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a  b  s  t  r  a  c  t

A  solution  to the  increasing  greenhouse  gas  emissions  is carbon  capture  and  storage.  At  the  Sleipner  field,
offshore  Norway,  carbon  dioxide  is separated  from  the  produced  gas  and  injected  into  the  Utsira  formation
at  approximately  1000  m  depth.  The  Utsira  formation  is a high  porosity  saline  aquifer  that  is  200–300  m
thick  in  the  injection  area. In 1994,  two  years  before  the  injection  started,  a seismic  survey  was  acquired.
The  survey  has  been  followed  up  by several  seismic  surveys  acquired  to  monitor  the  migration  of  the
injected  gas.  The  full  waveform  inversion  (FWI)  method  is a non-linear  inverse  method  for  estimating
subsurface  elastic  parameters.  Time-lapse  FWI  has recently  been  suggested  as  a  monitoring  tool  for
resolving  time-lapse  changes  directly  in  the  elastic  parameter  models.  This  paper  presents  an  application
of a three  dimensional  implementation  of isotropic  elastic  time-lapse  FWI  applied  on  time-lapse  field
data from  the  Sleipner  area. The  baseline  dataset  is the  1994  dataset,  whereas  the  monitor  dataset  is  the
survey  acquired  in  2006  after  ten years  of  injection.  Time-lapse  FWI  is used  to  estimate  separate  elastic
parameter  models  for both  the  baseline  and  the  monitor  datasets.  The  results  show  that  FWI  is able  to

estimate  detailed  elastic  parameter  models  that  produce  synthetic  data  that  match  the  field  data.  The
inverted  models  are  used  in  a pre-stack  depth  migration  method  to  yield  detailed  seismic  images  of the
Sleipner  before  and  after  the injection  of the  gas. The  gas  cloud  after  ten years  of  injection  is clearly  visible
on  the monitor  seismic  images.  The  baseline  and  monitor  seismic  images  show  events  and  discontinuities
that  can  explain  the  migration  pathways  of the  injected  gas  through  the  Utsira  formation.

©  2015  The  Authors.  Published  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
. Introduction

Carbon capture and storage (CCS) has been proposed as one of
he solutions for lowering the greenhouse gas emissions to the
tmosphere. The idea is to capture the greenhouse gases before
mission and inject them into subsurface geological formations for
afe storage into the future. Large-scale sites have been demon-
trating the CCS technology for nearly two decades. At the Sleipner
eld, offshore Norway, carbon dioxide (CO2) has been stripped off
he produced natural gas and injected into the Utsira formation
Furre and Eiken, 2014). At the Snøhvit field in the Barents sea, CO2
as been injected into the subsurface since 2008 (Hansen et al.,
013). At In-Salah in Algeria, CO2 has been injected onshore since

004 (Ringrose et al., 2013).

Time-lapse seismic monitoring has emerged as an effective tool
or monitoring hydrocarbon reservoirs during production (Landrø
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et al., 1999; Lumley, 2001). Recently, this method has been adopted
for monitoring purposes at CO2 storage sites (Furre and Eiken,
2014). Conventional methods for quantifying time-lapse seismic
effects in seismic data involve pre-stack time-migrated data cubes
in the migrated image domain (Greaves and Fulp, 1987; Landrø
et al., 1999). In cases where the time-lapse changes induce strong
changes in the rock properties, the linear assumption between the
baseline and monitor model in these methods is violated. In addi-
tion, the migrated data cubes yield images in the time domain,
which requires additional time-to-depth conversion. Therefore,
more robust time-lapse analysis techniques are required to give
reliable time-lapse images.

The full waveform inversion (FWI) method is a non-linear
inverse method for estimating subsurface elastic parameters
(Tarantola, 1984; Mora, 1987). FWI  is formulated as an iterative
optimization problem that seeks to minimize the misfit between

field data and synthetic data (Tarantola, 1984; Mora, 1987; Fichtner
et al., 2006). The method is, in general, computer intensive since
synthetic data must be computed in each iteration of the optimiza-
tion method. In addition, finding the model update is at least as

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ostly as generating the synthetic data. Therefore, the first applica-
ions of the method were limited to acoustic wave theory and two
imensional numerical domains (e.g. Pratt, 1999; Dessa and Pascal,
003; Chironi et al., 2006). As the available computer resources

ncreased, the FWI  framework was extended to involve elastic wave
heory (Shipp and Singh, 2002; Sears et al., 2008, 2010). Elastic
ave theory is favorable in FWI  since it produces synthetic data that

nclude more accurate physics that in the end yield synthetic data
hat is closer to the field data. The computational effort, however,
s higher than for acoustic theory due to a more complicated equa-
ion to solve. To perform FWI  on field data using two  dimensional
omputational domains, the field data must be scaled to fit into the
ramework (Pratt, 1999; Ravaut et al., 2004). It turns out that this
caling may  yield artifacts in the inverted models (Auer et al., 2013).
herefore, three-dimensional numerical domains are preferable.
owever, performing FWI  in three dimensions has until recently
een impossible in practice due to the required run times for the
umerical methods used to generate the synthetic data. Sirgue et al.
2008) and Vigh and Starr (2008) demonstrated three dimensional
mplementations of FWI  using both synthetic and field data. Their

ork has been followed up by several other studies (Sirgue et al.,
009; Plessix, 2009; Warner et al., 2013; Butzer et al., 2013; Vigh
t al., 2014). In global seismology, three dimensional implementa-
ions have been used to create images of the crust of the Earth (Tape
t al., 2010; Fichtner et al., 2010, 2013).

Different approaches for performing time-lapse FWI  (TLFWI)
xist in the literature (Watanabe et al., 2004; Zheng et al., 2011;
aknes and Arntsen, 2014a). Compared to the conventional meth-
ds mentioned above, TLFWI is able to resolve time-lapse changes
irectly in the parameter models, in addition to yield results in
ases where the linearity assumption is violated. Watanabe et al.
2004) used FWI  on synthetic time-lapse cross well data to resolve
ime-lapse changes in a small area. Zheng et al. (2011) investigated
ifferent strategies for performing FWI  on synthetic ocean-bottom-
able (OBC) seismic time-lapse data. Queißer and Singh (2013)
erformed two-dimensional inversion of time-lapse data from the
leipner area to investigate the migration of the injected CO2 gas.
orisov and Singh (2013) applied 3D isotropic elastic TLFWI on syn-
hetic data using the grid injection method. Raknes and Arntsen
2014a) used time-lapse data from a blow-out well in the North
ea to investigate the migration of the leaking gas into subsurface
and layers using TLFWI.

