-
defined. The factor Θ represents the trace of the extrinsic curva-
ture for the boundary ∂M and γ is the induced metric on the
boundary. Varying the action (1) with respect to the gravitational
field gμν and the gauge field Aμ , yields

Gμν + Λgμν = Tμν, (2)

∂μ

(√−g F μν F s−1) = 0. (3)

In the presence of nonlinear electrodynamics field, the energy–
momentum tensor of Eq. (2) is
Tμν = 2α

[
sFμρ F ρ

ν F s−1 − 1

4
gμν F s

]
. (4)

The conserved mass and angular momentum of the solutions of
the above field equations can be calculated through the use of
the substraction method of Brown and York [31]. Such a procedure
causes the resulting physical quantities to depend on the choice of
reference background. A well-known method of dealing with this
divergence for asymptotically AdS solutions of Einstein gravity is
through the use of counterterm method inspired by AdS/CFT cor-
respondence [32]. In this Letter, we deal with the spacetimes with
zero curvature boundary, Rabcd(γ ) = 0, and therefore the countert-
erm for the stress–energy tensor should be proportional to γ ab .
We find the suitable counterterm which removes the divergences
as

Ict = − 1

4π

∫
∂M

d3x

√−γ

l
. (5)

Having the total finite action I = IG + Ict, one can use the quasilo-
cal definition to construct a divergence free stress–energy ten-
sor [31]. Thus the finite stress–energy tensor in four-dimensional
Einstein-nonlinear Maxwell gravity with negative cosmological
constant can be written as

T ab = 1

8π

[
Θab − Θγ ab + 2γ ab

l

]
. (6)

The first two terms in Eq. (6) are the variation of the action (1)
with respect to γab , and the last term is the variation of the bound-
ary counterterm (5) with respect to γab . To compute the conserved
charges of the spacetime, one should choose a spacelike surface B
in ∂M with metric σi j , and write the boundary metric in ADM
(Arnowitt–Deser–Misner) form:

γab dxa dxa = −N2 dt2 + σi j
(
dϕ i + V i dt

)(
dϕ j + V j dt

)
,

where the coordinates ϕ i are the angular variables parameteriz-
ing the hypersurface of constant r around the origin, and N and
V i are the lapse and shift functions, respectively. When there is
a Killing vector field ξ on the boundary, then the quasilocal con-
served quantities associated with the stress tensors of Eq. (6) can
be written as

Q (ξ) =
∫

B

d2x
√

σ Tabnaξb, (7)

where σ is the determinant of the metric σi j , ξ and na are, re-
spectively, the Killing vector field and the unit normal vector on
the boundary B. For boundaries with timelike (ξ = ∂/∂t) and ro-
tational (ς = ∂/∂φ) Killing vector fields, one obtains the quasilocal
mass and angular momentum

M =
∫

B

d2x
√

σ Tabnaξb, (8)

J =
∫

B

d2x
√

σ Tabnaςb. (9)

These quantities are, respectively, the conserved mass and angular
momentum of the system enclosed by the boundary B. Note that
they will both depend on the location of the boundary B in the
spacetime, although each is independent of the particular choice
of foliation B within the surface ∂M.
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3. Static nonlinear magnetic string

Here we want to obtain the four-dimensional solutions of
Eqs. (2)–(4) which produce a longitudinal magnetic fields along the
z direction. We assume the following form for the metric [11]

ds2 = −ρ2

l2
dt2 + dρ2

f (ρ)
+ l2 f (ρ)dϕ2 + ρ2

l2
dz2. (10)

The function f (ρ) should be determined and l has the dimension
of length which is related to the cosmological constant Λ by the
relation l2 = −3/Λ. The coordinate z has the dimension of length
and ranges −∞ < z < ∞, while the angular coordinate φ is di-
mensionless as usual and ranges in 0 � φ < 2π . The motivation for
this curious choice for the metric gauge [gtt ∝ −ρ2 and (gρρ)−1 ∝
gφφ ] instead of the usual Schwarzschild gauge [(gρρ)−1 ∝ gtt and
gφφ ∝ ρ2] comes from the fact that we are looking for magnetic
solutions. Taking the trace of the gravitational field equation (2),
the scalar curvature is expressed in terms of the Maxwell invariant
F and cosmological constant Λ as

R = 2
[
Λ − α(s − 1)F s].

