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bstract

Traditionally, anatomical and physiological descriptions of hemispheric specialization have focused on hemispheric asymmetries of local brain
tructure or local functional properties, respectively. This article reviews the current state of an alternative approach that aims at unraveling the
auses and functional principles of hemispheric specialization in terms of asymmetries in connectivity. Starting with an overview of the histor-
cal origins of the concept of lateralization, we briefly review recent evidence from anatomical and developmental studies that asymmetries in
tructural connectivity may be a critical factor shaping hemispheric specialization. These differences in anatomical connectivity, which are found
oth at the intra- and inter-regional level, are likely to form the structural substrate of different functional principles of information processing
n the two hemispheres. The main goal of this article is to describe how these functional principles can be characterized using functional neu-
oimaging in combination with models of functional and effective connectivity. We discuss the methodology of established models of connectivity
hich are applicable to data from positron emission tomography and functional magnetic resonance imaging and review published studies that

ave applied these approaches to characterize asymmetries of connectivity during lateralized tasks. Adopting a model-based approach enables
unctional imaging to proceed from mere descriptions of asymmetric activation patterns to mechanistic accounts of how these asymmetries are
aused.

2006 Elsevier Ltd. Open access under CC BY license.
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1. Introduction

Traditional approaches to characterizing hemispheric spe-
cialization have relied on four main approaches: (i) neuropsy-
chological investigation of patients with brain lesions (Damasio
& Damasio, 1989) or iatrogenic splits of the corpus callo-
sum (Gazzaniga, 2000), (ii) psychological assessment of hemi-
spheric performance differences using tachistoscopic visual or
dichotic auditory stimulus presentation techniques (Hugdahl,
1988; Miran & Miran, 1984; Nagae & Moscovitch, 2002),
(iii) post-mortem investigations of human brains that focus
on differences in microstructural properties (e.g. cytoarchitec-
ture, myeloarchitecture) between homotopic regions of the two
hemispheres (Amunts et al., 1999; Amunts, Jäncke, Mohlberg,
Steinmetz, & Zilles, 2000; Jenner, Rosen, & Galaburda, 1999)
and (iv) in vivo studies of both structural and functional
asymmetries using a variety of techniques, e.g. magnetic res-
onance (MRI) morphometry, positron emission tomography
(PET), functional MRI (fMRI), electroencephalography (EEG)
and magnetoencephalography (MEG). All these approaches
have been complementary and enormously helpful in delineat-
ing brain asymmetries. Tachistoscopic/dichotic investigations
of healthy volunteers provide a behavioral characterization of
lateralized cognitive processes, treating the brain as a black
box, whereas neuropsychological, anatomical and physiolog-
ical approaches describe hemispheric asymmetries in terms of
local properties of the neurobiological “machinery”, i.e. regional
asymmetries in functional involvement, cortical structure or neu-
ronal activity, respectively. This article reviews the current state
of an additional approach that is gaining increasing importance.
This approach, the study of asymmetries of brain connectivity,
goes beyond a mere description of hemispheric asymmetry and
aims at clarifying its functional principles and computational
mechanisms.

In this article, after discussing the historical origins of the
concept of lateralization, we briefly review recent evidence
from anatomical and developmental studies that hemispheric
asymmetries in structural connectivity are a fundamental con-
straint of brain architecture and may be the cause for functional
hemispheric specialization. These hemispheric differences in
structural connectivity, which have been found both at the level
of intra-areal microcircuits and inter-regional connections, are
likely to form the structural substrate of different functional prin-
ciples of information processing in the two hemispheres. We

review how functional imaging data can be analyzed by models
of functional and effective connectivity in order to character-
ize these functional principles. To familiarize the reader with
the strengths, assumptions and limitations of available mod-
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ls of functional and effective connectivity, we briefly discuss
everal established methods, in particular structural equation
odels and dynamic causal models, which can be applied to data

btained from different functional imaging techniques. Finally,
e review the results of several published studies that have suc-

essfully used models of functional and effective connectivity
o address questions of hemispheric specialization and highlight
ow some of these models start to merge methodologically with
ther approaches from computational neuroscience. The focus
s strictly on direct and quantitative measures of intra- and inter-
emispheric functional coupling derived from fMRI and PET
ata. In contrast, it is beyond the scope of this article to discuss
he rich literature of analysis of functional coupling in terms of
oherence or phase synchrony as measured by EEG or MEG (see
arela, Lachaux, Rodriguez, & Martinerie, 2001, for review).
lso, we do not cover those approaches that are only indirectly

elated to analyses of connectivity, e.g. transcranial magnetic
timulation (TMS) or electroencephalographic latency differ-
nces.

Overall, we hope to convince the reader that formal sys-
em models, fitted to neuroimaging data of lateralized cognitive
rocesses, are a useful, and indeed necessary, approach for lat-
ralization research to proceed from mere descriptions of asym-
etric activation patterns to mechanistic accounts of how these

symmetries are caused.

. Historical origins of the concept of hemispheric
pecialization

The Hippocratic physicians should have discovered cere-
ral lateralization of language in the brain: they observed that
njury to one side of the head was associated with contralesional
emiparesis. And that right hemiparesis was often associated
ith disturbance of speech. But they never linked the two phe-
omena, presumably because it seemed theoretically parsimo-
ious that two very similar anatomical structures (the cerebral
emispheres) would have equally similar cognitive functions.
he ventricular theory, expounded by Herophilus of Alexan-
ria (circa 300 BCE), in which distinct psychological faculties
uch as imagination, conceptual thought and memory were rep-
esented in midline structures of the brain (the ventricles), also
ilitated against any conception of left–right functional asym-
etry (Marshall, 1977). Two millennia later, Thomas Willis

1621–1675) could see no virtue in the ventricular theory but
210 K.E. Stephan et al. / Neuropsychologia 45 (2007) 209–228
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ontinued to assign the seat of imagination to a midline struc-
ure: the corpus callosum. A century later, the French anatomist
elix Vicq d’Azyr argued that “the commissures are intended to
stablish sympathetic communications between different parts
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f the brain” (see Joynt, 1974). The corpus callosum connect-
ng the right hemisphere with the left must, he argued, “play an
mportant role in the unknown mechanism” of cerebral functions
Joynt, 1974). The crucial word here is clearly “unknown”.

One might have expected that Franz Joseph Gall (1757–1828)
ould conjecture, in the early nineteenth century, that differ-

nt cognitive organs (modules) were punctately localised in
ifferent hemispheres. After all, Gall did describe a very perspic-
ous case of circumscribed amnestic aphasia after unilateral left
rontal lesion. But he too was overly impressed by the apparent
ymmetry of the cerebral hemispheres. Thus, rather than give up
is postulate that all mental organs were bilaterally represented,
all argued that a sudden insult to one hemisphere would “upset

he balance between the hemispheres, thus affecting the faculties
n both sides” (Finger, 2000). This early concept of diaschisis is,
f course, interesting and important in its own right. But the con-
equences of its deployment in this context meant that it would
e Broca (1863) who convinced the neurological world that uni-
ateral lesions of the left inferior frontal convolution (and not the
ight) gave rise to loss of “the memory of the procedure that is
mployed to articulate language” (Marshall & Fink, 2003).

Broca’s paper opened the floodgates to the discovery of
ther lateralized impairments of higher mental functions (and,
y extrapolation, lateralized cognitive modules representing
hose functions). There followed, for example, reports of spa-
ial impairment after right posterior damage (Jackson, 1876),
mpairment of language comprehension after left temporal dam-
ge (Wernicke, 1874) and impairment of skilled praxis after
eft parietal damage (Liepmann, 1905). Studies of disconnec-
ion syndromes in which two relatively intact modules (that
hould interact) became isolated from each other due to commis-
ural lesion concentrated for the most part on intra-hemispheric
onnectivity. The best known nineteenth century example was,
f course, conduction aphasia consequent upon lesion of the
rcuate fasciculus which disconnected Wernicke’s area from
roca’s area (Wernicke, 1874). There were, however, also

ome convincing examples of disorders that implicated inter-
emispheric commissures. Dejerine (1892) showed that alexia
ithout agraphia could arise from the combination of lesions to

he left occipital cortex and the splenium of the corpus callosum.
he intact visual word form centre in left temporal–parietal cor-

ex was thereby cut off from input from both the left and right
isual fields. Likewise, Liepmann and Maas (1907) reported fail-
re of the left hand to execute commands given verbally after
allosal lesion. Psycho-physical evidence for the time course of
ormal callosal transmission was then obtained by Poffenberger
1912).

Despite the general agreement that the adult human brain is
trongly characterized by hemispheric specialization, there has
een comparatively little discussion of how or why relatively
unctuate unilateral localisation of function should be found.
reud (1891) speculated that it would be sensible biological
ngineering to have Broca’s area in close anatomical proximity

o the motor strip representation of the vocal tract, and likewise
ensible to have Wernicke’s area adjacent to primary auditory
ortex. Later, Lashley (1937) conjectured that “separate localisa-
ion of functions is determined by the existence of diverse kinds
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f integrative mechanisms which cannot function in the same
eld without interference”. Consistent with Lashley’s argument,

t is frequently claimed that fine motor control of the midline
tructure such as the vocal tract will be more effective if the
ommand and control centre is unilaterally placed. Otherwise,
onflict or noise could arise if two Broca’s areas in opposite
emispheres were attempting to control speech production.