In this study, an implementation of 3D isotropic elastic TLFWI
s applied on short-offset seismic time-lapse field data from the
leipner area. The baseline dataset is inverted to obtain an elastic
aseline model, which is used as initial model in a target-oriented
WI  of the monitor dataset. The synthetic datasets generated using
he inverted elastic models reproduce the time-lapse field datasets.
he inverted baseline and monitor models are used as input in a
re-stack depth migration method to form novel and detailed seis-
ic  images of the gas cloud at the Sleipner area. The depth migrated

eismic images show that the injected gas might have migrated
pwards from the injection point in the bottom part of the Utsira
ormation through a fault.

This paper is organized as follows: In Section 2 the theory behind
LFWI is briefly reviewed. In Section 3 the field datasets used in the
nversion are described. The results for TLFWI is given in Section 4

hereas the results for the pre-stack depth migration method is
iven in Section 5. The results are discussed in Section 6 and the
onclusion is given in Section 7.
. Time-lapse full waveform inversion

The theory that forms the basis for FWI  has been derived many
imes using different formulations. Here, a brief summary of the
enhouse Gas Control 42 (2015) 26–45 27

theory that is required to understand the inversion workflow is
given. The reader is referred to Fichtner (2011) for a complete
introduction to the method.

FWI  is a classical non-linear inverse problem (Mora, 1987). The
goal of the method is to estimate a synthetic model that can be used
to compute synthetic data that match field data. FWI  is founded
on the assumption that elastic waves that propagate in a medium
are approximated using a numerical solution of the elastic wave
equation. The numerical solution of the wave equation accurately
accounts for the complete physics of seismic waves propagating
through the medium, and does not suffer from the restriction of,
for instance, ray theory. The waveform misfit between the synthetic
and the field data is therefore a result from undiscovered features
in the synthetic model used in the numerical solution, and not from
approximation errors, and can thus be used to estimate an accurate
synthetic model of the medium.

In this work, a staggered-grid finite difference method is used to
solve the elastic wave equation in an isotropic elastic 3D medium
parameterized by the density (�), the P-wave velocity (vp) and
the S-wave velocity (vs) (Virieux, 1986; Holberg, 1987; Aki and
Richards, 2002). The perfectly matched layer method is used to
simulate a non-reflecting unbounded half-space (Berenger, 1994;
Zhen et al., 2009), and the free surface is implemented by modi-
fying the upper grid cells in the parameter models as described by
Mittet (2002).

A normalized version of the least-squares norm is used to mea-
sure the misfit between the synthetic and the field data (Raknes and
Arntsen, 2014a). The misfit is minimized using the iterative L-BFGS
quasi-Newton optimization method (Nocedal and Wright, 2006),
where the adjoint state method is used for computing the model
gradients used to update the model in the next iteration (Tarantola,
1984; Mora, 1987; Pratt, 1999).

Inverting for three elastic parameters using FWI  is challeng-
ing, particularly when working with streamer data (Raknes and
Arntsen, 2014b). Therefore, FWI  is used to invert for vp whereas
� and vs are updated using empirical relationships. To reduce the
computational cost for performing 3D elastic FWI, the shot sub sam-
pling method is used (Ha and Shin, 2013). The shots and the corre-
sponding receiver traces are divided into four equally sized groups.
Data from one group is used in each iteration of the minimization
of the misfit. To reduce the computational cost for performing a
single shot modeling, the full model is split into local models each
which only includes a single shot and the corresponding receivers.

The work flow for TLFWI can be divided into two  steps: the
baseline and the monitor model estimations. The first step consists
of estimating the baseline model using the baseline dataset. The
inverted baseline model is used as initial model for the inversion of
the monitor dataset in the second step. To reduce the possibilities of
time-lapse artifacts due to differences in the datasets not related to
changes in the subsurface, a target-oriented inversion is performed
for the monitor dataset, such that updates in a specific area con-
taining the reservoir and its surroundings are allowed (Ayeni and
Biondi, 2010; Zhang and Huang, 2013; Raknes and Arntsen, 2014a).
At the end, the time-lapse anomalies are resolved by subtracting
the two  inverted models. A schematic overview of the time-lapse
strategy is given in Fig. 1.

3. The Sleipner field datasets

3.1. The Sleipner area
The Sleipner area in the North Sea west of Norway consists of
the Sleipner Vest and Sleipner Øst field, in addition to some smaller
fields (Fig. 2). The gas produced from the Sleipner Vest field con-
tains about 9% CO2 (Furre and Eiken, 2014). Due  to environmental
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ig. 1. A schematic overview of the inversion work flow for TLFWI. m0 is the initial
odel for the baseline inversion, dbase is the baseline dataset, mn is the inverted

aseline model, dmon is the monitor dataset, and mk is the inverted monitor model.

nd economical reasons the CO2 is stripped away from the gas at
he Sleipner Øst facility and injected into the Utsira formation at
pproximately 1000 m depth. The injection of the gas started in
996 and up to 2010 about 12 million tons of CO2 were injected

nto the formation (Furre and Eiken, 2014).
The Utsira formation consists of high porosity sandstones that

n total are 200–300 m thick in the Sleipner area. The overburden is
pproximately 700–800 m and consists primarily of clay-rich sedi-
ents (Chadwick et al., 2004). The reservoir properties of the Utsira

and are good with a porosity of 35–40% and permeability of 1–8
arcys (Eiken et al., 2000; Chadwick et al., 2004). With the assumed

eservoir properties in the Utsira formation, the injected CO2 is near
he critical point (Eiken et al., 2000). The gas is injected at a higher
ressure and temperature than the surrounding formation, and

hen the CO2 gets in contact with the formation it gradually cools
own and the density increases to approximately 700 kg/m3 (Furre
nd Eiken, 2014). This is below the brine density of approximately
030 kg/m3. The consequence is that when the brine is substituted

ig. 2. A map  of the Sleipner area in the North Sea west of Norway. The Sleipner
est field is a condensate field, and the Sleipner Øst field is a gas field. The other
reas on the map  are smaller fields. CO2 is stripped of the gas and injected at the
leipner Øst facility. The gray shaded rectangle is the area where the dataset used in
his  study was  acquired, and it covers the underground formations where the CO2

s injected.

ap  courtesy of the Norwegian Petroleum Directorate.
eenhouse Gas Control 42 (2015) 26–45

by the highly compressible CO2, the P-wave velocities in the rock
are reduced. For moderate saturations the P-wave velocities may
be reduced by as much as 30% (Arts et al., 2008). The S-wave veloci-
ties are expected to change only with a few percent (Carcione et al.,
2006). Hence, the seismic signal from the injected gas should be
clearly visible in the seismic data.

