On the Spectrum of Elliptic Operators with Respect to Indefinite Weights

Peter Hess
Mathematisches Institut
Universität Zürich
Rämistrasse 74
CH-8001 Zürich, Switzerland

Submitted by Peter Lancaster

ABSTRACT

Recent results on linear elliptic eigenvalue problems with respect to indefinite weight functions are recalled, and some applications are given.

INTRODUCTION

In this note we give a survey of recent results concerning both the linear eigenvalue problem

\[\mathcal{L}u = \lambda mu \quad \text{in } \Omega, \quad \mathcal{B}u = 0 \quad \text{on } \partial \Omega \quad (1) \]

and the closely connected problem

\[(\mathcal{L} - \lambda m)u = \mu u \quad \text{in } \Omega, \quad \mathcal{B}u = 0 \quad \text{on } \partial \Omega \quad (2_{\lambda}) \]

(\lambda \text{ fixed}), and give some immediate applications to semilinear eigenvalue and boundary-value problems. Here \(\Omega \subset \mathbb{R}^N \) \((N \geq 1)\) is a bounded domain with smooth boundary \(\partial \Omega \), \(\mathcal{L} = \mathcal{L}(x, \partial / \partial x) \) a uniformly elliptic linear differential expression of second order of the form

\[\mathcal{L}u = - \sum_{j,k=1}^{N} a_{jk} \frac{\partial^2 u}{\partial x_j \partial x_k} + \sum_{j=1}^{N} a_{j} \frac{\partial u}{\partial x_j} + a_{\partial} u \]

© Elsevier Science Publishing Co., Inc., 1986
52 Vanderbilt Ave., New York, NY 10017 0024-3795/86/$3.50
with real-valued coefficient functions $a_{jk} = a_{kj}$, $a_j, a_0 \geq 0$ belonging to $C^\theta(\Omega) \ (0 < \theta \leq 1)$, and $\mathcal{B} = \mathcal{B}(x, \partial / \partial x)$ a linear boundary operator implying either Dirichlet boundary conditions ($\mathcal{B}u = u$), or Neumann or regular oblique derivative boundary conditions ($\mathcal{B}u = \partial u / \partial \beta + bu$, where β is a smooth, outward-pointing, and nowhere tangent vector field on $\partial \Omega$ and $b \geq 0$ a smooth function). Further, $m \in C(\Omega)$ is a given real-valued weight function, $m \neq 0$. The eigenvalue parameters in (1) and (2), are denoted by λ and μ, respectively.

We assume throughout that for $(\mathcal{L}, \mathcal{B})$ the maximum principle holds: if $u \in C^2(\Omega) \cap C^1(\Omega)$ satisfies $\mathcal{L}u \geq 0$ in Ω, $\mathcal{B}u \geq 0$ on $\partial \Omega$, then $u \geq 0$, and $u > 0$ in Ω as well as $\partial u / \partial \beta(x) < 0$ at points $x \in \partial \Omega$ where $u(x) = 0$, unless $\mathcal{B}u = 0$.

I. MOTIVATION

In many applications, e.g. to biomathematical problems and models in reactor theory, one searches for positive equilibrium solutions to semilinear problems of the form

$$\frac{\partial w}{\partial t} + \mathcal{L}(x, \frac{\partial}{\partial x})w = f(x, w) \quad \text{in } \Omega \times \mathbb{R}^+$$

$$\mathcal{B}(x, \frac{\partial}{\partial x})w = 0 \quad \text{on } \partial \Omega \times \mathbb{R}^+$$

$$w|_{t=0} = w_0 \quad \text{on } \Omega,$$

i.e. for positive solutions of

$$\mathcal{L}w = f(x, w) \quad \text{in } \Omega, \quad \mathcal{B}w = 0 \quad \text{on } \partial \Omega. \quad (1.2)$$

Further, the stability of these solutions is of interest. For the proof of existence two tools have turned out to be very fruitful: (i) the bifurcation theory and (ii) the method of sub- and supersolutions. In order to apply (i) one has to consider the linearization of (1.2) at a (trivial) solution w:

$$\mathcal{L}u = m u \quad \text{in } \Omega, \quad \mathcal{B}u = 0 \quad \text{on } \partial \Omega \quad (1.3)$$

$$[m(x) := f_u(x, w(x))]; \text{ the sign of the "principal eigenvalue" } \mu_1 \text{ of the}$$
associated eigenvalue problem

\[(\mathcal{L} - m)u = \mu u \quad \text{in } \Omega, \quad \mathcal{B}u = 0 \quad \text{on } \partial \Omega \quad (1.4)\]

is crucial for the determination of stability of \(w\). For the construction of positive sub- and supersolutions "principal eigenfunctions" are often used.