Although lateral specialization of function seems to be a
act, the execution of many even moderately complex tasks
ill draw upon some modules that are left-lateralized and some

hat are right-lateralized. As nineteenth and early twentieth cen-
ury behavioral neurologists began to realize, this will require
he transmission of structured information between the hemi-
pheres (Liepmann, 1912; Poffenberger, 1912). In addition to
his information transfer theory, two other concepts of hemi-
pheric interactions have become important themes in laterality
esearch: inter-hemispheric inhibition and hemispheric recruit-
ent. These different concepts, all of which emphasize the

elevance of connectivity for lateralization of brain function,
ill be discussed in more detail in the section on connectivity

tudies investigating inter-hemispheric integration below.
It is obvious from the examples of lateralized disconnection

yndromes like conduction aphasia and from the importance
f inter-hemispheric interactions that brain connectivity must
lay a fundamental role in hemispheric specialization. In par-
icular, hemispheric specialization may be more appropriately
haracterized in terms of structural and functional connectional
symmetries between hemispheres rather than in terms of asym-
etries in the local structure or intrinsic function of homotopic

egions (Crow, 2005; McIntosh et al., 1994; Stephan et al.,
003; Stephan, Penny, Marshall, Fink, & Friston, 2005). With
his notion gaining increasing importance in laterality research,
he following sections of this article review the current state of
fforts to (i) characterize hemispheric asymmetries in structural
onnectivity, within and between regions and (ii) to infer mech-
nistic principles of lateralization from functional neuroimag-
ng and neurophysiological data using analyses of effective
onnectivity.

. Asymmetries in structural brain connectivity

Structural asymmetries of the human brain have been
escribed in various forms and at different scales. The compari-
on of homotopic regions in the two hemispheres has disclosed
ifferences that range from dendritic tree features (Seldon,
981), neuronal cell size (Hutsler & Gazzaniga, 1996) and
ytoarchitecture (Amunts et al., 1999, 2000; Jenner et al., 1999)
o differences in location, shape or volume of areas, sulci, gyri or
hole lobes (see Toga & Thompson, 2003, for a comprehensive

eview). Several studies have found structural brain asymme-
ries, in terms of gyrification, regional volumes or white matter

icrostructure, to be expressed early during human ontogene-
is (e.g. Chi, Dooling, & Gilles, 1977; de Lacoste, Horvath, &

oodward, 1991; Galaburda, LeMay, Kemper, & Geschwind,

978; Gupta et al., 2005; Witelson & Pallie, 1973). The question
s what developmental mechanisms underlie these asymmetries.
his section discusses the currently available evidence that ini-
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ial asymmetries in connectivity may, at least in part, cause other
symmetries of brain structure, both with regard to cytoarchi-
ecture and macroscopic properties.

Our present understanding of brain development implies that
hese mechanisms are likely to consist of a mixture of intrinsic
nd extrinsic processes (Sur & Rubenstein, 2005). Intrinsic pro-
esses are those that induce regional parcellations within the cor-
ical progenitor zone (the epithelium of the neural tube) whose
eurons eventually migrate to form the cortex in an inside-out
ayered fashion. The existence of several molecules involved in
he formation of such regional parcellations is well-established
Donoghue & Rakic, 1999; Fukuchi-Shimogori & Grove, 2001;
ubenstein et al., 1999). Processes that affect this parcella-

ion of the progenitor zone differentially between hemispheres
ould lead to hemispheric differences in the microstructure or
ize of cortical regions. Indeed, a developmental study in rats
rovides some evidence that this type of process contributes
o establishing microstructural asymmetries (Rosen, Sherman,

Galaburda, 1991). In contrast, extrinsic processes comprise
hanges due to the inputs conveyed by thalamo-cortical (and
ther) connections. Elegant experiments have shown that dif-
erent cortices can radically change their microstructure and
unctional properties when they are surgically connected to
ifferent sensory inputs (Schlaggar & O’Leary, 1991). For exam-
le, primary auditory cortex develops the cytoarchitectonic and
unctional features of primary visual cortex, including functional
rientation columns, when receiving retinal inputs after surgical
erouting in early development (Newton, Ellsworth, Miyakawa,
onegawa, & Sur, 2004; Sur & Leamey, 2001). Similarly, many
ormal processes in cortical development depend on activity-
ependent synaptic plasticity that induces strong microstructural
hanges, e.g. concerning the size and shape of dendritic trees
Cohen-Cory, 2002; Hua & Smith, 2004).

Overall, independently or additionally to regional parcella-
ions within the cortical progenitor zone, structural hemispheric
symmetry between homotopic areas can result if the areas dif-
er significantly in one or several of the three following factors:
i) their afferent connectivity, (ii) the sensory inputs conveyed
y those connections or (iii) mechanisms of synaptic plastic-
ty that translate these differences in inputs into microstructural
hanges. The role of the first factor, i.e. afferent connectivity
er se, is highlighted by the studies cited above (Sur & Leamey,
001). The importance of the third factor for microstructural
eatures of cortex is emphasized by multiple studies that show
hanges in neuronal morphology, e.g. changes in dendritic tree
ize, after experimental manipulations of synaptic plasticity, e.g.
lockage of NMDA receptors (Monfils & Teskey, 2004; Monfils,
andenBerg, Kleim, & Teskey, 2004). An intriguing demonstra-

ion of the second factor, i.e. the role of sensory inputs which
re conveyed by connections and induce experience-dependent
orms of synaptic plasticity, is provided by animal experiments
n different species. For example, chicken and pigeon embryos
re usually positioned such that only the right eye is exposed to

ight. This stimulates the growth of different visual projections
ystems in the left, as compared to the right, hemisphere and
eads to pronounced functional differences in the visual per-
ormance of the hemispheres (Koshiba, Nakamura, Deng, &

h
m
c
e

ologia 45 (2007) 209–228

ogers, 2003; Manns & Güntürkün, 1999; Rogers, 1990; Rogers
Deng, 1999). These brain asymmetries can be completely

eversed, both structurally and functionally, if the normal later-
lization of sensory inputs during development is altered (see
alpern, Güntürkün, Hopkins, & Rogers, 2005, for review).
nother interesting phenomenon that is likely to result from

xperience-dependent plasticity is that musicians with absolute
itch have increased left–right asymmetries of planum tempo-
ale volume compared to musicians without absolute pitch or
on-musicians (Schlaug, Jäncke, Huang, & Steinmetz, 1995;
eenan, Thangaraj, Halpern, & Schlaug, 2001).

Both mechanisms, regional differences in the progenitor zone
nd connectivity-dependent restructuring and plasticity, are now
idely accepted as co-existing processes responsible for struc-

ural and functional patterning of the cortex during brain devel-
pment (Redies, Treubert-Zimmermann, & Luo, 2003; Sur &
ubenstein, 2005). In addition to the studies cited above, the

elevance of these approaches for the expression of brain asym-
etry has been demonstrated by recent molecular developmen-

al studies. For example, a comprehensive study of prenatal gene
xpression by Sun et al. (2005) have found a large number of
enes that are asymmetrically expressed in corresponding parts
f left and right human cortex at 12, 14 and 19 weeks after gesta-
ion, respectively. They focused on one particular gene, LMO4,
hich was differentially expressed in left and right perisylvian

ortex at 12 and 14 weeks after gestation. The authors concluded
hat “the left–right differences in LMO4 expression in humans
ould potentially reflect either a differing topographic mapping
n the two hemispheres or a difference in the tempo of corti-
al development . . .”. Given the importance of connectivity for
oth types of processes and the well-established role of LMO4
n neuritogenesis (Manetopoulos, Hansson, Karlsson, Jonsson,

Axelson, 2003; Vu et al., 2003), one may speculate that these
emispheric asymmetries in LMO4 expression contribute to
ifferences in the development of connectivity in the two hemi-
pheres. Of further interest is the additional finding of Sun et al.
2005) that N-cadherin and interacting molecules like CREB are
lso differentially expressed in left and right perisylvian cortex
uring development (see supplementary information to Sun et
l., 2005). This is interesting because N-cadherin is crucially
nvolved in both brain connectivity development and synaptic
lasticity (Huntley, Gil, & Bozdagi, 2002; Salinas & Price, 2005;
ee also Garcia-Castro, Vielmetter, & Bronner-Fraser, 2000 who
ound that N-cadherin also regulates the asymmetry of visceral
rgans like the heart during development). Overall, even though
here are currently only very few studies on the role of individual

olecules in the development of brain asymmetry, the available
ata seem consistent with a critical role of connectivity for the
evelopment of hemispheric asymmetries.

Whatever the exact developmental mechanisms, the existence
f hemispheric differences in structural connectivity, particu-
arly but not exclusively with regard to language-relevant areas,
ave been clearly demonstrated, both in the fetal and the adult

uman brain. This finding has been made possible by two recent
ethodological advances that allow one to investigate structural

onnectivity in the human brain, albeit at very different lev-
ls of resolution: post-mortem delineation of microcircuits by
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eans of lipophilic dyes (Galuske, Schlote, Bratzke, & Singer,
000) and in vivo fiber tracking based on non-invasive diffusion
eighted imaging (DWI; Behrens et al., 2003; Mori & Barker,
999; Parker et al., 2002).