3.2. Acquisition and preprocessing

To monitor the migration of the gas from the injection point into
the Utsira formation, several seismic surveys have been acquired
over the area. A pre-injection survey was  carried out in 1994, and
post-injection surveys were performed in 1999, 2001, 2002, 2004,
2006, 2008, 2010 and 2012 (Furre and Eiken, 2014; Furre et al.,
2015). In this study the 1994 dataset is used as the baseline dataset,
and the 2006 dataset as the monitor dataset. In this time period
approximately 8.4 million tonnes of CO2 were injected into the
subsurface (Arts et al., 2008).

The baseline dataset was acquired using five receiver cables
towed at a depth of 8 m.  The cable length was 3000 m and the
cross line separation between each cable was 100 m.  The source was
two 3400 in.3 air gun arrays towed at 6 m depth. The shot interval
was 18.75 m and performed with flip-flop shooting. The recording
length for each shot was  5.5 s. During the acquisition of the monitor
dataset, approximately the same sail lines were used, in addition to
the same cable length and cable separation. The number of cables
was eight, and the source was  two  3660 in.3 air gun arrays towed at
6 m depth and fired in flip-flop mode. The shot interval was  equal
to the interval in the 1994 dataset. The recording length for each
shot was  6.0 s.

Before the datasets were released, the contractor applied a
standard preprocessing sequence to both datasets. The sequence
includes the following steps:

1 Restricted maximum offset to 1700 m,
2 Reduced the recording length to 2.3 s,
3 Applied a signature deconvolution and swell noise filter,
4 Applied a low-cut filter at 6.0 Hz,
5 Sampled the time-step to 2.0 ms,
6 Gained the data using a t2 scaling factor,
7 Cross-equalization to match the two  datasets.

To reduce the computational cost of performing elastic TLFWI,
both datasets are decimated. An inversion area, which is smaller
than the full acquisition area, is chosen such that it covers the area
where the gas was injected. Inside this area, the baseline dataset
consists of 852 shots and 570,840 data traces, whereas the monitor
dataset consists of 1180 shots and 1,274,400 data traces. The shots
in the 1994 dataset are spread over eight sail lines, and the shots in
the 2006 dataset are spread over six sail lines (Fig. 3). Unfortunately,
there is a gap in the sail lines for the eastern part of the monitor
dataset (Fig. 3b). The consequence of this gap, in addition to the dif-
ferent number of receiver cables used in both surveys, is that the
data fold is different between the two  datasets (Fig. 4). The average
data fold for the baseline dataset is 73.8 and for the monitor dataset
84.6. Since the data fold is an indication on how many traces are
summed together to form the model gradient, the irregular distri-
bution of the fold between the two  datasets might thus contribute
to add both acquisition imprints and acquisition differences on the
FWI gradient.
4. Inversion of the field datasets

The inversion work flow that is used for the time-lapse field
datasets from Sleipner consists of several steps that in the end
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ig. 3. Overview of the source and receiver positions used in the inversion. The blu
a)  1994 dataset and (b) 2006 dataset. The coordinate system in the plots is used a
his  figure legend, the reader is referred to the web  version of this article.)

ields high resolution elastic parameter models to be used in a
epth migration method. The first step is a synthetic example
here the implementation of TLFWI is tested with ideal assump-

ions. This is followed by steps that include regularization of the
eld datasets into the inversion framework, source wavelet esti-
ation, and inversion of the time-lapse datasets. All steps are

escribed in details in the following.

.1. Synthetic example

Interpretation of the injected gas at Sleipner shows that the gas
loud is separated by small shale layers with a thickness of a few
eters (Furre and Eiken, 2014). It is not obvious that the TLFWI
ethod is capable of resolving thin layers in the elastic models.

 synthetic model inspired by the geology in the Sleipner area is
sed to investigate the behavior of the TLFWI method. The syn-
hetic model is built using parts from the SEG/EAGE Overthrust

odel and information from a well log in the area. The top of the
odel consists of smoothly varying structures (Fig. 5). A channel
ystem is included at approximately 500 m depth. The bottom part
f the model consists of horizontal layers with varying sizes. The
arget zone for the injection of the gas is the low velocity layer at
pproximately 1000 m depth.

Fig. 4. Fold map  of (a) 1994 dat
 are source positions, and the gray shaded area is the position for all the receivers.
ence system in the plots to follow. (For interpretation of the references to color in

Two  monitor models are used to investigate the resolution of
the inversion method. In the first model, the injected gas consists
of a single layer that is 75 m high and has a horizontal extent of
3250 m × 1375 m (Fig. 6). In the second model, the injected gas is
separated in three layers (Fig. 7). The vertical size of each layer is
12.5 m and the vertical distance between each layer is 12.5 m.  As
the grid sampling is 12.5 m on all axes in the model, the vertical size
of the gas layers is as small as possible in the second model. The hor-
izontal extent of the three layers are different. The injected gas is
simulated by reducing vp with 0–300 m/s  and � with 0–300 kg/m3

in the areas where the gas is positioned. Since the vs model at Sleip-
ner is expected not to be significantly affected by the gas saturation,
it is assumed constant between the baseline and monitor models.

To mimic  the field datasets the following parameters for the syn-
thetic datasets are used. For the baseline dataset the survey consists
of 632 shots spread over eight sail lines. The shot interval in each
sail line is 50 m,  and the cross line distance between each sail line
is 250 m.  Five receiver cables, each with a length of 1700 m,  are
towed behind the source. Each cable consists of 152 receivers with

a spacing of 12.5 m.  The cross line distance between each cable is
100 m.  The receiver cables and the source are towed at a depth of
12.5 m.  The parameters for the monitor dataset are the same as for
the baseline dataset, but eight receiver cables are used instead of

aset and (b) 2006 dataset.
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Fig. 5. The true baseline model for the synthetic sensitivity analysis: (a) vertical slice at y = 1500 m,  (b) vertical slice at x = 4000 m, and (c) horizontal slice at z = 500 m.
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ig. 6. The gas cloud for the first example in the synthetic sensitivity analysis: (a) v

ve. To simulate the difference in acquisition geometries between
he field baseline and monitor datasets, the sail lines for the mon-
tor survey are shifted by 75 m in the cross line direction. With
his setup the shots are spread over an area of 4000 m × 2000 m,
nd covers the injected gas. The source wavelet is a Ricker wavelet
ith a center frequency of 7.0 Hz, and is equal in the baseline and
onitor datasets.
The initial model for the baseline inversion (Fig. 8) is made by

pplying a triangular smoothing operator on the true models. The
ource wavelet is assumed known in the inversion, so that the same
avelet as in the generation of the true data is used in the inversion.

he same empirical relationships used to generate the true � and
s model are used in the inversion to update the parameters.