II. PRINCIPAL EIGENVALUES

It is convenient to work in the real ordered Banach space \(E := C(\Omega)\). Let \(L : E \supset D(L) \to E\) be the realization of \((\mathcal{L}, \mathcal{B})\) in \(E\), i.e. the maximal linear operator induced in \(E\) by \(\mathcal{L}\) and the boundary conditions. Then \(L\) is a closed operator that is invertible (by the maximum principle) and has a compact inverse (by embedding theorems). Further, let \(M \in \mathcal{L}(E)\) denote the multiplication operator by the function \(m\). The problems (1) and (2) take the form

\[Lu = \lambda Mu \quad (\Leftrightarrow \quad \frac{1}{\lambda} u = L^{-1}Mu) \quad (2.1)\]

and

\[(L - \lambda M)u = \mu u \quad (2.2)\]

in \(E\).

Question. Does (1) admit an eigenvalue \(\lambda_1 = \lambda_1(m) > 0\) having a positive eigenfunction ("principal eigenvalue")?

Theorem 1 [17]. There exists a principal eigenvalue \(\lambda_1 > 0\) of (2.1) if and only if \(m \not< 0\). If \(m\) is positive somewhere in \(\Omega\), then \(\lambda_1\) is uniquely defined and

1. \(1/\lambda_1\) is an algebraically simple eigenvalue of \(L^{-1}M\),
2. if \(\lambda \in \mathbb{C}\) is an eigenvalue (of the complexified problem) with \(\text{Re } \lambda > 0\), then \(\lambda_1 > 0\) exists and \(\text{Re } \lambda \geq \lambda_1\).

Similarly, if \(m(x) < 0\) at some \(x \in \Omega\), there exists a (unique) negative principal eigenvalue \(\lambda_{-1} = \lambda_{-1}(m)\) [just look at the equation \(Lu = (\lambda)(-M)u\)]. The couple \((\mathcal{L} - \lambda m, \mathcal{B})\) satisfies the maximum principle if \(\lambda_{-1}(m) < \lambda < \lambda_1(m)\) [set \(\lambda_{-1}(m) = -\infty\) in case \(m \geq 0\)].
Sketch of the proof. That $m \neq 0$ is a necessary condition for the existence of a positive principal eigenvalue follows immediately by the maximum principle. A proof of the sufficiency of this condition can be led by looking at the associated problem $(2.2, \lambda)$ (this is not the original proof of [17]; cf. [20, 18]). For fixed $\lambda \in \mathbb{R}$ and sufficiently large $c > 0$, $(L - \lambda M + c)^{-1}$ is a positive compact operator in E having positive spectral radius $\gamma_{\lambda, c}$. By the Krein-Rutman theorem [23] $\gamma_{\lambda, c}$ is the unique eigenvalue of $(L - \lambda M + c)^{-1}$ with a positive eigenfunction. We conclude that for each $\lambda \in \mathbb{R}$ there is a unique principal eigenvalue $\mu_1(\lambda) \in \mathbb{R}$ and a (up to multiplicative constants) unique positive eigenfunction $u_1(\lambda)$ of $(2.2, \lambda)$:

$$(L - \lambda M)u_1(\lambda) = \mu_1(\lambda)u_1(\lambda)$$

[In fact $\mu_1(\lambda)$ is the spectral bound of $L - \lambda M$. It is clear that λ is a principal eigenvalue of (2.1) iff $\mu_1(\lambda) = 0$. We list the properties of the function μ_1:

1. $\mu_1(0) > 0$.
2. As a consequence of the implicit-function theorem, μ_1 is an analytic function of λ, and also $u_1(\lambda)$ can be chosen to depend analytically on λ (cf. [5]).
3. μ_1 is a concave function of λ (cf. [20]; a more direct approach is worked out in [4] for the periodic-parabolic case and goes back to an observation of H. Berestycki and P. L. Lions).
4. $\mu_1(\lambda) \to -\infty (\lambda \to +\infty)$ if $m(x) > 0$ at some $x \in \Omega$.