Galuske et al. (2000) used refined post-mortem tracing
echniques to characterize the cortical microcircuitry in the
anguage-relevant Wernicke region, the posterior part of the
uperior temporal gyrus and the posterior temporal plane,
orresponding to the posterior part of Brodmann’s area 22
Brodmann, 1909). This area had previously been shown to pos-
ess microstructural (Hutsler & Gazzaniga, 1996) and macro-
copic (Galaburda et al., 1978) hemispheric asymmetries, and its
ritical role for the auditory analysis of speech has been repeat-
dly demonstrated (Binder et al., 1997; Narain et al., 2003).
aluske et al. (2000) found a regularly spaced pattern of colum-
ar neuronal clusters, corresponding to cortical macrocolumns,
round their injection sites. While the cluster sizes did not dif-
er between hemispheres, the average distance between these
lusters was significantly larger in the left hemisphere. Due to
heir simultaneous use of multiple dyes, Galuske et al. (2000)
ould further demonstrate that the clusters were not all part of
single microcircuit but formed multiple independent (i.e. not
irectly connected) subsystems. They were thus able to con-
lude that the larger inter-column spacing in the left hemisphere
ould provide a structural basis for implementing a larger num-

er of independent subsystems per volume unit. In analogy to
isual cortex, where increases in inter-column spacing have been
ound in higher visual areas of the visual cortex (Amir, Harel, &

alach, 1993), it has been speculated that this higher number of

a
s
T
t

ig. 1. Results from a study of healthy adults by Büchel et al. (2004) who applied vox
f white matter microstructure (Pierpaoli & Basser, 1996). Testing for hemispheric dif
rcuate fasciculus compared to the right (p < 0.05, whole-brain corrected for multipl
olunteers (A), they subsequently replicated this finding in an independent group of
ress.
ologia 45 (2007) 209–228 213

ubsystems, each of them specialized for processing particular
eatures of the auditory input, could allow for representation of
ore complex auditory feature constellations (Galuske et al.,

000; Hutsler & Galuske, 2003). This increase in the range of
omputational complexity could explain the superiority of left
ernicke’s area in the analysis of speech, compared to its right

ounterpart.
The above findings at the level of cortical microcircuits have

een complemented by several DWI studies. In addition to the
tudy by Gupta et al. (2005), who demonstrated the presence of
ifferences in frontal white matter microstructure in fetal brains,
everal DWI studies of the adult brain have shown hemispheric
symmetries in different properties of fiber tracts connecting
osterior temporal and inferior frontal cortex, particularly the
rcuate fasciculus (Fig. 1). Büchel et al. (2004) applied voxel-
ased morphometry (VBM) to whole-brain maps of fractional
nisotropy (FA), a diffusion-based measure of white matter
icrostructure (Pierpaoli & Basser, 1996). Testing for hemi-

pheric differences in white matter microstructure (and correct-
ng for multiple comparisons) across the whole brain, they found
selective increase in FA in the left arcuate fasciculus compared

o the right (see Fig. 1). Parker et al. (2005) used algorithmic trac-
ography to trace connections between Wernicke’s and Broca’s
egions in both hemispheres. They found two separate path-
ays, a dorsal one corresponding to the arcuate fasciculus and

ventral one that connects the two regions via the external cap-

ule, uncinate fasciculus and the medial superior temporal gyrus.
he ventral pathway was only found in the left hemisphere, and

he connection strengths were overall higher in the left than in

el-based morphometry to fractional anisotropy (FA), a diffusion-based measure
ferences in FA across the whole brain, they found a selective increase in the left
e comparisons). After initially demonstrating this asymmetry in a group of 15
28 volunteers (B). Figure reproduced with permission from Oxford University
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he right hemisphere. Nucifora, Verma, Melhem, Gur, and Gur
2005) performed a hypothesis-driven investigation of the arcu-
te fasciculus by means of diffusion tensor tractography. They
emonstrated a higher fiber density in the left as compared to
he right arcuate fasciculus.

Several DWI and post-mortem studies have also found asym-
etries of fiber tracts between areas unrelated to language. For

xample, a post-mortem study of the human uncinate fascicu-
us, based on stereological methods, found a significantly larger
olume and a significantly higher fiber density of the right as
ompared to the left uncinate fasciculus (Highley, Walker, Esiri,
row, & Harrison, 2002). Another post-mortem study delin-
ated the optic radiation histologically in 10 human brains and
ound that the volume of the left optic radiation was significantly
igher than the right (Bürgel, Schormann, Schleicher, & Zilles,
999). Gong et al. (2005) used DWI to investigate the symmetry
f the cingulum, a prominent fiber tract near the midline of the
rain, and found significantly higher FA for most parts of the left
ingulum. A structure-function correlation approach was cho-
en by Tuch et al. (2005) who focused on the relation between
icrostructural properties of white matter tracts, as character-

zed by FA, and behavioral performance, measured in terms
f reaction times (RTs), on a speeded visuospatial attention
ask. They found a significant correlation between individual
Ts and FA values in fiber tracts involved in visuospatial atten-

ion, including the right optic radiation and white matter tracts
ocated near right posterior thalamus and right medial precuneus

M. Although the lateralization of RT–FA correlations to right
isual and parietal WM pathways is compatible with the spe-
ialization of right visual and parietal cortices for visuospatial
ttention, the unexpected aspect of their results was that the cor-
elation was positive, i.e. higher FA was associated with longer
Ts. While this appears to rule out a simple interpretation of
A as a microstructural measure primarily determined by the
egree of myelinization, other potential explanations have been
ffered, e.g. a higher proportion of large caliber axons in the
ight visuospatial pathways which could allow for more diffu-
ion orthogonal to the main direction of the axons (see Tuch et
l., 2005, for details).

For completeness, it should finally be mentioned that despite
he large literature on brain connectivity in non-human primates
s assessed by invasive tract tracing studies, rather little attention
as been devoted to asymmetries in primate brain connectivity.
hile the large majority of studies do not even indicate whether

njections or labeled neurons were located in the left or right
emisphere, the few studies so far that have explicitly inves-
igated connectional asymmetries have failed to find any (e.g.
avada & Goldman-Rakic, 1989; McGuire, Bates, & Goldman-
akic, 1991).

. Characterizing the functional consequences of
symmetric structural connectivity
.1. The need for formal system models

Altogether, the anatomical studies described in the previ-
us section demonstrated hemispheric differences in the adult

p
i
i
a

ologia 45 (2007) 209–228

uman brain, both in intra- and inter-areal connectivity and par-
icularly with regard to areas involved in language. Given the
ependency of information processing by neuronal units on their
onnectivity (Passingham, Stephan, & Kötter, 2002; Young,
ilgetag, & Scannell, 2000), these asymmetries in connectiv-

ty suggest differences in the computational principles used by
he left and right hemisphere, particularly with regard to the pro-
essing of language-associated stimuli. What exactly these prin-
iples are, however, cannot be inferred from knowing anatomical
onnectivity alone, even if this knowledge was perfect. We also
eed to know the functional properties of the individual con-
ections, e.g. whether they convey linear or non-linear effects,
ow strong these effects are and whether they happen almost
nstantaneously or with a delay. Systems with identical struc-
ural connectivity can show entirely different behavior if the
unctional properties of the connections are changed (Strogatz,
001).

Therefore, if we want to understand the functional conse-
uences of hemispheric asymmetries in structural connectivity
e need to characterize the functional properties of connections

n the system, for example, in terms of the synaptic strength
f individual connections and how these change depending on
he computational context (task requirements, learning, etc.).
onnection strengths and other parameters (e.g. delay terms)
an only be estimated from empirical observations of the neural
ystem of interest. Therefore, testing specific hypotheses about
he consequences of hemispheric differences in connectivity
equires one to measure the system in action, e.g. using elec-
rophysiological or functional imaging techniques, and explain

athematically how the observed system behavior is generated
s a function of the structure of the system and the inputs it
eceives. Ideally, we therefore need formal system models in
rder to explain hemispheric differences in terms of functional
rinciples (Stephan, 2004).

But what exactly is a “system” and why is the systems concept
o useful for framing scientific questions? One could informally
efine a system as being a set of elements which interact with
ach other in some spatially and temporally specific fashion.
ore formally, a system can be defined as a set of elements with
time-variant properties that interact with each other. Each time-
ariant property xi (1 ≤ i ≤ n) is called a state variable, and the
-vector x(t) of all state variables in the system is called the state
ector (or simply state) of the system at time t:

(t) =

⎡
⎢⎢⎣

x1(t)
...

xn(t)

⎤
⎥⎥⎦ (1)

aking an ensemble of interacting neurons as an example, the
ystem elements would correspond to the individual neurons,
ach of which is represented by one or several state variables.
hese state variables could refer to various neurophysiological

roperties of the neurons, e.g. postsynaptic potentials, status of
on channels, etc. The crucial point is that the state variables
nteract with each other, i.e. the evolution of each state vari-
ble usually depends on other state variables. These functional
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ependencies between the state variables of the system have to
e specified mathematically which requires a set of parameters θ.
n neural systems, these parameters comprise at least the synap-
ic strengths of the connections between the system elements.
urthermore, we must not forget that biological systems are not
utonomous but interact with their environment and that exter-
al perturbations have a considerable impact on the dynamics
f the system. We, therefore, need to consider the input into the
ystem, e.g. sensory information entering the brain. For a given
ystem model, the set of all m known inputs can be represented
y the m-vector function u(t). Assuming a deterministic behav-
or of the system, one can thus formulate a very general state
quation for non-autonomous dynamic systems (see Stephan,
004 for details and assumptions underlying the mathematical
orm chosen here):

dx

dt
= F (x, u, θ) (2)

ny model following this general schema provides a causal
escription of how system dynamics result from system struc-
ure, because it describes (i) when and where external inputs
nter the system and (ii) how the state changes induced by these
nputs evolve in time depending on the system’s structure. As
xplained below in more detail, Eq. (2) therefore provides a gen-
ral form for so-called models of effective connectivity in neural
ystems, i.e. the causal influences that neural units exert over
nother (Friston, 1994).

.2. System concepts in functional neuroimaging

Modern cognitive neuroscience has adopted an explicit sys-
em perspective. A commonly accepted view is that the brain
egions that constitute a given system are computationally spe-
ialized, but that the exact nature of their individual computa-
ions depends on context, e.g. the inputs from other regions.
he aggregate behavior of the system depends on this neural
ontext, the context-dependent interactions between the system
omponents (McIntosh, 2000). An equivalent formulation of
his perspective is provided by the twin concepts of functional
pecialization and functional integration (Friston, 2002b). Func-
ional specialization assumes a local specialization for certain
spects of information processing but allows for the possibil-
ty that this specialization is anatomically segregated across
ifferent cortical areas. The majority of current functional neu-
oimaging experiments have adopted this view and interpret the
reas that are jointly correlated to a certain task component as
he elements of a distributed system which represents the neural
asis of that task. However, this explanation is incomplete as
ong as no insight is provided into how the locally specialized
omputations are bound together by context-dependent interac-
ions between these areas, i.e. the functional integration within
he system.