The result for the baseline inversion (Fig. 9) shows that the inver-
ion is able to explain the horizontal layers in the model. The sharp
nterfaces are smeared out due to the frequencies used in inversion,

hich yield wavelengths of the same size as the layer thicknesses.
he channel system is sharpened by the inversion. The target zone is
ell resolved, but the magnitude of the elastic parameters is incor-
ect in the layer due to the smearing effect. At depth the model is
ardly updated, which is a consequence of the relative short offsets

n the dataset. Footprints of the acquisition geometry are clearly
isible in the inverted model. The reflections from the horizontal

ig. 7. The gas cloud for the second example in the synthetic sensitivity analysis: (a) ve
 = 1000.0 m.
 slice at y = 1500 m,  (b) vertical slice at x = 4000 m, (c) horizontal slice at z = 987.5 m.

layers are clearly visible in the true shot gather (Fig. 9d). Since the
initial model is smooth, the reflections are not in the shot gather
from the initial model (Fig. 9e). The inverted shot gather (Fig. 9f)
show that the inversion has introduced the reflections, and the data
fit between the true and the inverted shot gathers is considered
good.

A comparison of data traces from the two  true monitor datasets
is given in Fig. 10. The major differences between the traces are in
the parts related to the reflection from the gas clouds. For the three
layers model, the reflections have smaller amplitudes and oscillate
faster than for the one layer model. The differences are increasing as
the offset is increased (Fig. 10b). At large offsets the traces are phase
shifted. The differences in the data are due to interbed multiples in
the three-layer model, as well as interference of the waves that is
reflected in the different gas layers.

The result for the inversion of the single layer model is given
in Fig. 11, whereas the result for the three layer model is given in
Fig. 12. In both examples the inverted time-lapse anomalies are
correctly positioned, but are smeared out and affected by the foot-

prints of the acquisition geometries. For the three layer model it is
difficult to distinguish the separation of the three layers, and the
middle layer is somewhat smeared into the two  other layers. The
magnitude of the inverted time-lapse anomalies is more or less

rtical slice at y = 1500 m, (b) vertical slice at x = 3500 m, and (c) horizontal slice at
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Fig. 8. The initial vp model for the synthetic sensitivity analysis: (a) vertical sl

orrect. Artifacts are visible above and below the time-lapse
nomalies. The artifacts are positive anomalies and are more promi-
ent for the three layer model compared to the one layer model.
ome edge effects from the regularization are visible. Even though
he position of the shots in the baseline and monitor datasets
s shifted with respect to each other, the inversion resolves the
nomalies without large artifacts.

The true (Fig. 12d) and inverted shot gathers (Fig. 12e) from
he three layer model show that the inversion is able to fit the data.

he residual shot gathers (Fig. 12f) show several events that are not
ell explained by the inversion. The “smiling events” following the
irect wave are due to coarse shot sampling that results in small

ig. 9. Results for the inversion of the synthetic baseline model. (a) vertical slice of vp at y
d)  shot gather from the true dataset, (e) shot gather from the initial dataset, and (f) shot 
y = 1500 m,  (b) vertical slice at x = 4000 m,  and (c) horizontal slice at z = 500 m.

oscillations in the sea bottom in the baseline model. In addition,
there are some remnants in the reflections from the gas layers. The
shot gathers for the one layer model (not included) show the same
behavior as the shot gathers for the three layer model.

The two synthetic examples show that elastic FWI  is capable of
resolving the time-lapse changes directly in the parameter models.
The synthetic inversions are performed under ideal assumptions,
such that the inversion results are somewhat the best possible out-
come from the method. The most important observation is that the

inverted time-lapse anomalies are smeared out due to the relative
low frequencies used in the inversion. In addition, it is important
to be aware of the time-lapse artifacts introduced by the inversion.

 = 1500 m,  (b) vertical slice of vp at x = 4000 m,  (c) horizontal slice of vp at z = 500 m,
gather from the inverted dataset.
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ig. 10. Trace comparisons of the synthetic datasets computed using the monitor m
n  Fig. 7. (a) The true data traces (solid line: single gas cloud, dotted line: three laye

.2. Data regularization

Data regularization of the field time-lapse datasets is a crucial
tep in TLFWI since FWI  is a data driven method, and errors made
t this point may  have great impact on the final results. The regu-
arization process consists of choosing the frequencies to be used in
he inversion, moving the data traces from the continuous grid to
he numerical grid, and lastly reverse the preprocessing sequence
pplied by the contractor to obtain field data as close to the raw
ata as possible.

The solution space for the FWI  problem consists of local minima
nd a global minimum (Fichtner, 2011). The goal for FWI  is conver-
ence to the global minimum, or more likely to the neighborhood
f the global minimum. Since the inverse problem is solved using a
ocal optimization method, it may  converge to a local minimum far
way from the global minimum. To prevent this from happening it
s important to use low frequencies in the inversion (Virieux and
perto, 2009), since at low scales the number of local minima is
reatly reduced. Based on this fact, Bunks et al. (1995) suggested
o perform sequential inversion runs starting at low scales and

radually increase the scales by introducing higher frequencies in
he data in the following inversion runs. Sirgue and Pratt (2004)
ntroduced a method to choose frequency bands to use with the
pproach introduced by Bunks et al. (1995). Using their method,

ig. 11. Inversion results for the one layer monitor model. (a) Vertical slice through the ti
t  x = 4000 m and (c) horizontal slice through the time-lapse vp model at z = 987.5 m.
ith a single gas cloud in Fig. 6 and the monitor model with a three layers gas cloud
 cloud), (b) trace differences.

the following three frequency bands are used in the inversion:
6.0–8.0 Hz, 6.0–11.0 Hz, and 6.0–15.0 Hz. The starting model for
each frequency band is the final model from the previous frequency
band.

The numerical grid used in the inversion is discrete and regular.
To move the receiver traces in both datasets from the continuous
and irregular real world grid, a simple nearest neighbor algorithm
is applied. For each receiver the distances to all four grid corners
in the horizontal plane are computed. The receiver is then moved,
without phase or amplitude corrections, to the closest grid corner.

The only preprocessing step that is reversible is the time gain
applied to both datasets. To reverse the gain, each trace is multi-
plied by t−2. Interpolation is used to reduce the time sampling to
1.0 ms,  which is the time sampling used in the modeling. The last
step is to add time delay to the data, such that the first arrivals
and the amplitude decay in the field datasets match the synthetic
counterpart.

4.3. Source wavelet estimation
To estimate the source wavelet, the near-offset traces from sev-
eral shots are stacked together and then everything but the direct
arrival is muted away. The resulting dataset is used as input to FWI,
where the source wavelet is inverted for. Since several frequency

me-lapse vp model at y = 1500 m, (b) vertical slice through the time-lapse vp model
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ig. 12. Inversion results for the three layer monitor model. (a) Vertical slice throug
t  x = 3500 m, (c) horizontal slice through the time-lapse vp model at z = 1000.0 m, (
nverted and the true monitor data. The dashed lines in the vp models show the con

ands are used in the inversion, a source wavelet is estimated for
ach frequency band.