Before studying in details the field equations, we first specify the
sign of the coupling constant α in term of the exponent s in order
to ensure a physical interpretation of our future solutions. In fact,
the sign of the coupling constant α in the action (1) can be chosen
such that the energy density, i.e. the Tt̂t̂ component of the energy–
momentum tensor in the orthonormal frame, is positive

Tt̂t̂ = α

2
F s > 0.

As a direct consequence, one can show that the Maxwell invariant
F = 2

l2
(Fφρ)2 is positive and hence, the sign of the coupling con-

stant α should be positive, which can be set to 1 without loss of
generality. It is well known that the electric field is associated with
the time component, At , of the vector potential while the magnetic
field is associated with the angular component Aφ . From the above
facts, one can expect that a magnetic solutions can be written in
a metric gauge in which the components gtt and gφφ interchange
their roles relatively to those present in the Schwarzschild gauge
used to describe electric solutions. The Maxwell equation (3) can
be integrated immediately to give

Fφρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

−2ql2

ρ , s = 3
2 ,

2(2s−3)ql2

(2s−1)ρ2/(2s−1) , otherwise,

(11)

where q, an integration constant where the electric charge of the
string is related to this constant for spinning string. Inserting the
Maxwell fields (11) and the metric (10) in the field equation (2),
we can simplify these equations as

ρ f ′(ρ) + f (ρ) + Λρ2 − H(ρ) = 0 (12)

where

H(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

0, s = 0, 1
2 ,

16q3l3
√

2
ρ , s = 3

2 ,

2s(2s − 1)ρ2[ 2(2s−3)ql
(2s−1)ρ(s−2)/(2s−1) ]2s, otherwise,

(13)

where the “prime” denotes differentiation with respect to ρ . One
can show that these equations have the following solutions
f (ρ) = −Λρ2

3
+ 2ml3

ρ
+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

16q3l3
√

2(1+lnρ)
ρ , s = 3

2 ,

23s(2s−3)2s−1(ql)2s

2(2s−1)2s−2ρ2/(2s−1) , otherwise,

(14)

where m is the integration constant which is related to mass pa-
rameter. In the linear case (s = 1), the solutions reduce to the
asymptotically AdS horizonless magnetic string solutions for Λ =
−3/l2 [12]. Here, we want to investigate the effects of the nonlin-
earity on the asymptotic behavior of the solutions. It is worthwhile
to mention that for 0 < s < 1

2 , the asymptotic dominant term of
Eq. (14) is third term and the solutions of the Einstein-nonlinear
Maxwell field equations are not asymptotically AdS, but for the
cases s < 0 or s > 1

2 (include of s = 3
2 ), the asymptotic behavior of

Einstein-nonlinear Maxwell field solutions are the same as linear
AdS case. Eqs. (11)–(14) show that the magnetic field is zero for
the cases s = 0, 1

2 , and the metric function (14) does not possess
a charge term and it corresponds to uncharged asymptotically AdS
one.

Now, we want to investigate the special case, such that the
electromagnetic field equation be invariant under conformal trans-
formation (gμν → Ω2 gμν and Aμ → Aμ). Consider the Lagrangian
of the form L(F ), where F = Fμν F μν . It is easy to show that
for this form of Lagrangian in 4-dimensions, T μ

μ ∝ [F dL
dF − L]; so

T μ
μ = 0 implies L(F ) = Constant × F . It is worthwhile to mention

that only for linear case s = 1, the electromagnetic field equation
is invariant under conformal transformation.