Thus a principal eigenvalue $\lambda_1 > 0$ exists if $m \neq 0$, and is unique. If $\lambda_1 > 0$ exists, we have $\mu_1'(\lambda_1) \neq 0$, which guarantees that λ_1 is an "M-simple eigenvalue of $L"$ [i.e., $\dim N(L - \lambda_1 M) = \text{codim } R(L - \lambda_1 M) = 1$ and $Mu_1 \in R(L - \lambda_1 M)$, where $u_1 = u_1(\lambda_1)$ spans $N(L - \lambda_1 M)$]. Therefore, since L is invertible, $1/\lambda_1$ is a simple eigenvalue of $L^{-1}M$.

The assertion of Theorem 1(ii) and its sharpening [11, 12] "λ_1 is the only eigenvalue $\lambda \in \mathbb{C}$ of (2.1) with $\text{Re } \lambda = \lambda_1$" are consequences of a variant of the so called "Kato inequality" $-\Delta |u| \leq \text{Re } [\text{sgn}(u)(-\Delta u)]$, where $\text{sgn}(u) = \bar{u}/|u|$ if $u \neq 0$, = 0 if $u = 0$ (cf. [19, 17, 12]).

III. APPLICATIONS TO SEMILINEAR PROBLEMS

(a) Bifurcation Problems

Consider the nonlinear eigenvalue problem

$$\mathcal{L}w = \lambda f(x, w) \quad \text{in } \Omega, \quad \mathcal{B}w = 0 \quad \text{on } \partial \Omega, \quad (3.1)$$
and assume \(f : \overline{\Omega} \times \mathbb{R} \to \mathbb{R} \) is a smooth function such that \(f(\cdot, 0) = 0 \). Then (3.1) admits the line \(\mathbb{R} \times \{0\} \subseteq \mathbb{R} \times E \) of trivial solutions \((\lambda, 0)\). Set \(m := f_w(\cdot, 0) \). A necessary condition for \((\lambda, 0)\) to be a bifurcation point for positive solutions \((\lambda > 0, w > 0)\) of (3.1), from the line of trivial solutions, is that \(\lambda \) is the positive principal eigenvalue of the problem (1). An immediate consequence of Rabinowitz’s global bifurcation theorem [25] and Theorem 1 is

Theorem 2 [17]. There exists a point \((\lambda, 0)\) of (global) bifurcation of positive solutions of (3.1) from the line of trivial solutions if and only if \(m \not< 0 \) in \(\Omega \). If \(m(x) > 0 \) at some \(x \in \Omega \), then \((\lambda, m(x), 0)\) is the only such bifurcation point.

(b) **Linearized Stability**

Let \(w \) be an equilibrium solution of the parabolic boundary-value problem (1.1), i.e., a solution of (1.2). By means of sub- and supersolution techniques one proves the following principle of linearized stability [set \(m := f_w(\cdot, w) \)]: \(w \) is locally asymptotically exponentially stable if the principal eigenvalue \(\mu_1 \) of (1.4) is positive, and unstable if \(\mu_1 \) is negative. Thus, in the situation of Theorem 2, the trivial solution \(u = 0 \) is for example stable for \(\lambda_{-1}(m) < \lambda < \lambda_1(m) \) and unstable for \(\lambda < \lambda_{-1}(m) \) and \(\lambda > \lambda_1(m) \). Moreover, the stability of the bifurcating positive solutions can often be determined; cf. [13], where it is shown that the “principle of exchange of stability” holds under very general assumptions.