The inverted source wavelets for both field datasets are given in
ig. 13. As the frequency band is increased the source wavelets are
harpened.

.4. Inversion results

Before the inversion is started the empirical relationships
etween vp, � and vs must be decided. The choice of empirical
elationships to couple the vp model to the vs and � models is not
traightforward since it is difficult to find a perfect match for all
ock types (Mavko et al., 2009). Based on the knowledge of the rock
ypes in the area, the well-known Gardner’s relationship (Gardner
t al., 1974), which is valid for many rock types, is used to link � to
p. This relationship is given as

 =
{

1000 if vp ≤ 1500,

310v0.25
p if vp > 1500.

(1)

he relationship between vs and vp is governed by the so-called

mud-rock” line (Castagna et al., 1985), given as

s = 0.862vp − 1172. (2)

n the above equations [�] = m/kg3 and [vp] = [vs] = m/s.
ime-lapse vp model at y = 1500 m,  (b) vertical slice through the time-lapse vp model
 true monitor data, (e) the inverted monitor data, and (f) the residual between the
ts put on the model update in the monitor inversion.

The inverted baseline model after the inversion of the three
frequency bands is shown in Figs. 14a and 15a. The initial model
was made using a conventional tomography method, and thus it
is a smooth model without clear structure details. Already using
the first frequency band, structure details starts to appear in the
inverted model. At this stage the high velocity layer at approxi-
mately 600 m depth is the most visible one, whereas shadows of
the deeper layers are visible. As the data frequencies are increased
in the inversion, more details show up, particular at the deepest
parts of the model. In the final inverted baseline model sev-
eral clear layers are visible. The most emphasized layers are at
approximately 600 m, 900 m and 1200 m depths. The results from
the baseline inversion are discussed in details by Raknes et al.
(2015).

The size of the gas cloud at Sleipner is, with some uncertainties,
known (Cavanagh and Haszeldine, 2014; Furre and Eiken, 2014).
This information is used to create the target-oriented model con-
straint for the monitor inversion. The boundaries for the constraint
are made wider than the gas cloud to allow the inversion to explain
potential developments of the gas cloud that are not already known.
In addition they are smoothed to avoid sharp edge effects dur-
ing the model updates. The total size of the model constraint is

375 m × 1975 m × 3500 m.

In the inverted monitor model (Figs. 14b and 15b) both low
and high velocity layers have been introduced in the model inside
the constraint area. In the cross line direction (Fig. 15b) four low
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Fig. 13. Estimated sources for the real example (top row: 1994 dataset, bottom row: 2006 dataset). (a) and (d) 6.0–8.0 Hz data set, (b) and (e) 6.0–11.0 Hz data set, (c) and
(f)  6.0–15.0 Hz data set.
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ig. 14. Vertical slice through vp at at x = 1400 m:  (a) inverted 1994 model, (b) invert
ut  on the model update for the monitor inversion.

elocity layers are visible. The low velocity layers are surrounded
bove and below by high velocity layers. In the in line direction
Fig. 14b) the same type of events are visible, but here the lay-
rs are not as clearly visible as in the cross line direction. The

esolved time-lapse anomalies are clearly visible in time-lapse
odels (Figs. 14c and 15c). In the southern part there is a veloc-

ty increase in the upper part of the constraint area, and a velocity
ecrease in the lower part. In the northern part it is opposite. Strong

ig. 15. Vertical slice through vp at y = 4000 m:  (a) inverted 1994 model, (b) inverted 2006
ut  on the model update for the monitor inversion.
6 model, and (c) time-lapse difference. The dotted dashed lines show the constraint

positive anomalies are visible on the west and east sides of the
constraint area.

Fig. 16a and b show shot gathers from a single cable from the
field baseline and monitor datasets, respectively. The figures show

the data as they are used in the inversion, that is, after filtering and
data regularization. It can be seen immediately that the baseline
field data are affected by noise and artifacts from the data acquisi-
tion. Vertical stripes are visible which can be due to swell noise and

 model, and (c) time-lapse difference. The dotted dashed lines show the constraint
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Fig. 16. Shot recordings from a single cable in the baseline and monitor datasets: (a) the baseline field data, (b) the monitor field data, (c) baseline synthetic data from the
initial  baseline model, (d) synthetic monitor data from the initial monitor model, (e) baseline synthetic data from the inverted baseline model, and (f) monitor synthetic data
f ith arr

f
t
t
v

d

rom  the inverted baseline model. The reflections from the gas cloud are marked w

eathering of the streamers. Several reflected events are visible, but
hey are distorted by linear events that result in interference pat-

erns in the reflections. The reflections from the gas cloud are clearly
isible in the monitor data (marked with arrows in the figure).

Shot gathers from the initial models are given in Fig. 16c and
, whereas shot gathers from the final inverted models are given
ows in the monitor plots.

in Fig. 16e and f. The inversion is able to introduce reflections and
position them correctly in depth. The refracted wave is modeled

correctly, though with amplitude differences. For the monitor data,
the reflections from the gas cloud are positioned correctly in depth.
The major differences between the synthetic shot gathers and the
field shot gathers are the presence of the linear events below the
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Fig. 18. Close-up seismic images of the area where the gas is injected for a vertical
slice through the depth migrated cube at x = 1400 m: (a) baseline, and (b) monitor.
ig. 17. Vertical slices through the depth migrated cube at x = 1400 m:  (a) baseline,
nd (b) monitor.

irect wave and the interference pattern. Despite these differences,
he data fit is better for the synthetic data computed with the
nverted models (Fig. 16e and f), than for the data computed with
he initial models (Fig. 16c and d).

. Pre-stack depth migration

The inverted baseline and monitor models are used as input
n a conventional one-way shot-profile imaging method (Etgen
t al., 2009) to create depth migrated seismic image cubes of the
leipner area. Two seismic image cubes are generated. In the first
igration the baseline dataset is migrated using the inverted base-

ine model (Figs. 14a and 15a). This baseline cube yields an image
f the area before the injection started. In the second migration
he monitor dataset is migrated using the inverted monitor model
Figs. 14b and 15b), to form the seismic monitor image cube after
en years of injection.