The concepts of functional specialization and functional inte-

ration are highly relevant for questions on functional brain
symmetries. Conventional functional neuroimaging studies on
emispheric specialization have usually compared, explicitly or
mplicitly, the degree of functional specialization exhibited by

i
t
(
t

ologia 45 (2007) 209–228 215

omotopic regions, e.g. activation of left but not right Broca’s
rea during semantic processing (Bookheimer, 2002; Hagoort,
ald, Bastiaansen, & Petersson, 2004) or predominant activation
f the right as compared to left parietal areas during visuospatial
ttention tasks (Corbetta & Shulman, 2002; Fink et al., 2000).
s already implied by the term “hemispheric specialization”,

he notion of functional specialization can also be applied to a
hole hemisphere, e.g. by classifying the response profiles of

eft and right hemisphere as “analytic” and “holistic”, respec-
ively (Bradshaw & Nettleton, 1981).

Characterizing hemispheric asymmetries in terms of func-
ional specialization alone, however, is insufficient. Functional
ntegration is also fundamentally important for lateralized pro-
esses, both within a hemisphere (e.g. the functional cooperation
f different language areas in the left hemisphere) and across
emispheres (e.g. the binding of processes lateralized to opposite
emispheres), and it is this aspect of hemispheric lateralization
hat we wish to highlight here. Generally, functional integra-
ion within distributed neural systems can be characterized in
wo ways, functional connectivity and effective connectivity
Friston, 1994). In the remainder of this article, we will first look
n detail at some established approaches for characterizing func-
ional and effective connectivity and then review studies which
ave applied these models to questions of functional integration
uring lateralized cognitive processes.

.3. Analyses of functional connectivity

Functional connectivity is operationally defined as the tempo-
al correlation between spatially segregated neurophysiological
rocesses (Friston, 1994). For example, considering two voxels
and Y with time series {xt} and {yt}, the functional connec-

ivity between the two voxels simply corresponds to the Pearson
orrelation coefficient r of the two time series

xy = covxy

sx · sy
(3)

here sx and sy are the standard deviations and covxy is the
ovariance of the two time series. Note that functional connec-
ivity suffers from the general problem of interpreting correla-
ions: are the two time series correlated because (i) X influ-
nces Y, (ii) Y influences X, (iii) both influence each other
r (iv) both are functionally unrelated but similarly influenced
y a third variable? Disambiguating these options requires a
odel of the causal influences, i.e. effective connectivity (see

elow).
One approach to applying the concept of functional connec-

ivity to PET and fMRI data is to choose a particular reference
oxel and compute, for the whole brain, the correlation of all
ther voxel time series with this seed voxel time series (Bokde,
agamets, Friedman, & Horwitz, 2001; Horwitz, Rumsey, &
onohue, 1998). An alternative is to characterize orthogonal
t into its eigenvectors, e.g. using singular value decomposi-
ion (Friston, 1994). A related approach is partial least squares
McIntosh & Lobaugh, 2004), a technique which has found mul-
iple applications in the analysis of neuroimaging data.
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.4. Models of effective connectivity

In contrast to functional connectivity, the notion of effec-
ive connectivity is based on a model of the causal influences
etween the elements of a system (Friston, 1994). Therefore,
here is no single mathematical definition for effective connec-
ivity; instead, a variety of different models of effective connec-
ivity have been proposed (for overviews, see Friston, 2002b;
tephan, 2004). Models of effective connectivity describe the
echanisms that determine the dynamics of neural systems, i.e.

ow activity induced by external inputs is propagated within
he system according to its connectivity. It is therefore useful to
onsider each particular implementation of effective connec-
ivity as a special case of Eq. (2) (see Stephan, 2004, for a

ore detailed exposition), and this is the perspective we will
ake here. In this section, we briefly summarize three commonly
sed models of effective connectivity which were used by the
tudies discussed in the following sections of this paper: psycho-
hysiological interactions (PPI), structural equation modeling
SEM) and dynamic causal modeling (DCM).

.4.1. Psycho-physiological interactions
For the regression-like model used by PPI the static form of

q. (2) is appropriate, i.e. x(t) = F(x, u, θ, t) which assumes that
he system is at equilibrium at each point of observation (see
ppendix to Friston, Harrison, & Penny, 2003). Introduced by
riston et al. (1997), PPI are one of the simplest models available

o assess functional interactions in neuroimaging data. Given a
hosen reference time series y0 (obtained from a reference voxel
r region), PPI computes whole-brain connectivity maps of this
eference voxel with all other voxels yi in the brain according to
he regression-like equation

i = ay0 + b(y0 × u) + cu + Xβ + ε (4)

ere, a is the strength of the intrinsic (context-independent)
onnectivity between y0 and yi. The bilinear term y0 × u rep-
esents the interaction between physiological activity y0 and a
sychological variable u which can be construed as a contex-
ual input into the system, modulating the connectivity between
0 and yi (× represents the Hadamard product, i.e. element-by-
lement multiplication). The third term describes the strength c
y which the input u evokes activity in yi directly, independent
f y0. Finally, β are parameters for effects of no interest X (e.g.
onfounds) and ε is an error term. Although this is a very simple
nd non-dynamic model, PPI do contain the basic components
f system descriptions as outlined above (see Eq. (2)). There is
lso a general similarity between the form of Eq. (4) and that of
he state equation of DCM (Eq. (7), see below). However, since
nly pair-wise interactions between the reference voxel and all
ther brain voxels are considered, this model is rather restricted
n its ability to represent real neural systems. Although PPIs are
herefore not a full system model, they have a very useful role in

xploring the context-dependent functional interactions of a cho-
en region across the whole brain. This exploratory nature bears
ome similarity to analyses of functional connectivity. Unlike
nalyses of functional connectivity, however, PPIs represent the

G
a
t
m
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ontextual modulation of connectivity, and this modulation has
directional character, i.e. testing for a PPI from y0 to yi is

ot identical to testing for a PPI from yi to y0. This is because
egressing y0 × u on yi is not equivalent to regressing yi × u
n y0.

.4.2. Structural equation modeling
After having been used in the social sciences for several

ecades, SEM was introduced to neuroimaging in the early
990s by McIntosh and Gonzalez-Lima (1991). It is a multi-
ariate, hypothesis-driven technique that is based on a structural
odel which represents the hypothesis about the causal relations

etween several variables (see Büchel & Friston, 1997; Bullmore
t al., 2000; McIntosh & Gonzalez-Lima, 1994; Penny, Stephan,
echelli, & Friston, 2004a, for methodological details). In

he context of neuroimaging, these variables are the measured
ime series y1, . . ., yn of n brain regions and the hypothetical
ausal relations are based on anatomically plausible connections
etween the regions. The strength of each connection yi → yj is
pecified by a so-called “path coefficient” which, similarly to
partial regression coefficient, indicates how the variance of yj

epends on the variance of yi if all other influences on yj are held
onstant.

One way to summarize the statistical model of SEM imple-
entations for neuroimaging data is given by the equation

= Ay + u (5)

here y is the n × s matrix of n area-specific time series with s
cans each, A the n × n matrix of path coefficients (with zeros
or non-existent connections) and u is the n × s matrix of “inno-
ations”, i.e. zero mean Gaussian error terms, which are driving
he modeled system (Penny et al., 2004a; see also McIntosh &
onzalez-Lima, 1994, for an equivalent formulation). Parame-

er estimation rests on minimizing the difference between the
bserved and the predicted covariance matrix Σ of the areas
Bollen, 1989). Σ can be computed by transforming Eq. (5):

= (I − A)−1u; Σ = yyT = (I − A)−1uuT(I − A)−1T
(6)

here I is the identity matrix and ‘T’ denotes the transpose oper-
tor. The first line of Eq. (6) can be understood as a generative
odel of how system function results from the system’s connec-

ional structure: the measured time series y results by applying a
unction of the inter-regional connectivity matrix, i.e. (I − A)−1,
o the Gaussian innovations u.

It is beyond the scope of this paper to discuss SEM in full
ethodological detail and the reader is referred to the large body

f existing literature (e.g. Bollen, 1989; McIntosh & Gonzalez-
ima, 1994; Penny et al., 2004a). One particular detail, however,

hat is important for studies of hemispheric specialization is the
imitation of SEM to models of relatively low complexity. The
roblem is that models with reciprocal connections and loops
asily become non-identifiable (see Bollen, 1989, for details).

iven that callosal connections seem to be generally reciprocal

nd one usually needs to study bidirectional interactions between
he hemispheres, this constraint is particularly problematic for

odels of inter-hemispheric integration. Heuristics for dealing
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ith complex models have been established that use multiple
tting steps in which different parameters are held constant while
hanging others (see McIntosh et al., 1994, for an example), yet
his constraint has been a limiting factor for the application of
EM to questions on inter-hemispheric integration.