(c) **Sub- and Supersolutions**

Let \(u \leq \overline{w} \) be a sub- and a supersolution of the problem (1.2), respectively. It is well known (e.g. [3, 26]) that there exists at least one solution \(w \) of (1.2) with \(w \leq u \leq \overline{w} \) (in fact there exist a minimal and a maximal solution in \([u, \overline{w}]\) provided \(f \) is sufficiently smooth). Positive sub- and supersolutions are often constructed with help of principal eigenfunctions. We have for example (see [14] for proofs in the periodic-parabolic case):

Proposition 3. Suppose for some \(s_0 > 0 \) that \(f(x, s) \geq m_0(x)s \) for all \(0 \leq s \leq s_0 \) and all \(x \in \Omega \), where \(m_0 \in C(\overline{\Omega}) \) and \(m_0 \not< 0 \) in \(\Omega \). If \(\lambda_1(m_0) \leq 1 \), then (1.2) admits small positive subsolutions.

Proposition 4. Suppose \(f(x, s) \leq m_\infty(x)s + c \) for all \(s > 0 \) and all \(x \in \overline{\Omega} \), where \(m_\infty \in C(\overline{\Omega}) \), \(m_\infty \not< 0 \) in \(\Omega \), and \(c > 0 \). If \(\lambda_1(m_\infty) > 1 \), then (1.2) admits large positive supersolutions.
IV. THE WHOLE SPECTRUM

We return to the linear eigenvalue problem (1) and assume now $a_{jk} \in C^1(\Omega)$ for all j, k. On the other hand it suffices if the real-valued functions $a_j, a_0 \geq 0$ and m belong only to $L^\infty(\Omega)$. We introduce the differential expression \mathcal{L}_0:

$$\mathcal{L}_0 u = -\sum_{j,k=1}^N \frac{\partial}{\partial x_j} \left(a_{jk} \frac{\partial u}{\partial x_k} \right) + a_0 u$$

(4.1)

and assume that $(\mathcal{L}_0, \mathcal{B})$ determines a self-adjoint boundary-value problem.

We choose to work in the complex Hilbert space $\mathcal{H} = L^2(\Omega)$. Let L and M be the differential and the multiplication operator in \mathcal{H} induced by $(\mathcal{L}, \mathcal{B})$ and m, respectively. Note that

$$Lu = \lambda Mu \quad \text{in } \mathcal{H}$$

(4.2)

is not a variational eigenvalue problem (L is not necessarily self-adjoint).

Theorem 5 [15].

(i) The eigenvalue problem (4.2) has a discrete spectrum, and for arbitrary $0 < \varepsilon < \pi/2$ all the eigenvalues λ, except possibly a finite number of them, lie in the two sectors

$$G_\varepsilon^+ = \{ \zeta \in \mathbb{C} : -\varepsilon < \arg \zeta < \varepsilon \}, \quad G_\varepsilon^- = \{ \zeta \in \mathbb{C} : \pi - \varepsilon < \arg \zeta < \pi + \varepsilon \}.$$

(ii) The system of generalized eigenvectors of $L^{-1}M$ is complete in $R(L^{-1}M)$.

(iii) (4.2) has infinitely many eigenvalues λ in G_ε^+ if and only if the set $\{ x \in \Omega : m(x) > 0 \}$ has positive measure; a similar statement holds for the eigenvalues $\lambda \in G_\varepsilon^-$.

Note that (ii) is the best we can hope for; thus if M is not injective (i.e., if m vanishes on a set of positive measure), the system of generalized eigenfunctions is not complete in $L^2(\Omega)$.

Theorem 5(i)–(ii) is well known if $m = 1$ and goes back to Keldyš [21]. Also for $m = 1$, Agmon [1] has obtained this result for a wider class of boundary conditions. In the presence of a possibly indefinite weight m, Agmon's approach, however, does not seem to work. We therefore go back
basically to the ideas of Keldyš and consider (4.2) as a (weak) perturbation of a self-adjoint problem. We first generalize an abstract perturbation result of Keldyš.

Thus let \mathcal{H} for the moment be an (abstract) separable Hilbert space over \mathbb{C}. Following von Neumann and Schatten [7, Section XI.9], we say that the compact linear operator A in \mathcal{H} belongs to the two-sided ideal $C_p \subset \mathcal{L}(\mathcal{H})$ ($0 < p \leq \infty$) if the eigenvalues of $(A^*A)^{1/2}$, arranged in decreasing order and repeated according to multiplicity, form an l^p-sequence.