Fig. 17 shows vertical slices through the baseline and monitor
eismic image cubes. The two images are similar in the overbur-
en, with small differences that can be explained by differences in
he datasets. The interface at approximately 225 m depth includes
ome v-shaped events that can be related to a channel system at
hese depths (Raknes et al., 2015). A horizontal layer is visible at
pproximately 400 m depth. The velocities increase slightly in this
ayer in the velocity model compared to the overburden (Fig. 14a).
he layer at 600 m depth includes unfocused events. Thus the inver-
ion has not explained the velocity model well in this area. The top
f the Utsira formation is clearly visible at approximately 800 m
epth, followed by several layers at larger depths (Fig. 17a). In gen-

ral the baseline seismic image is focused (Fig. 17a). The injected
as is clearly visible in the monitor seismic image (Fig. 17b). The gas
s injected at approximately 1000 m depth, and from the seismic
mage it is clear that the gas has migrated into different layers as it
The arrows on the plots show areas where there are major differences between the
seismic images.

has ascended from the injection point. Due to the seismic response
the gas acts as a contrast fluid and thus emphasizes the structures
it is injected into. The extent of the gas is different in each of the
layers. The gas has evolved longer horizontally in the regions close
to the injection point, than in the regions closer to the top of the
Utsira formation.

Close-up seismic images of the Utsira formation and the area
where the gas is injected are given in Fig. 18. In the middle of
the images (approximately at y = 4100 m)  a slightly slanted verti-
cal event is visible in both the baseline (Fig. 18a) and the monitor
(Fig. 18b) images. In the monitor image the event is enhanced
compared with the baseline image. In addition, oscillating events
not apparent in the baseline image are visible from approximately
1000 m depth and up to approximately 800 m depth in the monitor
image.

In Fig. 19 horizontal slices through the top of the Utsira for-
mation are shown. Several events (marked with arrows in the
seismic images) are similar in the baseline and monitor images,
and thus to get comparable seismic images, the magnitude of the
black anomaly at approximately (x, y) = (900 m, 5100 m) is used as
clip value in each seismic image. These clip values are used for the
horizontal slices to be shown in the following. The seismic response
of the gas cloud is clearly visible in the monitor seismic image. The
major part of the gas is clustered together in the middle of the
image, and several black circular dots are visible around the gas
cloud. North and south of the gas cloud the same structure is visi-
ble in the two  seismic images. The velocity is decreased compared
to the surroundings in the areas where the gas is positioned.

In the horizontal slices at 881.25 m depth (Fig. 20) the gas cloud
is bigger than at the top region. The cloud is consisting of two
smaller clouds where the northernmost is the largest. In the south-
ern part of both images a large magnitude anomaly is visible. The

southern cloud follows the structure that is visible in the base-
line model. The northern cloud stops at the east–west structure
(at approximately y = 4000 m)  visible in the baseline model. The vp

model shows a decrease in velocities in the northeast region that
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ig. 19. Horizontal slices through the top region of the Utsira formation at z = 843.75
nd  (d) overlay of monitor seismic image and vp model.

orrelates with the monitor seismic event. The same is true for the
vent in the southwest part of the slice. An interesting feature in
he image is the circular black event positioned approximately in
he middle of the baseline seismic image (marked with an arrow in
he slices). The seismic response has increased considerably around
he point in the monitor seismic image compared to the baseline

eismic image. In general, the shape of the gas cloud is in agreement
ith the structure of the vp model.

The horizontal slices at 918.75 m depth (Fig. 21) show that
he gas has migrated approximately 3.0 km in the north-south
) baseline seismic image, (b) monitor seismic image, (c) inverted monitor vp model,

direction and 1.2 km in the west–east direction. By comparing the
baseline and monitor seismic images, it is clear that the gas has
migrated into a structure that is visible on the baseline seismic
image.

Fig. 22 shows horizontal slices in the bottom region of the Utsira
formation. The seismic response from the gas cloud is clearly visible

in the monitor image. By considering the overlay plot of the seismic
monitor image and the monitor velocity model, several correlations
are visible. The event in the northeast corresponds to a low velocity
zone, whereas the middle region is a mixture of both high and low
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ig. 20. Horizontal slices through the middle region of the Utsira formation at z = 8
odel, and (d) overlay of monitor seismic image and vp model.

elocity zones. The shape of the seismic events somewhat follows
he structures of the velocity models in this region.

To demonstrate the quality of the monitor migration model, the
onitor dataset is migrated using the inverted baseline model. The

esults of the migration is given in Fig. 23. By comparing these
esults with the already discussed results (Figs. 19–22) it is clear

hat the latter results include better focused events and in general

ore details. This is clearly visible in the deepest horizontal slices,
here the former horizontal slice (Fig. 23d) is severely smoothed

ompared to the latter counterpart (Fig. 22b). This can be explained
 m:  (a) baseline seismic image, (b) monitor seismic image, (c) inverted monitor vp

by the simple fact the gas has been taken into account in the monitor
migration model, and not in the baseline model.

The comparison of the common image point angle gathers
(Fig. 24) between the migration of the monitor dataset using
the baseline and the monitor model, show that for the monitor
model the angle gathers are flatter than for the baseline model

in the regions of the model constraint. This is an indication that
the kinematics for the P-wave reflections are better explained
in the monitor model than the baseline model. The small differ-
ences in the other areas are a consequence of differences in the
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ig. 21. Horizontal slices through the middle region of the Utsira formation at z = 9
odel, and (d) overlay of monitor seismic image and vp model.

atasets, and not the migration model since this is identical in these
reas.

. Discussion

The use of empirical relationships to update the parameters not

nverted for and its impact on the inversion results are question-
ble. Raknes and Arntsen (2014a) performed a synthetic time-lapse
ensitivity analysis using empirical relationships to update these
arameters. They concluded that if wrong empirical relationships
 m:  (a) baseline seismic image, (b) monitor seismic image, (c) inverted monitor vp

were used in the model updates, the resolution of the correspond-
ing inverted time-lapse anomaly decreased. However, even though
wrong empirical relationships were used to update both � and vs,
the inversion was  able to resolve the time-lapse anomaly. In the
preliminary work with the field datasets, � and vs were estimated
without success using FWI. The reasons for the failure are lack of S-

wave information in the data (since it is acquired in the water layer),
in addition to the fact that � is difficult to reconstruct using FWI
(Virieux and Operto, 2009; Raknes and Arntsen, 2014b). The idea
of using empirical relationships to couple the elastic parameters
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ig. 22. Horizontal slices through the bottom region of the Utsira formation at z = 9
odel, and (d) overlay of monitor seismic image and vp model.