.4.3. Dynamic causal modeling
An important limitation of the models discussed so far is

hat they operate at the level of the measured signals. Taking
he example of fMRI, the model parameters are fitted to BOLD
eries which result from a haemodynamic convolution of the
nderlying neural activity. Any inference about inter-regional
onnectivity obtained by PPI or SEM is only an indirect one
ecause these models do not include the forward model link-
ng neuronal activity to the measured haemodynamic data. The
ausal architecture of the system that we would like to identify,
owever, is expressed at the level of neuronal dynamics. There-
ore, to enable inferences about connectivity between neural
nits we need models that combine two things: (i) a parsimo-
ious but neurobiologically plausible model of neural population
ynamics and (ii) a biophysically plausible forward model that
escribes the transformation from neural activity to the mea-
ured signal. Such models make it possible to fit jointly the
arameters of the neural and of the forward model such that the
redicted time series are optimally similar to the observed time
eries. In principle, any of the models described above could
e combined with a modality-specific forward model. So far,
owever, dynamic causal modeling is the only approach where
he marriage between models of neural dynamics and biophys-
cal forward models is a mandatory component. DCM has been
mplemented both for fMRI (Friston et al., 2003) and EEG/MEG
ata (David et al., 2006). For simplicity, we here only briefly
ummarize the implementation of DCM for fMRI.

DCM for fMRI offers a simple model for the neural dynamics
n a system of n interacting brain regions. It models the change
f a neural state vector x in time, with each region in the system
eing represented by a single state variable, using the following
ilinear differential equation:

dx

dt
= F (x, u, θn) =

⎛
⎝A +

m∑
j=1

ujB
(j)

⎞
⎠ x + Cu (7)

ote that this neural state equation follows exactly the gen-
ral form for deterministic system models introduced by Eq.
2). Here, the neural state variables represent a summary index
f neural population dynamics in the respective regions. The
eural dynamics are driven by experimentally controlled exter-
al inputs that can enter the model in two different ways: they
an elicit responses through direct influences on specific regions
e.g. evoked responses in early sensory cortices; the C matrix)
r they can modulate the coupling among regions (e.g. during
earning or attention; the B matrices). The neural parameters
n = {A, B, C} can be expressed as partial derivatives of F (n in

n is not an exponent but a superscript that denotes “neural”):

A = ∂F

∂x

∣∣∣∣
u=0

; B(j) = ∂2F

∂x∂uj

; C = ∂F

∂u

∣∣∣∣
x=0

(8)

s
H
n
n
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he matrix A represents the effective connectivity among the
egions in the absence of input, the matrices B(j) encode the
hange in effective connectivity induced by the jth input uj and C
mbodies the strength of direct influences of inputs on neuronal
ctivity.

DCM for fMRI combines this model of neural dynamics
ith an experimentally validated haemodynamic model that
escribes the transformation of neuronal activity into a BOLD
esponse. This “Balloon model” was initially formulated by
uxton, Wong, and Frank (1998) and later extended by Friston,
echelli, Turner, and Price (2000). Briefly, it consists of a

et of differential equations that describe the relations between
our haemodynamic state variables, using five parameters (θh).
hanges in neural activity elicit a vasodilatory signal that leads

o increases in blood flow and subsequently to changes in blood
olume and deoxyhemoglobin content. The predicted BOLD
ignal is a non-linear function of blood volume and deoxy-
emoglobin content. Details of the haemodynamic model can
e found in other publications (Friston et al., 2000; Stephan,
arrison, Penny, & Friston, 2004).
The neural and haemodynamic parameters θ = {θn, θh} are

ointly estimated from the measured BOLD data, using a fully
ayesian approach with empirical priors for the haemodynamic
arameters and conservative shrinkage priors for the coupling
arameters. Details of the parameter estimation scheme, which
ests on a gradient ascent procedure embedded into an expec-
ation maximization (EM) algorithm and uses a Laplace (i.e.
aussian) approximation to the true posterior, can be found in
riston (2002a). Eventually, the posterior distributions of the
arameter estimates can be used to test hypotheses about con-
ection strengths. Usually, these hypotheses concern context-
ependent changes in coupling. If there is uncertainty about the
onnectional structure of the modeled system, or if one would
ike to compare competing hypotheses (represented by different
CMs), a Bayesian model selection procedure can be used to
nd the DCM that exhibits an optimal balance between model
t and model complexity (Penny, Stephan, Mechelli, & Friston,
004b).

.5. Neurobiological interpretability of models of effective
onnectivity

One may wonder what degree of neurobiological inter-
retability the models of effective connectivity discussed above
ossess. DCM is particularly relevant in this discussion because
t is currently the only model of effective connectivity for fMRI
ata that explicitly models the neural level. DCM for fMRI is
bviously not specified at a level of neurobiological finesse that
llows one to distinguish between different processes at synap-
ic, cellular, columnar or laminar levels. Instead, the mechanisms
epresented by DCM, e.g. context-dependent changes of partic-
lar connection strengths, refer to the level of large neural popu-
ations contained by one or several voxels (note that even a single

tandard size voxel contains hundreds of thousands of neurons).
owever, this relatively high degree of abstraction present does
ot mean that the causal mechanisms modeled by DCM are
eurobiologically meaningless. Many of the processes that one
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ypically models with DCM, e.g. changes in synaptic strength
uring learning or context-specific modulation of connections
ue to attention or other cognitive factors, have been investigated
t the level of single neurons or microcircuits by invasive record-
ng experiments (e.g. Luck, Chelazzi, Hillyard, & Desimone,
997), and DCMs provide a simple mechanistic description of
hese processes at the level of neuronal populations. In partic-
lar, the distinction between direct and modulatory effects in
CMs represents a direct analogy at the population level to

he concept of driving and modulatory afferents in studies of
ingle neurons (Sherman & Guillery, 1998). A more detailed
iscussion of these issues can be found elsewhere (Penny et al.,
004b; Stephan, 2004). Finally, one should mention that much
ore fine-grained DCMs have been developed than for fMRI,

or example, for EEG/MEG data. Here, each region is char-
cterized by eight state variables that represent quite detailed
omponents of the neurobiological machinery, including firing
ates and membrane potentials of different neuronal units, e.g.
yramidal cell populations and inhibitory interneuron popula-
ions (David et al., 2006).

. Functional imaging studies of brain connectivity in
ateralized cognitive functions

.1. Asymmetries of intra-hemispheric connectivity

Traditionally, as explained above, hemispheric specialization
as been characterized in terms of asymmetries in the local struc-
ure or function of homotopic regions. An alternative approach
hat has gained momentum over the last years is the notion
hat lateralization may be more appropriately characterized in
erms of connectivity asymmetries between hemispheres. In this
ection, we review some of the most influential neuroimaging
tudies of this kind which have used analyses of functional or
ffective connectivity. We restrict this review to those studies
hat explicitly assess asymmetries of intra-hemispheric connec-
ivity. This excludes conventional activation studies in which
o-activation of areas is interpreted as putative evidence for con-
ectivity between them; this kind of analysis does not allow for
nambiguous inference about connectivity (see Stephan, 2004,
or a discussion of this point). Also, there are multiple elegant
tudies of effective connectivity during lateralized tasks that
ave deliberately restricted their connectivity analysis to the
ominant hemisphere (e.g. Bitan et al., 2005; Coull, Büchel,
riston, & Frith, 1999; Mechelli, Penny, Price, Gitelman, &
riston, 2002; Smith, Stephan, Rugg, & Dolan, 2006); these
tudies are not discussed in detail either.

A pioneering study of hemispheric differences in connectiv-
ty was conducted by McIntosh et al. (1994) who applied PET
o two matching tasks for faces and locations where the vol-
nteers had to choose which of two stimuli corresponded to a
eference stimulus. Both face and location matching tasks are
nown to have a right-hemispheric dominance and should show

relative preference for engaging the ventral and dorsal stream
f the visual system, respectively. Surprisingly, the activation
attern was found to be fairly bilateral for both tasks. A connec-
ivity analysis using SEM revealed, however, that the selective
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unctional dependencies between ventral stream areas during
he face matching task and between dorsal stream areas during
he location matching task, respectively, were much stronger
n the right than in the left hemisphere (Fig. 2A). In fact, in
he left hemisphere the two tasks did not differ with regard to
he effective connectivity between visual areas. Furthermore,

cIntosh et al. (1994) demonstrated top–down effects during
he location matching task that were restricted to the right hemi-
phere, i.e. an influence of the right middle frontal gyrus (area
6) onto right extrastriate areas (Fig. 2A). This fronto-occipital
op–down influence may represent the mechanism by which the
ight hemisphere alters early visual processing in accord with
ask demands.

Complementary findings exist for tasks with left-hemispheric
ominance, e.g. language paradigms. Horwitz and colleagues
ave demonstrated that even simple approaches to characteriz-
ng connectivity, i.e. seed voxel functional connectivity analyses,
an contribute to a better understanding of lateralization dur-
ng language processing. For example, Horwitz et al. (1998)
sed PET to compare dyslexic to healthy subjects during differ-
nt reading tasks. In healthy subjects, they found the expected
obust functional connectivity between the left angular gyrus and
ther reading-related areas in inferior frontal and temporal cor-
ices. In dyslexic subjects, the left angular gyrus appeared to be
isconnected from these areas. This functional disconnection in
yslexic patients is paralleled by a fractional anisotropy decrease
n the same region, corresponding to a diminished microstruc-
ural integrity of white matter, which was found in a DWI
tudy of adults with poor reading skills (Klingberg et al., 2000).
nother study by Bokde et al. (2001) applied the same approach

o fMRI data in a one-back orthographic matching task on differ-
nt word stimuli (i.e. words, pseudowords, letter strings and false
onts; Tagamets, Novick, Chalmers, & Friedman, 2000). Bokde
t al. (2001) investigated the hypothesis that the left anterior infe-
ior frontal gyrus (aIFG) is involved in the semantic analysis of
ords whereas the left posterior inferior frontal gyrus (pIFG)
lays a role in the phonological analysis of words. They found
hat left pIFG exhibited a pronounced functional connectivity
ith left temporal language areas during the presentation of all

