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a b s t r a c t

Boundary conditions of lattice Boltzmannmethod to simulate flows embeddedwith a solid
object is proposed. The closest nodes adjacent to the boundary in the fluid domain are
used as boundary nodes of the flow domain. The fluid velocity of the boundary node is
obtained by linear interpolation between the velocities of the solid object and the second
fluid node further away. Then, distribution functions originating from the solid domain
at the boundary nodes are modified using known distribution functions and correctors
to satisfy the momentum. This boundary condition is an extended form of a method
proposed by Hou et al. [C.F. Hou, C. Chang, C.A. Lin, Consistent boundary conditions for
2D and 3D Lattice Boltzmann simulations (submitted for publication)] for plane wall and
regular geometry. The technique is examined by simulating decaying vortex, transient flow
induced by an abruptly rotating ring and flow over an asymmetrically placed cylinder.
Numerical simulations indicate that this method is second order accurate, and all the
numerical results are compatible with the benchmark solutions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Lattice Boltzmann method (LBM) [1–3] has been successfully applied to various hydrodynamic problems and the
major advantages of the LBM are explicit, easy to implement, and natural to parallelize. However, the capability of the
lattice Boltzmannmethod tomodel complex geometrymay not be trivial due to the Cartesian grid adopted and the complex
boundary implementation along the curved boundary. The difficulties encountered are two folds. Firstly the representation
of the complex geometry, since the Cartesian grid does not conform with the curved boundary. Secondly the correct
implementation of the boundary conditions, where incorrect distribution functions originated from the solid nodes external
to the flow domain are encountered during the streaming operation.
Various methodologies have been put forward to tackle the LBM simulation of complex geometry flows. For example,

Chen et al. [4] extended the ‘‘extrapolation scheme’’ to curved boundary, where the boundary is represented by the lattice
nodes closest to the curved surface using castellated approach. The adjacent nodeswhose distribution functions streaming to
the castellated boundary nodes are inside the solid domain, and the distribution functions at these solid nodes are calculated
using a second order extrapolation. Filippova and Hanel [5] proposed a method using a simple linear interpolation between
a fictitious equilibriumdistribution function and awell-chosen near-boundary distribution function. Theweighting factor of
the interpolation is determined by the distance between the boundary and the near-boundary lattice. Mei et al. [6] further
improved its numerical stability. Lallemand and Luo [7] combined the bounce-back scheme and interpolation scheme to
treat amoving curved boundary by the lattice Boltzmannmethod. The bounce-back scheme simulates a stationary boundary,
and an additional term is added to implement amoving boundary. This treatment is an extension of that proposed by Bouzidi
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et al. [8]. One point boundary conditionwas proposed by Junk and Yang [9], where a correction to the bounce back boundary
condition improves the accuracy of pressure and velocity.
Alternatively, the immersed boundary method (IBM) is another convenient approach to treat fluid flows involving

complex boundary, though it was formulated mostly within the Navier-Stkes equation framework. The complex geometry
within the Cartesian grid can be simulated by generating external force field to mimic the immersed boundary. IBM can be
categorized as feedback forcing [10,11] and direct forcing [12] approaches. However, the major drawback of the existing
feedback forcing is the restriction of small CFL number. Aiming at improving the CFL number restriction, Su et al. [13]
proposed a new immersed boundary (IB) technique for the simulation of flows interacting with solid boundary within the
Navier–Stokes framework. In Chen et al. [14], the lattice Boltzmann method is combined with the immersed boundary
technique of Su et al. [13] to simulate flows with complex boundary. In Su et al. and Chen et al., dirac delta function was
employed to link the force between the Lagrangian marker and the computational grid, and this may potentially smear the
solution across the interface.
In the present study, a novel technique is proposed to model the solid object embedded with the flow domain and it

does not involve force as contrasted to the work of Chen et al. [14]. Here, the curved boundary is represented by a series of
Lagrangian markers. The fluid velocity of node adjacent to the solid boundary is obtained by linear interpolation between
the Lagrangianmarker and the second fluid node further away. Then distribution functions originates from the solid domain
at the nodes adjacent to the solid curved boundary are modified using known distribution functions and correctors, where
the correctors at these nodes are obtained directly from the definitions of density and momentum. This curved boundary
technique is an extended form of amethod proposed by Hou et al. [15] for plane wall and regular geometry. The validity and
the accuracy of the new method are scrutinized by simulating decaying vortex flow, transient flow induced by an abruptly
rotating ring and flow over an asymmetrically placed cylinder.