Here, we want to study the general structure of the solutions.
One can find that the Kretschmann scalar, Rμνλκ Rμνλκ , is

Rμνλκ Rμνλκ =
(

d2 f (ρ)

dρ2

)2

+ 4

(
1

ρ

df (ρ)

dρ

)2

+ 4

(
f (ρ)

ρ2

)2

.

It is easy to show that the Kretschmann scalar Rμνλκ Rμνλκ di-
verges at ρ = 0 and therefore one might think that there is a cur-
vature singularity located at ρ = 0. However, as will be seen below,
the spacetime will never achieve ρ = 0. Now, we look for the exis-
tence of horizons and, in particular, we look for the possible pres-
ence of magnetically charged black hole solutions. The horizons, if
any exist, are given by the zeros of the function f (ρ) = (gρρ)−1.
Let us denote the largest positive root of f (ρ) = 0 by r0. The func-
tion f (ρ) is negative for ρ < r0, and therefore one may think that
the hypersurface of constant time and ρ = r0 is the horizon. How-
ever, the above analysis is wrong. Indeed, we first notice that gρρ

and gφφ are related by f (ρ) = g−1
ρρ = l−2 gφφ , and therefore when

gρρ becomes negative (which occurs for ρ < r0) so does gφφ . This
leads to an apparent change of signature of the metric from +2
to −2. This indicates that we are using an incorrect extension. To
get rid of this incorrect extension, we introduce the new radial co-
ordinate r as

r2 = ρ2 − r2
0 ⇒ dρ2 = r2

r2 + r2
0

dr2. (15)

With this coordinate change the metric (10) is written as

ds2 = − r2 + r2
0

l2
dt2 + l2 f (r)dφ2 + r2

(r2 + r2
0) f (r)

dr2

+ r2 + r2
0

l2
dz2, (16)

where the coordinates r assumes the values 0 � r < ∞, and f (r),
is now given as

f (r) = −Λ(r2 + r2
0)

3
+ 2ml3

(r2 + r2)1/2

0
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+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

8q3l3
√

2[2+ln(r2+r2
0)]

(r2+r2
0)1/2 , s = 3

2 ,

23s(2s−3)2s−1(ql)2s

2(2s−1)2s−2(r2+r2
0)1/(2s−1)

, otherwise.

(17)

The electromagnetic field equation in the new coordinate is

Fφr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

−2ql2

(r2+r2
0)1/2 , s = 3

2 ,

2(2s−3)ql2

(2s−1)(r2+r2
0)1/(2s−1)

, otherwise.

(18)

One can show that all curvature invariants (such as Kretschmann
scalar, Ricci scalar, Ricci square, Weyl square and so on) are func-
tions of f ′′ , f ′/r and f /r2. Since these terms do not diverge in
the range 0 � r < ∞, one finds that all curvature invariants are fi-
nite. Therefore this spacetime has no curvature singularities and no
horizons. It is worthwhile to mention that the magnetic solutions
obtained here have distinct properties relative to the electric so-
lutions obtained in [30]. One can expect magnetic solutions from
electric solution by a double Wick rotation such as t → iφ and
φ → it/l (i = √−1 ). Indeed, the electric solutions have black holes,
while the magnetic do not. However, the spacetime (16) has a
conic geometry and has a conical singularity at r = 0, since:

lim
r→0

1

r

√
gφφ

grr
	= 1. (19)

That is, as the radius r tends to zero, the limit of the ratio “circum-
ference/radius” is not 2π and therefore the spacetime has a conical
singularity at r = 0. The canonical singularity can be removed if
one identifies the coordinate φ with the period

Periodφ = 2π

(
lim
r→0

1

r

√
gφφ

grr

)−1

= 2π(1 − 4μ), (20)

where μ is given by

μ = 1

4

(
1 − 2

lr0(Ω − 2Λ)

)
, (21)

Ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, s = 0, 1
2 ,

211/2q3l3

r3
0

, s = 3
2 ,

8s(2s−1)q2sl2s

( 2s−1
2s−3 )2sr4s/(2s−1)

0

, otherwise.