timuli that could be processed phonologically (i.e. words, pseu-
owords, letter strings, but not false fonts). In contrast, left aIFG
howed significant functional connectivity with these areas only
uring the presentation of real words, but not during processing
f pseudowords, letter strings and false fonts, none of which
ave a semantic content (see Fig. 3). The critical point was that
n both cases this pattern of functional connectivity was entirely
estricted to the left hemisphere: analyses of the functional con-
ectivity of the homotopic voxels in right aIFG and pIFG did not
how any significant coupling with language-relevant temporal
reas. Altogether, studies of the kind described above demon-
trate how hemispheric specialization can be conceptualized in
erms of hemispheric differences in the functional integration of
ooperating areas.
Beyond language, attention plays a particular role for the
iscussion of connectivity and lateralization. Selective attention
rovides one of the best studied examples of context-dependent
hanges in connection strength (e.g. Büchel & Friston, 1997;
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Fig. 2. Results from structural equation modeling, applied to PET data from a study by McIntosh et al. (1994) who used two right-lateralized matching tasks for
faces and locations. (A) The analysis of intra-hemispheric connectivity showed that the selective functional dependencies between ventral stream areas during the
f ing ta
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ace matching task and between dorsal stream areas during the location match
B) Strong asymmetries of the inter-hemispheric connection strengths, with rig
tronger during both tasks than left-to-right connections. See main text for more

riston et al., 2003), and some recent studies have begun to char-
cterize how selective attention in visual and auditory space is
ssociated with a corresponding connection strengths increase in
he associated hemisphere. For example, a PET study of dichotic
istening employed a PPI analysis to show that selective ori-
ntation towards one ear as (compared to a control condition
ith identical words presented to both ears, evoking a centrally

ocated fused percept) led to increases in the effective connec-
ivity of the superior temporal gyrus and the intra-parietal sulcus
ith other regions, but only within the hemisphere contralateral

o the attended ear (Lipschutz, Kolinsky, Damhaut, Wikler, &
oldman, 2002). An elegant fMRI study by Haynes, Tregellas,

nd Rees (2005) used four rotating spirals, one in each of the
our quadrants of the visual fields. During central fixation, the
olunteers were instructed to attend covertly to two of the four
pirals at a time and decide whether their directions of rota-
ion were identical or opposite. Using DCM, they found that
he change in spatial attention was paralleled by a change in the
onnection strength between the retinotopically corresponding

arts of areas V1 and V2. For example, when subjects covertly
ompared the two spirals in the left visual field, the functional
oupling increased between the corresponding retinotopically
apped parts of V1 and V2 in the right hemisphere (and vice

i
o
P
c

sk, respectively, were much stronger in the right than in the left hemisphere.
left callosal connections between homotopic regions being positive and much
ils. Figure reproduced with permission from Springer Verlag.

ersa for attention to the spirals in the right visual field). Cor-
esponding effects were found when subjects attended to two
pirals in opposite hemifields; then, the inter-hemispheric cou-
ling between the retinotopic representations increased.

Although spatial attention can induce changes in connectivity
n both hemispheres as described above, there is good evidence
hat several right-hemispheric areas, particularly frontal eye field
FEF), intra-parietal sulcus and temporo-parietal junction (TPJ),
lay a dominant role in the actual implementation of spatial
ttention, regardless where it is directed (Corbetta & Shulman,
002; Fink et al., 2000; Fink, Marshall, Weiss, & Zilles, 2001;
itelman et al., 1999; Halligan, Fink, Marshall, & Vallar, 2003;
arshall & Fink, 2001). These right-hemispheric areas are thus

ikely candidate sources of the modulatory effects exerted by
patial attention on connection strengths throughout the brain.
et, other than the study by McIntosh et al. (1994) described
bove, there is surprisingly limited work so far that provides
irect evidence for this notion. An fMRI study by Gitelman,
arrish, Friston, and Mesulam (2002) that examined changes
n connectivity of the superior colliculus between overt visu-
spatial search and a saccade control condition by means of
PI gave mixed results, showing similar degrees of collicular
oupling with left- and right-hemispheric areas, with the excep-



220 K.E. Stephan et al. / Neuropsychologia 45 (2007) 209–228

Fig. 3. Functional connectivity of the left anterior inferior frontal gyrus (aIFG) during an orthographic task (Bokde et al., 2001). All voxels are highlighted in color
whose BOLD signal correlated strongly positively (r > 0.4) with the BOLD signal in a reference voxel in left aIFG (white arrow). The color legend indicates for
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hich type of stimuli (words, pseudowords and letter strings) these correlation
eproduced from Bokde et al. (2001) with permission by Elsevier Ltd.

ion that only the right, but not left, FEF increased its coupling
ith the superior colliculus during overt visuospatial search rel-

tive to controlled saccades. Another study by Ruff and Driver
2006) investigated whether anticipation of a distractor stim-
lus, located in the opposite hemifield to the target stimulus,
ould alter the spatiotopic activations elicited by anticipation
f the target. Using fMRI, they demonstrated that both anticipa-
ion of targets and distractors induced activations in contralateral
ccipital cortex but there was no additional modulation of target
nticipation by knowledge about the presence of a distractor.
owever, an analysis of functional coupling using PPI showed

hat the right, but not left, TPJ showed stronger functional cou-
ling with occipital regions contralateral to the target, in both
he left and the right hemisphere, during preparation for trials
ith an isolated target than for trials with an anticipated distrac-

or. This pattern of connectivity is compatible with the putative
ole of right TPJ in bottom–up (stimulus-driven) rather than

op–down attentional selection (Corbetta & Shulman, 2002),
ecause in the paradigm by Ruff and Driver (2006) stimulus-
riven direction of attention is likely to operate successfully
nly in the trials where no distractor is present.
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re found. The image is shown according to radiological convention. Figure is

We conclude this section on asymmetries in intra-
emispheric connectivity by summarizing a recent fMRI study
y Stephan et al. (2003). This study differs from the ones
escribed above in that it simultaneously investigated lateral-
zation of language and visuospatial processes. It addressed
he unresolved question whether lateralization of brain activity
nevitably depends on the nature of the sensory stimuli or can be
etermined solely by the nature of the cognitive task undertaken.
or example, microstructural differences between hemispheres

hat favor the processing of certain stimulus characteristics and
isadvantage others (Jenner et al., 1999) have been postulated to
ediate stimulus-dependent lateralization in a bottom–up fash-

on (Sergent, 1983). In contrast, the processing demands of the
ask, mediated through cognitive control processes, might deter-

ine in a top–down fashion which hemisphere takes precedence
ver the other in accomplishing a given task (Fink et al., 1996;
evy & Trevarthen, 1976). To decide between these two com-

eting views, Stephan et al. (2003) developed a paradigm in
hich the same type of stimuli was used throughout the exper-

ment while different task instructions made subjects attend to
ertain stimulus features and ignore others. The stimuli con-
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isted of concrete German nouns (each word composed of four
etters) in which either the second or third letter was red. In a
etter decision task, the subjects had to ignore the position of
he red letter and indicated by button press whether or not the
ord contained the target letter “A”. In a visuospatial decision

ask, they were required to ignore the language-related prop-
rties of the word and to decide whether the red letter was
ocated left or right of the word centre. The results of a con-
entional analysis, using statistical parametric mapping, were
learly in favor of the top–down hypothesis: despite the use
f identical word stimuli in all conditions, comparing letter to
isuospatial decisions showed strongly left-lateralized activity,
ncluding classical language areas like Broca’s area in the left
FG, whereas comparing visuospatial to letter decisions showed
trongly right-lateralized activity in the parietal cortex. What
emained unclear from this analysis, however, were the mech-

nisms by which information processing was biased towards
ne hemisphere in a task-dependent fashion. The stimuli con-
ained both letter and visuospatial information and thus required
ubjects to favor processing of that information which was mean-

(
f
t
a

ig. 4. Schematic summary of a study by Stephan et al. (2003) that applied letter a
ignificantly activated during both letter and spatial decisions (contrast between the l
he spatial decision task and the baseline condition; p < 0.05 whole-brain cluster-level
ilaterally activated in both conditions. (B) Results from a PPI analysis of the effective
eft inferior frontal gyrus during letter decisions (p < 0.05, small-volume corrected). Da
PI analysis of the effective connectivity of the right ACC. Right ACC specifically inc
uring spatial decisions (p < 0.05, small-volume corrected). Figure is adapted from St
he Advancement of Science).
ologia 45 (2007) 209–228 221

ngful for the current task and inhibit processing of the other
nformation. Previous split-brain patient studies by Levy and
revarthen (1976) had indicated that such a cognitive control
rocess, i.e. the task-dependent simultaneous enhancement and
nhibition of processing different stimulus features, might be the
ecisive “switch” that controlled the relative involvement of the
wo hemispheres. If this was true, this mechanism should lead
o task- and hemisphere-specific changes in functional coupling
etween control areas in the frontal lobe and areas related to the
xecution of the tasks. In the study by Stephan et al. (2003), com-
arisons between the two tasks and a control condition (a simple
eaction time task on the same type of stimuli) showed that
he only putative control area was the anterior cingulate cortex
ACC). This area showed increased activity in both hemispheres
uring both tasks (Fig. 4A). However, when ACC connectiv-
ty with the rest of the brain was analyzed by means of PPIs

Friston et al., 1997), a striking hemispheric dissociation was
ound: left ACC specifically increased its coupling during let-
er decisions with the left IFG (Fig. 4B), an important language
rea, whereas the right ACC specifically increased its connectiv-

nd spatial decision tasks to identical word stimuli. (A) Brain areas that were
etter decision task and the baseline condition, masked by the contrast between
corrected). Crosshairs highlight the anterior cingulate cortex (ACC) which was
connectivity of the left ACC. Left ACC specifically increased its coupling with
shed arrows denote non-significant modulation of couplings. (C) Results from a
reased its coupling with anterior and posterior parts of right intra-parietal sulcus
ephan et al. (2003), with permission by Science (The American Association for
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ty during visuospatial decisions with areas in the right parietal
ortex known to be involved in spatial judgments (Fig. 4C). No
ther brain area showed significant task-dependent changes in
oupling with either left or right ACC. As highlighted in a com-
entary to this study, these findings suggest that “processing

s directed to either the left or the right hemisphere, depending
n what needs to be done with the information” (McIntosh and
obaugh, 2003). The critical aspect is that this mechanism of
ognitive control could not be inferred from conventional activa-
ion maps; instead, how hemispheric asymmetry was controlled
as only obvious in terms of the task-specific connectivity of

he ACC.