2. The lattice Boltzmann method

2.1. The lattice Boltzmann equation

The lattice Boltzmann equation adopting a uniform lattice with Bhatnagar–Gross–Krook collision model [1–3] can be
expressed as,

f +i (Ex, t) = fi(Ex, t)−
1
τ
[fi(Ex, t)− f

eq
i (Ex, t)] (1)

fi(Ex+ Eeidt, t + dt) = f +i (Ex, t) (2)

where fi is the particle distribution function along the particle speed direction Eei at position Ex and time t . f
eq
i is the equilibrium

distribution function and τ is the single relaxation time that controls the rate approaching equilibrium. The above two
equations represent collision and streaming operations, respectively.
Based on the particle distribution function, the macroscopic density ρ and velocity Eu are defined as,∑

i

fi = ρ,
∑
i

fiEei = ρEu. (3)

The equilibrium distribution functions, which depend on the local density and velocity, are given by the form [2],

f eqi = ωiρ
[
1+

3
c2
Eei · Eu+

9
2c4

(Eei · Eu)2 −
3
2c2
Eu · Eu

]
(4)

where c = dx/dt is the lattice speed, and dx and dt are the lattice width and time step, respectively. Here, dt is chosen to be
equal to dx, thus c = 1. ωi is a weighting factor. For the present 2D applications, D2Q9 model are adopted (see Fig. 1). The
particle speed Eei adopting D2Q9 model are defined as,

Ee0 = 0 (5)

Eei = (cos[π(i− 1)/2], sin[π(i− 1)/2])c i = 1, 2, 3, 4 (6)

Eei = (cos[π(i− 4− 1/2)/2], sin[π(i− 4− 1/2)/2])
√
2c i = 5, 6, 7, 8 (7)

and theweighting factors areω0 = 4/9, ωi=1,2,3,4 = 1/9, andωi=5,6,7,8 = 1/36. Moreover, the speed of sound is Cs = c/
√
3

and the corresponding kinematic viscosity is ν = (τ − 0.5)C2s dt in the simulation.

3. Boundary conditions

A typical computational domain with a solid object embedded within is shown in Fig. 2. In the present approach, LBM
simulation is applied throughout the computational domain, i.e. even within the solid. Therefore, two different boundary
conditions have to be addressed. The first one is the boundary condition along the computational domain (thick solid line),
and the second one is how to represent the solid–fluid boundary. Here, the derivation of the boundary condition is based
on the known or assumed velocity (u, v) distributions along these boundaries.
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Fig. 1. d2q9 model.

Fig. 2. Distribution functions along the boundary nodes. N: correction node, �: Lagrangian marker, •: second fluid node.

3.1. Computational domain

Along the computational boundary, fi(Ex, t) due to the inward streaming operations may originate from the undefined
nodes external to the computational domain, therefore measures have to be taken to prescribe these unknown particle
distribution functions, which are denoted as fi=p(Ex, t). Obviously, fi6=p(Ex, t) = f +i6=p(Ex− Eeidt, t − dt), as shown in Eq. (2).
The unknown particle distribution functions at the plane boundary are expressed as a combination of the local known

value and a corrector [15],

fp(Ex, t) = f ∗p (Ex, t)+
αp

c
Eep · EQ (8)

where EQ is the corrector to enforce the required momentum.
Consider a typical point PCB along the computational boundary shown in Fig. 2, where the unknowndistribution functions

are f4, f7 and f8, i.e. f4 = f ∗4 − α4Qy, f7 = f
∗

7 − α7(Qx + Qy) and f8 = f
∗

8 + α8(Qx − Qy). Therefore, the macroscopic velocity
and density at the point PCB using Eq. (3), in conjunction with Eqs. (2) and (8), can be expressed as,

ρ = f0 + f1 + f2 + f3 + (f ∗4 − α4Qy)+ f5 + f6 + (f
∗

7 − α7(Qx + Qy))+ (f
∗

8 + α8(Qx − Qy))
ρu = f1 + f5 + (f ∗8 + α8(Qx − Qy))− f3 − f6 − (f

∗

7 − α7(Qx + Qy))

ρv = f2 + f5 + f6 − (f ∗4 − α4Qy)− (f
∗

7 − α7(Qx + Qy))− (f
∗

8 + α8(Qx − Qy)). (9)
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Fig. 3. Geometry of flows with an immersed boundary. N: correction node, �: Lagrangian marker, •: second fluid node.

These equations can be used to solve forρ,Qx andQy, and hence f4, f7 and f8. For simplicity,αp = ωp. This coefficient produces
a more compact form of the distribution functions and the boundary condition of Zou and He [16] can be recovered. The
explicit forms of the unknown particle distribution functions as shown below.