ot inverted for is a way to circumvent the inversion problem
n cases where estimates for the three elastic parameters are

anted.
One can question the validity of the empirical relationships

sed in this study (Eqs. (1) and (2)). The major issue with empir-

cal relationships, in general, is that they are restricted to certain
ock types. In this case, the choice of relationships was  made on
nowledge of the rock types in the area and the validity of the cho-
en relationships (Gardner et al., 1974; Castagna et al., 1985). An
 m:  (a) baseline seismic image, (b) monitor seismic image, (c) inverted monitor vp

alternative to use pre-defined relationships is to estimate specific
relationships using well log information from the area. The qual-
ity and the amount of well log data are, however, not enough for
estimating reliable relationships. Another alternative is to use dif-
ferent relationships for different parts of the subsurface. This would

yield a challenge in how to discriminate the relationships to the
different regions of the model, particularly in the FWI  framework
where structures can be considerably shifted in space during the
inversion.
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Fig. 23. Horizontal slices through the seismic pre-stack depth migrated image cube for the monitor dataset using the baseline migration model at: (a) z = 843.75 m, (b)
z  = 881.25 m,  (c) z = 918.75 m,  and (d) z = 943.75 m.
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The FWI  problem is a non-linear and ill-posed problem. Thus,
 small change in the assumptions may  have a severe influence
n the results because the problem is solved using a local opti-
ization method. For TLFWI applications this is a major issue

ince the inversion of the baseline and monitor dataset may  lead

o convergence to models that in the end give artifacts or false
ime-lapse anomalies in the parameter models. One could use

 global optimization method in order to find the global solu-
ion. For the problem solved here it is impossible in practice,
due to the extreme number of forward modelings required
to arrive at the global solution. To circumvent this prob-
lem a target-oriented approach was used to update only
certain parts of the model (Ayeni and Biondi, 2010; Zhang
and Huang, 2013; Raknes and Arntsen, 2014a). It is impor-

tant to have in mind that putting constraints on the monitor
inversion can be problematic, since changes in other parts
of the model are not updated during the monitor inversion.
Furthermore, if the baseline model convergence is not good
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Fig. 24. Common image point angle gathers: (a) monitor dataset migrated using
baseline model and (b) monitor dataset using the monitor model. The arrows show
w

e
a
l
t
c
s
o
e

fl
n
u
c
i
u
w
i
l
2
q
d
d
t
fi
f
r
r
l

formation after CO injection is of the same magnitude as expected
here there are differences between the two  gathers.

nough, then the constraints may  yield time-lapse results that
re a result of bad baseline convergence and not true time-
apse changes. If, on the other hand, the position of the
ime-lapse area of interest is well-known, then using model
onstraints to focus the seismic energy and thus reduce the
olution space for the inverse problem is a good option to
btain satisfactory inversion results, as shown by the synthetic
xamples.

The regularization of the field datasets to fit into the FWI  work
ow is essential to obtain reliable inversion results. Here, a nearest
eighbor technique without amplitude or phase corrections was
sed for moving the receiver traces to a numerical grid point. This
ould potentially be problematic since FWI  is sensitive to changes
n both amplitude and phase. However, with the numerical grid
sed in the inversion, a receiver is moved a small fraction of the
avelengths in the data at the receiver locations. Due to coarse and

rregular trace sampling it is not clear that more accurate interpo-
ations schemes (Choi and Munson, 1998; Hindriks and Duijndam,
000; Özdemir et al., 2010) could improve the data. The most
uestionable factor is the preprocessing sequence applied to the
atasets before they were released. In an ideal setting the field
ata used in FWI  should be raw and unprocessed data. The result of
he preprocessing steps is that it can be problematic to match the
eld and synthetic data, and that important information is removed

rom the data. The consequence of the restriction of offsets and the

eduction in recording length is that wide-angle data are effectively
emoved from the dataset. Furthermore, the swell-noise and the
ow-cut frequency filters remove important signals from the data.
eenhouse Gas Control 42 (2015) 26–45

It is a well-known fact that long-offset data as well as low frequent
signals are important to resolve the subsurface, in addition to pre-
venting the inversion from running into a local minimum (Virieux
and Operto, 2009).

The inverted elastic models (Figs. 11, 12, 14 and 15) show that
TLFWI is capable of resolving time-lapse anomalies in the elastic
parameters. By a comparison of the synthetic inverted gas clouds
(Figs. 11 and 12) and the field data gas cloud (Figs. 14c and 15c) it
becomes clear that the inverted time-lapse models are influenced
by artifacts. The artifacts in the synthetic and field time-lapse mod-
els are visible as positive anomalies above, in between, and below
the time-lapse anomalies. They are more prominent in the field
data example, which is expected due to the uncertainties in the
data. The synthetic and field data artifacts are, however, to some
extent similar. The high velocity layers in between the low velocity
layers in the field models can be interpreted as side lobes to the
inversion due to the frequency content of the field data used in the
inversion. The same type of artifacts are confirmed by other studies
(Zhang and Huang, 2013; Raknes and Arntsen, 2014a; Asnaashari
et al., 2015). Since there are no physical explanations for a strong
P-wave velocity increase due to CO2 injection, the strong positive
time-lapse anomalies on the east and west sides of the model con-
straint (Fig. 15c) can be explained by the difference in acquisition
geometries between the baseline and monitor surveys. The mon-
itor dataset covers a larger area than the baseline dataset (Fig. 3)
and has a different data fold (Fig. 4). The data quality of the mon-
itor data is, in addition, better due to better equipments used in
the acquisition of the monitor data. Since the baseline dataset did
not resolve the areas at the boundaries of the constraint satisfac-
torily, the monitor inversion is trying to explain the model in the
edge areas. The consequence is that these events show up as false
time-lapse anomalies in the models. Despite these shortcomings,
the synthetic and the field example demonstrate the potential of
using TLFWI to resolve time-lapse changes directly in the elastic
parameters.

There is not a perfect match between the synthetic and the
field dataset (Fig. 16). The inversion is able to reproduce the reflec-
tions from the sediments and the gas cloud, but the linear events
and interference patterns below the direct arrival are not well
explained. These events can be explained by converted wave energy
due to layers close to the sea bottom. To be more precise, if there
is a decrease with a sufficient contrast in vp and vs in a layer
close to the sea bottom, then the downgoing P-wave is reflected
back as converted P-wave when recorded by the receivers. Such a
converted wave gives the same type of events visible in the field
datasets (Fig. 16a and b). For the field data, several layers are vis-
ible close to the sea bottom (Fig. 17). Moreover, the inversion has
introduced layers close to the sea bottom with a decrease in vp