.2. Asymmetries of inter-hemispheric connectivity

One of the fundamental constraints of human brain function is
he requirement to integrate processes from both hemispheres.
fficient inter-hemispheric integration would still be required
ven if the hemispheres were perfectly functionally symmetri-
al. This is illustrated by the simple example where one has
o respond with a right arm movement (executed by the left

otor cortex) to a visual stimulus presented in the periphery
f the left visual (and thus received by the right visual cortex).
egardless of how symmetric the brain is, this situation requires

timulus information to be transferred from the right to the
eft hemisphere. It is likely that this need for inter-hemispheric
ntegration is considerably amplified in an asymmetrically orga-
ized brain because it will often be the case that a cognitive
peration will depend on subprocesses that are lateralized to
pposite hemispheres. The above example brings about many
undamental questions, for example: when, how and where in
he brain is information transferred between hemispheres? What
etermines whether the brain processes information in the hemi-
phere specialized for that information alone or whether it draws
n additional computational resources in the less specialized
emisphere? How are simultaneous workings of the two hemi-
pheres synchronized, e.g. to prevent interference of processes
see Lashley, 1937)?

These issues have been the subject of much theoretical work,
nd as a result three major complementary theories have been
ormulated that have guided investigations of inter-hemispheric
ntegration. As mentioned in the historical section, the oldest
oncept is probably that of information transfer between the
emispheres (e.g. Poffenberger, 1912). In the context of lat-
ralized tasks with hemisphere-specific inputs (e.g. peripheral
isual presentation), this theory predicts that transfer of sen-
ory information should be asymmetrically enhanced from the
on-dominant to the dominant hemisphere to ensure maximally
fficient processing in the specialized hemisphere (e.g. Endrass,
ohr, & Rockstroh, 2002; Nowicka, Grabowska, & Fersten,

996). In terms of effective connectivity, it predicts a task-
ependent increase in connectivity from the non-dominant to
he dominant hemisphere but only when stimulus information is

nitially restricted to the non-dominant hemisphere.

A more recent and very influential concept has been the notion
f inter-hemispheric inhibition (Kinsbourne, 1970). It has been
gued that the regulatory mechanisms that “coordinate, select

2
o
n
t

ologia 45 (2007) 209–228

nd integrate the processes subserved by each hemisphere”
ill also require a range of inter-hemispheric inhibitory mech-

nisms “to achieve unified performance from a bilateral system
apable of producing simultaneous and potentially conflicting
utputs” (Chiarello & Maxfield, 1996). This paper by Chiarello
nd Maxfield is an excellent review of the evidence for inter-
emispheric suppression, inter-hemispheric isolation and inter-
emispheric interference, with interesting suggestions about the
unctional significance of these mechanisms. With regard to con-
ectivity, inter-hemispheric inhibition predicts a task-dependent
ymmetric pattern of negative connection strengths between
emispheres (strictly speaking, this requires the assumption
hat neural inhibition leads to a decrease in the measured
ignal).

The third major concept of inter-hemispheric integration con-
erns hemispheric recruitment or processing mode setting, i.e.
hether information processing is restricted to a single hemi-

phere or distributed across both hemispheres. Behavioral evi-
ence indicates that this is largely determined by the complex-
ty (cognitive demand) of the task performed (Banich, 1998;
ellige, 1990). Several studies have shown that if the neural

esources in the hemisphere receiving a stimulus are insufficient
or optimal processing, the benefits of distributing the process-
ng load across both hemispheres are likely to outweigh the
osts of transcallosal information transfer (see Banich, 1998, for
eview). Given a sufficiently demanding task, this recruitment
f an additional hemisphere even occurs during lateralized tasks
hen the dominant hemisphere receives the stimulus (Belger &
anich, 1998). This additional recruitment of the non-dominant
emisphere requires tight cooperation, i.e. functional coupling,
f both hemispheres, regardless of which hemisphere initially
eceived the stimulus. Two components are likely to be expressed
n terms of task-dependent changes in effective connectivity: an
ncrease of connections from the dominant to the non-dominant
emisphere that reflects the “recruitment” of the non-dominant
emisphere, and an increase of connection strengths in the
pposite direction, induced by the non-dominant hemisphere
returning” the results of the computations delegated to it by the
ominant hemisphere. Altogether, this cooperation is expected
o be expressed either in terms of a symmetric task-dependent
ncrease of connection strength between homotopic areas, or, if
recruitment” and “return” processes are spatially segregated,
n asymmetric task-dependent increase of connection strength
etween different areas.

In the past, questions on inter-hemispheric interactions
ave been mainly addressed by means of elegant behav-
oral studies (for reviews, see Banich, 1998; Hellige, 1990;
iederman, 1998), studies of patients with callosal lesions

Corballis, Corballis, & Fabri, 2003; Funnell, Corballis, &
azzaniga, 2000; Gazzaniga, 2000), EEG/MEG studies of inter-
emispheric coherence and synchrony (e.g. Schack, Weiss, &
appelsberger, 2003) and invasive recording studies in animals

Cardoso de Oliveira, Gribova, Donchin, Bergman, & Vaadia,

001; Engel, König, Kreiter, & Singer, 1991). All these meth-
ds have limitations. Behavioral studies cannot elucidate which
eural processes generate the observed responses and where in
he brain these processes happen. Callosal lesions are usually
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uite extended (particularly iatrogenic ones) and the consider-
ble plasticity of the human brain complicates the interpretation
f behavioral deficits in these patients. EEG/MEG studies suffer
rom the inverse problem, i.e. without strong a priori constraints,
t is difficult to localize the sources that generate the measured
esponses. Although advanced methods for solving this problem
re now available (e.g. Mattout et al., 2006), the large majority
f available EEG/MEG studies on inter-hemispheric integration
ave analyzed functional coupling at the level of the sensor data
nly and hence do not allow for localization of the neural units
hat exhibit this coupling. Finally, invasive recordings are not
ossible in humans (with the exception of presurgical evalua-
ion of epilepsy patients) and can only probe very few locations
t a time.

While functional imaging techniques, particularly fMRI,
vercome many of these issues and provide both whole-brain
nvestigation and excellent spatial resolution, they are not free of
roblems when used to investigate inter-hemispheric integration
y means of analyses of connectivity. A particular problem is
hat, due to the reciprocal nature of callosal connections and the

ultiple pathways by which two hemispheres can interact, mod-
ls of inter-hemispheric integration are usually quite complex.
PI is too simple a model to allow for a satisfactory investi-
ation of such systems. Also, SEM is only of limited help for
omplex models because of problems of identifiability, the sim-
lest example being when there are more free parameters than
mpirically measured covariances (for discussions of this issue,
ee McIntosh & Gonzalez-Lima, 1994 and Penny et al., 2004a).
uggestions how to apply SEM to models of inter-hemispheric

ntegration models have been made, e.g. to use an iterative fitting
rocedure in which intra-hemispheric parameters are estimated
n a first pass and then kept fixed when extending the model to
nclude inter-hemispheric connections (McIntosh et al., 1994) or
o constrain the callosal connections to have the same path coef-
cient in both directions (Rowe et al., 2002; Schlösser et al.,
003). The latter approach, however, shares the problem with
nalyses of functional connectivity that asymmetries in inter-
emispheric influences cannot be investigated.

Focusing on studies that have specifically investigated such
symmetries in inter-hemispheric interactions, there are, to the
est of our knowledge, at present only two studies in the litera-
ure that fulfill this criterion (McIntosh et al., 1994; Stephan et
l., 2005). However, it can be expected that with the advent of
CM, which can deal with complex models, this number will

ubstantially increase in the near future. Given the huge gap
f our understanding about the functional principles of inter-
emispheric integration and how they relate to asymmetries of
rain function, we hope that the discussion in this paper will
ontribute to stimulating future studies.

As already described in the section on intra-hemispheric con-
ectivity, McIntosh et al. (1994) performed a PET study of face
nd location matching tasks. Although it is well-established
hat both tasks have a right-hemispheric dominance, the acti-

ation pattern was surprisingly bilateral for both tasks. A SEM
onnectivity analysis, however, not only showed higher func-
ional coupling within the right as compared to the left hemi-
phere (see above), but also helped to understand the bilat-
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ral activation pattern from the initial conventional analysis. In
heir model, McIntosh et al. found strong asymmetries of the
nter-hemispheric connection strengths, with right-to-left cal-
osal connections between homotopic regions being positive and

uch stronger during both tasks than left-to-right connections
Fig. 2B). They concluded that the observed bilateral activation
uring the two right-lateralized tasks was due to a transcallosal
ecruitment of the non-dominant left hemisphere by the domi-
ant right hemisphere. They could distinguish this interpretation
rom the alternative of simple information transfer because in
heir paradigm the stimuli were presented centrally and thus
nformation was available to both hemispheres.