(22)

The above analysis shows that near the origin r = 0, the metric
(16) describes a spacetime which is locally flat but has a conical
singularity at r = 0 with a deficit angle δφ = 8πμ. Since near the
origin the metric (16) is identical to the spacetime generated by a
cosmic string, by using the Vilenkin procedure, one can show that
μ of Eq. (21) can be interpreted as the mass per unit length of the
string [33].

Also, in order to investigate the effects of the nonlinearity of the
magnetic field on deficit angle δφ, we plot it versus the charge pa-
rameter q in three figures. Fig. 1 shows that for 0 < s < 1

2 , deficit
angle decreases as the charge parameter of the spacetime, q, in-
creases. But for a constant value of q, as the nonlinear parameter,
s, increases, deficit angle increases too. Also, Figs. 2 and 3 show
that for s > 1

2 , deficit angle increases as the charge parameter of
the spacetime, q, increases and as the nonlinear parameter, s, in-
creases, the rate of deficit angle growth increases too.
Fig. 1. The deficit angle versus q for r0 = 0.5, l = 1, and s = 0.2 (dotted line), s = 0.3
(continuous line) and s = 0.4 (bold line).

Fig. 2. The deficit angle versus q for r0 = 0.5, l = 1, and s = 1 (dotted line), s = 4
(continuous line) and s = 10 (bold line).

Fig. 3. The deficit angle versus q for r0 = 0.5, l = 1, and s = 0 or 1/2 (dotted line),
s = 3/2 (continuous line) and s = 10 (bold line).

4. Spinning nonlinear magnetic string

Now, we would like to endow the spacetime solutions (10) with
a rotation. In order to add angular momentum to the spacetime,
we perform the following rotation boost in the t − φ plane

t 
→ Ξt − aφ, φ 
→ Ξφ − a

l2
t, (23)

where a is a rotation parameter and Ξ = √
1 + a2/l2. Substituting

Eq. (23) into Eq. (16) we obtain
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ds2 = − r2 + r2
0

l2
(Ξ dt − a dφ)2 + r2 dr2

(r2 + r2
0) f (r)

+ l2 f (r)

(
a

l2
dt − Ξ dφ

)2

+ r2 + r2
0

l2
dz2, (24)

where f (r) is given in Eq. (17). The non-vanishing electromagnetic
field components become

Frt = − a

Ξ l2
Frφ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

−2qa
Ξ(r2+r2

0)1/2 , s = 3
2 ,

2(2s−3)qa
Ξ(2s−1)(r2+r2

0)1/(2s−1)
, otherwise.

(25)

The transformation (23) generates a new metric, because it is not
a permitted global coordinate transformation. This transformation
can be done locally but not globally. Therefore, the metrics (16)
and (24) can be locally mapped into each other but not globally,
and so they are distinct. Note that this spacetime has no horizon
and curvature singularity. However, it has a conical singularity at
r = 0. It is notable to mention that for s = 1, these solutions reduce
to asymptotically AdS magnetic rotating string solutions presented
in [12].

The mass and angular momentum per unit length of the string
when the boundary B goes to infinity can be calculated through
the use of Eqs. (8) and (9). We find

M = π

2

[
3Ξ2 − 2

]
m, J = 3πmΞ l

2

√
Ξ2 − 1.

For a = 0 (Ξ = 1), the angular momentum per unit length van-
ishes, and therefore a is the rotational parameter of the space-
time.

Finally, we compute the electric charge of the solutions. To de-
termine the electric field one should consider the projections of
the electromagnetic field tensor on special hypersurface. The elec-
tric charge per unit length Q can be found by calculating the flux
of the electric field at infinity, yielding

Q =
√

Ξ2 − 1 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

3
√

2lq2

2πΞ2 , s = 3
2 ,

−s( 8(2s−3)lq
(2s−1)Ξ

)2s−1

23s+1π l
, otherwise.