Theorem 6 [15]. Let $A = H + S$, where $H \in \mathcal{L}(\mathcal{H})$ is compact and self-adjoint and belongs to C_p for some $p < \infty$, while $S \in \mathcal{L}(\mathcal{H})$ is compact and $I + S$ invertible. Let \mathcal{H} be orthogonally decomposed as $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, with $\mathcal{H}_1 = R(H)$, $\mathcal{H}_2 = N(H)$, and suppose

$$\mathcal{H}_1 \cap (I + S)^{-1} \mathcal{H}_2 = \{0\}. \quad (*)$$

Then

(i) For arbitrary $0 < \varepsilon < \pi/2$ all the characteristic values of A, except possibly a finite number of them, lie in the two sectors $G^- \cup G^+$.

(ii) The system of generalized eigenvectors of A (to characteristic values) is complete in \mathcal{H}_1.

(iii) A has infinitely many characteristic values in G^+ if and only if H has infinitely many positive characteristic values.

($\lambda \in \mathbb{C}$ is a characteristic value of A if there is an $x \in \mathcal{H}$, $x \neq 0$, such that $x = \lambda Ax$; of course $\lambda \neq 0$ and x is an eigenfunction of A corresponding to the eigenvalue λ^{-1}.)

Keldyš (for a proof see [10, Theorem V.8.1]) considered the case where H is injective ($\mathcal{H}_2 = \{0\}$) and obtained Theorem 6(i), (ii) and the "only if" part of (iii); clearly the condition (*) is vacuous in that case. The proof is based on resolvent estimates and the Phragmen-Lindelöf principle.

We indicate how Theorem 5 follows from the abstract Theorem 6. Let L be decomposed as $L = L_0 - L_1$, where L_0 is the self-adjoint positive operator induced in $\mathcal{H} = L^2(\Omega)$ by $(\mathcal{L}_0, \mathcal{B})$, and L_1 is a relatively compact perturbation. The eigenvalue problem (4.2) in \mathcal{H} can then be written as

$$(L_0 - L_1)u = \lambda Mu, \quad (4.3)$$

which is equivalent to

$$L_0^{1/2}((I - L_0^{-1/2}L_1L_0^{-1/2})L_0^{1/2}u = \lambda L_0^{1/2}(L_0^{-1/2}ML_0^{-1/2})L_0^{1/2}u. \quad (4.4)$$
Cancel $L_0^{1/2}$ on both sides of (4.4), set $L_0^{1/2}u := v$, and introduce the compact operators $L_0^{-1/2}L_1L_0^{-1/2} =: T$, $L_0^{-1/2}ML_0^{-1/2} =: H$. Note that $I - T$ is invertible and H is self-adjoint. Define the compact operator S by $I + S = (I - T)^{-1}$, and set $(I - T)v =: w$. Then (4.4) is equivalent to

$$w = \lambda H(I + S)w. \quad (4.5)$$

The eigenvalues of (4.2) are thus the characteristic values of $A = H(I + S)$. By a result of Agmon [1], $L_0^{-1} \in C_p$ for $p > N/2$; hence $L_0^{-1/2} \in C_{2p}$, and consequently, by [7, Lemma XI.9.9, p. 1093] or [10, p. 92], $H \in C_p$. One further shows that condition (*) of Theorem 6 holds. Thus Theorem 6 applies. In order to prove Theorem 5(iii), one notes that the characteristic values of H coincide with the eigenvalues γ of the variational problem

$$L_0u = \gamma Mu \quad (4.6)$$

in \mathcal{H}; by the results of [24, 6], (4.6) has infinitely many positive eigenvalues if and only if $m > 0$ on a set of positive measure.

V. ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

In addition to the hypotheses made in Section IV, we assume $m \in C(\overline{\Omega})$ and $m \geq 0$, i.e., consider the semidefinite eigenvalue problem (1). By Theorem 5 the eigenvalues condense along the positive axis; they can thus be ordered by their real part. For $t > 0$ let $n(t)$ denote the number of eigenvalues λ of (1) with $\text{Re} \lambda \leq t$.