Stephan et al. (2005) presented the results from a DCM anal-
sis of inter-hemispheric integration in the ventral stream of the
isual system in a single subject, taken from the group described
n Stephan et al. (2003). As described in the previous section,
n this paradigm subjects had to make letter decisions or spatial
ecisions about identical word stimuli displayed in the periph-
ral visual fields. One of the aims of this experiment which could
ot be addressed by the initial SPM and PPI analyses reported
y Stephan et al. (2003) was to determine (i) whether task or
timulus properties (i.e. visual field of presentation) determined
he strength of callosal connections and (ii) which of the three
heories of inter-hemispheric integration gave predictions that
est fitted the observed inter-hemispheric dynamics between
reas in the ventral stream of the visual system during letter
ecisions. To address these questions, Stephan et al. (2005)
dopted the following strategy. First, they systematically con-
tructed 16 competing models of inter-hemispheric interactions
hat covered all possible options concerning how task demands
nd visual field of stimulus presentation could affect functional
oupling within and between hemispheres. After separately fit-
ing all models to the same data, they used a Bayesian model
election procedure (Penny et al., 2004b) to determine which
odel exhibited the highest evidence, i.e. the probability of the

ata given by the model, and thus an optimal balance between
odel fit and model complexity. The final step consisted of sta-

istical inference about the relevant model parameters, i.e. the
odulation of callosal connections by task and/or visual field.
tephan et al. found that the best model was one in which callosal
onnections depended on the letter decision (LD) task, but con-
itional on the visual field of presentation: the connection from
ight to left lingual gyrus (LG) was strongly enhanced during the
etter decision task but only when the stimuli were presented in
he left visual field (LVF) and thus initially received by the right
emisphere (Fig. 5). In contrast, there was no significant mod-
lation of the left-to-right LG connections. A posterior density
nalysis of the modulatory parameters confirmed the presence
f this asymmetry with 98.7% probability. This result, a task-
ependent increase in connectivity from the non-dominant to
he dominant hemisphere but only when stimulus information
s initially provided to the non-dominant hemisphere, perfectly
ts the predictions from the information transfer theory outlined

bove. In the particular subject studied by Stephan et al. (2005),
similar, albeit weaker, asymmetry was observed with regard to

he callosal connections at the level of the fusiform gyrus (FG;
ig. 5).
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Fig. 5. Schematic summary of the results from a study of hemispheric integra-
tion (Stephan et al., 2005) which applied DCM to data of a single subject from
the group studied by Stephan et al. (2003; see Fig. 4). In this particular sub-
ject, inter-hemispheric connections between lingual gyri (LG) and fusiform gyri
(FG), respectively, were modulated by letter decisions (LD), but conditional on
stimuli being presented in the left visual field (LVF). This modulation was asym-
metric, i.e. significantly stronger for right-to-left connections than vice versa (see
Stephan et al., 2005, for details). This result, a task-dependent increase in con-
nectivity from the non-dominant to the dominant hemisphere but only when
stimulus information is initially provided to the non-dominant hemisphere, is
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n accordance with the theory that the corpus callosum subserves information
ransfer to the specialized hemisphere (see main text).

. Investigating developmental changes in structural
onnectivity and their relation to functional
ateralization

Collectively, the studies described in the sections above
emonstrate that asymmetries of intra- and inter-hemispheric
ffective connectivity are a highly informative index of hemi-
pheric specialization and go beyond the traditional approach of
efining lateralization through asymmetries in the local structure
r function of homotopic regions. As described in the section on
symmetries of structural brain connectivity and their develop-
ental determinants above, it seems likely that asymmetries in

ffective connectivity can be causally related to asymmetries
n structural connectivity forming during neurodevelopment.
hile animal studies strongly imply such a relation, definite
roof for such a relation, for example, from longitudinal within-
ubject studies demonstrating a tight relation between develop-
ng asymmetries in structural and effective connectivity, has yet

i
t
f
r
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o be obtained for the human brain. This is due to methodolog-
cal and ethical problems associated with longitudinal studies
f human brain development. For obvious ethical reasons, any
xperimental procedure that is invasive (e.g. histological inves-
igations to assess microstructural changes in connectivity) or
hat may indirectly affect development (e.g. pharmacological

anipulations of molecular processes putatively involved in
symmetric formation of connections) are prohibited in humans.
nfortunately, the available non-invasive imaging procedures do
ot yet provide sufficient resolution that we could detect subtle
hanges in structural brain connectivity during the early stages
f human brain development when decisive processes underly-
ng lateralization presumably take place (see Gupta et al., 2005,
or preliminary attempts to track prenatal connectivity changes
sing DWI). This is because high-resolution DWI data require
igh magnetic field strengths and/or long acquisition times, both
f which are not permissible or practically feasible for perina-
al imaging. Until better non-invasive methods are available for
ssessing structural connectivity with high resolution, studies of
he relation between the development of structural brain asym-

etries and the resulting changes of effective connectivity will
ave to focus on childhood and adolescence. In this period sig-
ificant changes are still likely to occur, albeit probably at a
lower rate than perinatally. Here, we describe two examples of
ossible research strategies.

First, it would be important to combine analyses of effective
onnectivity with DWI and morphometric studies that probe
hanges in hemispheric differences in gray and/or white mat-
er properties over time. So far, to our knowledge, there is a
omplete lack of such studies. Morphometric measures such
s cortical thickness may be particularly useful because there
re widespread hemispheric differences (Luders et al., 2006),
nd a previous study indicated that inter-regional correlations
n cortical thickness may be a function of inter-regional struc-
ural connectivity (Lerch et al., 2006). The latter could be tested
irectly in longitudinal studies that jointly investigate changes
n cortical thickness, white matter organization and effective
onnectivity during childhood and adolescence. It would be
nformative to evaluate the results from such studies in refer-
nce to probabilistic cytoarchitectonic atlases, but so far these
ave only been developed for the adult human brain (cf. Eickhoff
t al., 2005).

A second strategy rests on developmental studies of animals
ith different genetic status, e.g. knock-out models with regard

o candidate genes (like LMO4 or N-cadherin, see above) for
evelopment of asymmetric brain connectivity. By testing for
oncomitant changes in structural connectivity (derived from
uantitative tract tracing studies) and effective connectivity (esti-
ated from neurophysiological measures) that follow experi-
ental manipulations of experience-dependent plasticity, such

tudies could establish a direct role of current candidate genes
or both the formation of asymmetric structural connectivity
nd for the subsequent functional expression of this asymmetry

n terms of effective connectivity. Any positive findings could
hen be taken back to human studies which investigate, using
unctional imaging and genotyping, whether there is a statistical
elationship between measures of effective connectivity during
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ateralized tasks and particular genetic haplotypes implicated by
he animal models.

. Summary and outlook

This review focused on the role of connectivity for under-
tanding hemispheric specialization. We have reviewed evidence
rom recent anatomical and developmental studies that asymme-
ries in structural connectivity may be a key component in the
evelopment of hemispheric specialization. Such differences in
natomical connectivity, which have been described both within
nd between cortical areas, may represent the structural sub-
trate of different styles of information processing in the two
emispheres. After a brief methodological overview of some
ommonly used models of connectivity, we reviewed published
ET and fMRI studies that have applied these approaches to
haracterize asymmetries of intra- or inter-hemispheric connec-
ivity during lateralized tasks. We hope that these examples
ave demonstrated three main things: first, that hemispheric
pecialization can be usefully defined by asymmetries of intra-
emispheric functional and effective connectivity and moreover
hat connectivity can be a more sensitive marker of hemi-
pheric specialization than asymmetries of activation patterns
cf. McIntosh et al., 1994). Second, that analyses of connectivity
an provide a mechanistic understanding of how lateralization
an (sometimes) be entirely task-driven (cf. Stephan et al., 2003).
nd third, how models of effective connectivity can be used to

nfer functional principles of inter-hemispheric integration from
euroimaging data.

At the present time, many questions on hemispheric special-
zation are still open. For example, what are the exact computa-
ional advantages (and disadvantages) of an asymmetric brain?
s hemispheric specialization a developmental process that, once
certain stage has been reached, remains in a fixed state or is it
dynamic process? What role do synaptic plasticity and modu-

atory transmitter systems play? It will be important to address
hese questions, not only for our general understanding of human
rain function, but also with regard to the many clinical disorders
hat implicate hemispheric asymmetries, either due to asymmet-
ic lesions (like aphasia, apraxia or neglect) or due to an as yet
nknown reason, as in dyslexia (Heim and Keil, 2006), autism
Herbert et al., 2005) and schizophrenia (Mitchell & Crow, 2005;
etty, 1999). For example, mechanistic models of hemispheric
pecialization may provide endophenotypes for better diagnosis
nd classification of diseases with diffuse diagnostic criteria like
chizophrenia or autism (cf. Stephan, 2004). Moreover, good
odels may enable us to reverse-engineer asymmetric neural

ystems and teach us how to induce compensatory changes
n case of disorders. With such models, it may be possible to
erive better diagnostic tools for presurgical evaluation (Klöppel

Büchel, 2005), novel forms of rehabilitation training for
rain-lesioned patients and predict advantageous consequences
f physical (e.g. transcranial magnetic stimulation) or pharma-

ological manipulations. Whatever the exact research strategy
hosen to pursue such goals, it seems likely that a computa-
ional systems perspective and a model-based approach will be
ecessary to enable neuroscience to proceed from mere descrip-

B
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ions of brain asymmetries to mechanistic accounts of how these
symmetries are caused and how they can be influenced.

cknowledgments

This work was supported by the Wellcome Trust (KES),
he Deutsche Forschungsgemeinschaft (GRF) and the Medi-
al Research Council (JCM). We would like to thank Christian
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rodmann, K. (1909). Vergleichende lokalisationslehre der großhirnrinde.
Leipzig: Barth.
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ejerine, J. (1892). Contribution à l’étude anatomoclinique et clinique des
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