(26)

It is worth noting that the electric charge is proportional to the
rotation parameter, and is zero for the case of static solutions. This
result is expected since now, besides the magnetic field along the
φ coordinate, there is also a radial electric field (Ftr 	= 0).

5. Conclusions

In conclusion, with an appropriate combination of nonlinear
electromagnetic field and Einstein gravity, we constructed a class
of four-dimensional magnetic string solutions which produces a
longitudinal magnetic field. These solutions have no curvature sin-
gularity and no horizon, but have conic singularity at r = 0. In
fact, we showed that near the origin r = 0, the metric describes
a spacetime which is locally flat but has a conical singularity at
r = 0 with a deficit angle δφ = 8πμ, where μ can be interpreted
as the mass per unit length of the string. Also, we investigated the
effects of nonlinearity on the deficit angle and asymptotic behav-
ior of the solutions and found that for 0 < s < 1

2 , the solutions
are not asymptotically AdS and for s < 0 or s > 1

2 , the asymp-
totic behavior of solutions are the same as linear AdS case. In
these static spacetimes, the electric field vanishes and therefore
the string has no net electric charge. Then we added an angu-
lar momentum to the spacetime by performing a rotation boost
in the t–φ plane. For the spinning string, when the rotation pa-
rameter is nonzero, the string has a net electric charge which is
proportional to the magnitude of the rotation parameter. We also
computed the conserved quantities of the solutions by using the
conterterm method.

Acknowledgements

The author would like to thank the anonymous referee for his
enlightening comments. This work has been supported financially
by Research Institute for Astronomy and Astrophysics of Maragha,
Iran.

References

[1] T. Vachaspati, A. Vilenkin, Phys. Rev. Lett. 67 (1991) 1057.
[2] A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects, Cam-

bridge University Press, New York, 1994.
[3] M. Born, L. Infeld, Proc. R. Soc. London A 144 (1934) 425;

B. Hoffmann, Phys. Rev. D 47 (1935) 877;
M. Demianski, Found. Phys. 16 (1986) 187;
H.P. de Oliveira, Class. Quantum Grav. 11 (1994) 1469;
G.W. Gibbons, D.A. Rasheed, Nucl. Phys. B 454 (1995) 185;
R.G. Cai, D.W. Pang, A. Wang, Phys. Rev. D 70 (2004) 124034;
T.K. Dey, Phys. Lett. B 595 (2004) 484.

[4] M.H. Dehghani, H.R. Sedehi, Phys. Rev. D 74 (2006) 124018;
D.L. Wiltshire, Phys. Rev. D 38 (1988) 2445;
M. Aiello, R. Ferraro, G. Giribet, Phys. Rev. D 70 (2004) 104014.

[5] M.H. Dehghani, N. Alinejadi, S.H. Hendi, Phys. Rev. D 77 (2008) 104025;
M.H. Dehghani, S.H. Hendi, Int. J. Mod. Phys. D 16 (2007) 1829.

[6] M. Aryal, L.H. Ford, A. Vilenkin, Phys. Rev. D 34 (1986) 2263.
[7] B. Linet, Phys. Lett. A 124 (1987) 240.
[8] A. Vilenkin, Phys. Rev. D 23 (1981) 852;

W.A. Hiscock, Phys. Rev. D 31 (1985) 3288;
D. Harari, P. Sikivie, Phys. Rev. D 37 (1988) 3438;
A.D. Cohen, D.B. Kaplan, Phys. Lett. B 215 (1988) 65;
R. Gregory, Phys. Rev. D 215 (1988) 663.

[9] A. Banerjee, N. Banerjee, A.A. Sen, Phys. Rev. D 53 (1996) 5508;
M.H. Dehghani, T. Jalali, Phys. Rev. D 66 (2002) 124014;
M.H. Dehghani, A. Khodam-Mohammadi, Can. J. Phys. 83 (2005) 229.