THEOREM 7 [16]. $n(t) \sim ct^{N/2}$ as $t \to + \infty$, where

$$c = \int_{\Omega} m(x)^{N/2} \mu_{\mathcal{L}_0}(x) \, dx \quad \text{and} \quad \mu_{\mathcal{L}_0}(x) - (2\pi)^{-N} \int_{\{\xi \in \mathbb{R}^N : \Sigma a_jk(x)\xi_j\xi_k < 1\}} \, d\xi.$$

Theorem 7 is again well known in the standard situation $m = 1$ (e.g. [2]). It says that the asymptotic distribution of eigenvalues is the same for the problem (4.2) and the variational problem (4.6). It is proved by a perturbation argument similar to that employed in the previous section: we apply the results of e.g. [8] to (4.6) together with the subsequent generalization of another abstract result of Keldyš (cf. [10, Theorem V.11.1]):
Theorem 8 [16]. Consider the situation of Theorem 6, and assume in addition that H is nonnegative. Suppose there exists a nondecreasing function ϕ on \mathbb{R}^+ with $\phi(t) \to +\infty$ as $t \to +\infty$, satisfying

$$\frac{\phi(s)}{\phi(t)} \leq \left(\frac{s}{t}\right)^\gamma$$

for all sufficiently large $t < s$ and some constant $0 < \gamma < p$, such that $\lim_{t \to +\infty} n(t, H)/\phi(t) = 1$. Then also

$$\lim_{t \to +\infty} \frac{n(t, A)}{n(t, H)} = 1.$$

Here $n(t, A)$ and $n(t, H)$ denote the distribution functions of the characteristic values of A and H, respectively [i.e., $n(t, A)$ = number of characteristic values λ of A with $\text{Re}\lambda < t$]. The condition (5.1) is trivially satisfied for the function $\phi(t) = ct^{\gamma}$ ($c > 0$), which usually determines the asymptotic behaviour. We remark that it is not clear whether Theorems 7 and 8 can be obtained from the known results by a limiting procedure, looking first at definite problems, since in the nonvariational case no monotonicity arguments for the eigenvalues are available (compare with [8, proof of Theorem 3.1]).

VI. OPEN PROBLEMS

(a) In order to prove the existence of the positive principal eigenvalue $\lambda_1(m)$ of (1), we have assumed in Section II that m is continuous and positive somewhere; hence m is positive on a set with nonempty interior. The existence of $\lambda_1(m)$ follows also (by Theorem 5) when m is only in $L^\infty(\Omega)$ and positive on a set of positive measure, but at the cost of some extra smoothness of the coefficient functions: $a_{jk} \in C^1(\overline{\Omega})$ (and only for suitable boundary operators \mathcal{B}). It seems nobody has been able so far to prove the existence of $\lambda_1(m)$ if only $a_{jk} \in C^0(\overline{\Omega})$ and $m \in L^\infty(\Omega)$ is positive on a set of positive measure.

(b) It would be of interest to obtain results analogous to Theorem 5 for more general boundary conditions (as they have been derived by Agmon [1] for $m = 1$).

(c) In [29, 18] the problem (1) is considered with $a_0 = 0$ and $\mathcal{B} = \partial/\partial\beta$; this case is of particular importance in some biomathematical applications.
(e.g. [9, 27, 28]). Here 0 is a principal eigenvalue of (1) (with eigenfunction \(u_1 = \mathbf{1} \)), and \((L, \mathcal{D}) \) no longer satisfies the maximum principle. If \(m \) changes sign in \(\Omega \), then (1) may have another (nontrivial) principal eigenvalue. To this problem, Theorem 6 is not applicable; another way has to be found to investigate the whole spectrum.

(d) The results of [8] on the asymptotic distribution of eigenvalues of the variational problems (4.6) hold for weight functions \(m \) that may change sign. We have not, however, been able to prove that the spectrum of (4.2) and (4.6) have the same asymptotic behavior also in case \(m \) is indefinite rather than semidefinite. The difficulty lies in establishing a result of Tauberian type due to Korenbljum [22] for an integral kernel that becomes negative somewhere in \(\mathbb{R}^+ \).

REFERENCES

Received 25 September 1985; revised 6 February 1986