(Figs. 14 and 15). The contrasts in vp and thus vs are, however,
not high enough to generate a converted wave that yield the same
type of events in the synthetic data as in the field data. The rea-
sons are that the sea bottom, in general, is difficult to estimate
correctly with FWI, and that the Castagna relation (Eq. (2)) has been
used in the whole model. For the uppermost sediments, where the
vp/vs ratio can be as high as 5.0, the relation is not valid. However,
the inverted monitor model produces flatter common image point
angle gathers than the baseline model (Fig. 24). In addition, there
are correlations between the depth migrated images and the elastic
monitor model (Figs. 19–22). The estimated velocities in the base-
line and monitor models are within the interval that is expected
(Eiken et al., 2000; Arts et al., 2004; Carcione et al., 2006). Fur-
thermore, the decrease in the estimated vp velocities in the Utsira
2
(Arts et al., 2008). The depth migrated seismic images using the
inverted monitor model are well focused, whereas the correspond-
ing seismic images created using the inverted baseline model lack
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ocusing. Hence, the inverted elastic monitor model is closer to the
rue solution after gas injection than the inverted elastic baseline

odel.
From the results there are no doubts that the FWI  produces an

lastic model that is more detailed than a conventional tomography
odel. The details in the corresponding seismic depth migrated

mages (Figs. 19–22) are a result of the high frequencies used in
he migration, in addition to the details in the migration velocity

odel. The monitor migration using the baseline model (Fig. 23)
emonstrates that high frequencies and a correct overburden are
ot sufficient for producing detailed seismic images of the gas
loud. A correct migration model inside the gas cloud is crucial to
chieve high resolution seismic images. This fact is also demon-
trated by Warner et al. (2013) that used FWI  to estimate an
nisotropic acoustic migration model at the Tommeliten field that
ielded a high resolution seismic image of an underburden gas
loud.

It is worth mentioning that the results presented here have
ot been used for any quantitative interpretation to estimate for

nstance CO2 saturation in the Utsira formation. Several such stud-
es exist in the literature, see for instance Chadwick et al. (2009),
hadwick et al. (2010) and Ghosh et al. (2015).

Queißer and Singh (2013) performed 2D elastic FWI  using a
ingle line from the Sleipner area. Compared to the work flow pre-
ented here, they used 2D modeling and inversion, a finer numerical
rid and 38Hz as the maximum dominant frequency. Their inverted
aseline velocity model (Queißer and Singh, 2013, Fig. 6) includes
learly resolved layers at 300 m and 600 m depth, and less clearly
esolved layers at 1000 m and 1100–1200 m depths. Their veloc-
ty model is in general patchy. The vertical slices through the 3D
aseline velocity model (Figs. 14a and 15a) show clearly resolved

ayers down to approximately 1200 m depth. The layers at 300 m
nd 600 m depths correlates with the layers in the 2D model. From
pproximately 800 m depth, the 2D and 3D models do not corre-
ate well, mainly due to the patchiness of the 2D model. In the
nverted 2D time-lapse model (Queißer and Singh, 2013, Fig. 10)
everal gas layers are visible in the Utsira formation. These lay-
rs are mainly effected by a reduction in vp, but some increases
n vp are also visible. The 3D time-lapse model (Figs. 14c and 15c)
as also several layers with reduction in vp. The resolution of the

ayers in the 3D model is not as in the 2D model mainly due to
he higher frequencies used to estimate the latter model. It is dif-
cult to fairly compare the 2D and 3D time-lapse inversion results
ecause of the differences in the way the inversions have been
erformed. However, in general, it is expected that the 3D inver-
ion results are more reliable than the 2D inversion results as
he physics of the elastic wave propagation is better accounted
or in a full 3D inversion framework compared to a 2D frame-
ork.

The gas cloud at Sleipner has been interpreted several times
sing conventional time migrated seismic cubes (Eiken et al.,
000; Arts et al., 2004, 2008; Chadwick et al., 2010). Even though
he conventional interpretations of the gas cloud are made using
ifferent methods, it is interesting to compare the conventional
esults with the depth migrated results (Figs. 19–22). The horizon-
al extent of the gas cloud has been interpreted to be approximately
.6 km × 1.0 km (Chadwick et al., 2009). By interpreting the seis-
ic  images the horizontal extent is found to be approximately

.2 km × 1.0 km.  The conventional interpretations show that the
as cloud has migrated following a north-south trend (Bickle et al.,
007; Chadwick et al., 2010, Fig. 1). The depth-migrated images
Figs. 19–22) show the same trend. Another well-known feature in

he conventional interpretation is the so-called fingering of the gas
Chadwick et al., 2009). The fingering feature is visible in the very
op of the gas cloud (not shown here) and to some extent in the
epth migrated image in Fig. 21.
enhouse Gas Control 42 (2015) 26–45 43

The pathways that the gas has migrated from the injection point
and up to the top of the Utsira have been discussed in the literature
(e.g. Eiken et al., 2000; Arts et al., 2008; Cavanagh and Haszeldine,
2014; Furre and Eiken, 2014). The vertical slices (Figs. 17 and 18)
confirm that the injected gas has migrated upwards from the injec-
tion point and to the top of the Utsira formation. The vertical events
penetrating the gas cloud (Fig. 18b) may  be interpreted as so-
called gas chimneys, that are vertical gas-filled “pipelines” through
the formation. Arntsen et al. (2007) did a synthetic study of gas
chimneys and their results are to some extent comparable with
the events visible in the monitor images. However, the reflector at
approximately 925 m depth in the baseline image (Fig. 18a) shows
a vertical discontinuity at approximately y = 4100 m, which might
indicate that this is a fault. Moreover, a closer examination of the
horizontal slice at 918.75 m depth (Fig. 21), an east–west trend-
ing event is clearly visible (middle arrow in Fig. 21) in the monitor
image, and to some extent in the baseline image. It is worth noting
that the horizontal position of this event correlates with the ver-
tical event (at x = 1400 m)  in Fig. 18b. The same is the case for the
horizontal slice at 943.75 m depth (Fig. 22). In the baseline seismic
image at 881.25 m depth (Fig. 20), the seismic response is severely
changed in the areas around the circular event (marked with an
arrow) between the baseline and monitor images. In addition, an
east–west trending event is going from the same position. This
event is also, to some extent, visible on the baseline image.

Hence, the vertical event that penetrates the gas cloud may be
interpreted as a fault in the Utsira formation. When the gas was
injected, the fault might have acted as a migration path for the
gas as it ascended through the formation. The fault can be inter-
preted to be, at least, 500–800 m long from the horizontal slices.
Furthermore, the seismic images show that the gas has migrated
horizontally and been trapped by stratigraphic traps in the struc-
tures.

7. Conclusion

This paper has demonstrated an application of a three dimen-
sional isotropic elastic TLFWI implementation using time-lapse
seismic data from the Sleipner area, offshore Norway. The results
show that TLFWI is capable of creating detailed elastic parame-
ter models that reproduces the time-lapse field datasets. These
models are used in a pre-stack depth migration method to create
seismic images of the area before and after injection of CO2. The
seismic images show events and discontinuities that can explain
the migration pathways of the injected gas in the Utsira Formation.
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