[10] W.B. Bonnor, Proc. R. Soc. London A 67 (1954) 225;
A. Melvin, Phys. Lett. 8 (1964) 65.

[11] O.J.C. Dias, J.P.S. Lemos, J. High Energy Phys. 0201 (2002) 006.
[12] O.J.C. Dias, J.P.S. Lemos, Class. Quantum Grav. 19 (2002) 2265.
[13] M.H. Dehghani, Phys. Rev. D 69 (2004) 044024.
[14] E. Witten, Nucl. Phys. B 249 (1985) 557;

P. Peter, Phys. Rev. D 49 (1994) 5052.
[15] I. Moss, S. Poletti, Phys. Lett. B 199 (1987) 34.
[16] M.H. Dehghani, Phys. Rev. D 64 (2004) 044024.
[17] M.H. Dehghani, Phys. Rev. D 64 (2004) 064024.
[18] M.H. Dehghani, N. Bostani, Phys. Rev. D 75 (2007) 084013.
[19] M.H. Dehghani, S.H. Hendi, Gen. Relativ. Gravit., published online.
[20] A. Vilenkin, Phys. Rev. D 23 (1981) 852;

A. Banerjee, N. Banerjee, A.A. Sen, Phys. Rev. D 53 (1996) 5508.
[21] T. Levi-Civita, Rend. Reale Accad. Lincei Cl. Sci. Fis. Mat. Nat. 28 (1919) 3;

L. Marder, Proc. R. Soc. A 244 (1958) 524.
[22] B.C. Mukherji, Bull. Calcutta Math. Soc. 30 (1938) 95;

E. Witten, Nucl. Phys. B 249 (1985) 557.
[23] O.J.C. Dias, J.P.S. Lemos, Class. Quantum Grav. 19 (2002) 2265.
[24] S.H. Hendi, J. Math. Phys. 49 (2008) 082501;

M.H. Dehghani, A. Sheykhi, S.H. Hendi, Phys. Lett. B 659 (2008) 476;
M.H. Dehghani, S.H. Hendi, A. Sheykhi, H. Rastegar Sedehi, JCAP 0702 (2007)
020.

[25] S. Deser, A. Schwimmer, Int. J. Mod. Phys. B 8 (1994) 3741;
G. Esposito, C. Stornaiolo, Class. Quantum Grav. 17 (2000) 1989;
G. Esposito, C. Stornaiolo, Nucl. Phys. B (Proc. Suppl.) 88 (2000) 365;
C. Codirla, H. Osborn, Ann. Phys. 260 (1997) 91.

[26] M. Eastwood, M. Singer, Phys. Lett. A 107 (1985) 73.
[27] N.J. Poplawski, Int. J. Mod. Phys. A 23 (2008) 567.
[28] G. Esposito, Phys. Rev. D 56 (1997) 2442.
[29] M. Hassaine, C. Martinez, Phys. Rev. D 75 (2007) 027502.



S.H. Hendi / Physics Letters B 678 (2009) 438–443 443
[30] S.H. Hendi, H.R. Rastegar-Sedehi, Gen. Relativ. Gravit. 41 (2009) 1355.
[31] J. Brown, J. York, Phys. Rev. D 47 (1993) 1407.
[32] J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231;

E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253;
P. Kraus, F. Larsen, R. Siebelink, Nucl. Phys. B 563 (1999) 259;
O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323 (2000)
183;
M.H. Dehghani, R.B. Mann, Phys. Rev. D 64 (2001) 044003;
M.H. Dehghani, Phys. Rev. D 65 (2002) 104030.

[33] A. Vilenkin, Phys. Rep. 121 (1985) 263.


	Magnetic string coupled to nonlinear electromagnetic field
	Introduction
	Basic field equations
	Static nonlinear magnetic string 
	Spinning nonlinear magnetic string
	Conclusions
	Acknowledgements
	References