ρ =
f0 + f1 + f3 + 2(f2 + f5 + f6)

1+ v
(10)

f4 = f ∗4 −
2
3
ρv +

2
3
(f2 − f ∗4 + f5 − f

∗

7 + f6 − f
∗

8 ) (11)

f7 = f ∗7 −
1
2
ρu−

1
6
ρv +

1
2
(f1 − f3)+

1
6
(f2 − f ∗4 )+

2
3
(f5 − f ∗7 )−

1
3
(f6 − f ∗8 ) (12)

f8 = f ∗8 +
1
2
ρu−

1
6
ρv −

1
2
(f1 − f3)+

1
6
(f2 − f ∗4 )−

1
3
(f5 − f ∗7 )+

2
3
(f6 − f ∗8 ). (13)

It should be noted that, instead of deriving the explicit solution, matrix inversion of Eq. (9) is often more convenient and
is normally adopted here. Also, Hou et al. [15] experimented three different f ∗, i.e. f ∗p (Ex, t) = f (Ex,−Eep, t), b : f

∗
p (Ex, t) =

f (Ex, Eep, t − dt) and c : f ∗p (Ex, t) = f
eq(Ex, Eep, t − dt), and differences are observed to be negligible. This seems to suggest in

the present formulation by satisfying the momentum, the influence of the choice of the local known distribution function
f ∗ is marginal. For formulation (a), the present form recovers the form by Zou and He [16]. However, for simplicity and with
lower computational effort, formulation b is adopted for the computational domain boundary.

3.2. The solid–fluid boundary technique

Here, technique employed to model the solid–fluid boundary is introduced, since the boundary does not in general
coincides with the lattices. A typical solid–fluid boundary within the computational domain is shown in Fig. 2, where the
closest nodes adjacent to the boundary in the fluid domain are termed the correction nodes (C) as represented by the filled
triangles. The open squares are the Lagrangian markers (B) used to mimic the solid–fluid boundary, and the filled circles
represent the second fluid nodes (A) beyond the correction nodes. In the present curved boundary approach, the correction
nodes are used to impose the momentum condition due to the presence of the solid–fluid boundary.
The correct macroscopic velocity of the correction nodes are obtained by linear interpolation between the velocities of

the Lagrangian marker (B) and the second fluid node (A), as shown in Fig. 3.

EVC = EVA + (EVA − EVB)
AC

AB
. (14)

The determination of the location of the Lagrangian marker is addressed here. If the correction node one vertical or
horizontal edge connected with the solid–fluid boundary, for example at node C , the Lagrangian marker is determined as
the intersection of the line

−→
AC with the solid–fluid boundary, i.e. marker point B. However, for node C ′ there are one vertical

and one horizontal edges connected to the solid–fluid boundary. Therefore, the interpolation is not unique. In order to avoid
this ambiguity, the method proposed by Liao et al. [17] (using the Navier–Stokes solver) is adopted, that the Lagrangian
marker is determined as the intersection of the line

−→
A′C ′ with the solid–fluid boundary, i.e. marker point B′.

As indicated earlier, LBM simulation is applied throughout the computational domain evenwithin the solid domain, i.e. at
point Ps. Therefore, after the streaming operation, distribution functions originated from the solid domain, f +p (Ex − Eeidt,
t − dt), will migrate to the correction nodes adjacent to the solid–fluid boundary, for example nodes C : f2, f5 and
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C ′ : f1, f2, f5 shown in Fig. 2. Obviously, the momentum based on these distribution functions will not be correct. Thus,
measures have to be taken to modify these incorrect particle distribution functions to satisfy the momentum condition
(uc, vc) computed by Eq. (14).
Therefore, the particle distribution functions at these nodes are modified as,

fp(Ex, t) = f +p (Ex− Eeidt, t − dt)+
ωp

c
Eep · EQ . (15)

Consider, for example correction node C ′ shown in Fig. 2, where the distribution functions needed for modification are,

f1 = f +1 (Ex− Ee1dt, t − dt)+ ω1Qx
f2 = f +2 (Ex− Ee2dt, t − dt)+ ω2Qy

f5 = f +5 (Ex− Ee5dt, t − dt)+ ω5(Qx + Qy). (16)

Therefore, the macroscopic velocity and density at the point C ′ using Eqs. (3) and (16) can be expressed as,

ρ = f0 + f +1 (Ex− Ee1dt, t − dt)+ ω1Qx + f
+

2 (Ex− Ee2dt, t − dt)+ ω2Qy + f3 + f4
+ f +5 (Ex− Ee5dt, t − dt)+ ω5(Qx + Qy)+ f6 + f7 + f8

ρuc = f +1 (Ex− Ee1dt, t − dt)+ ω1Qx + f
+

5 (Ex− Ee5dt, t − dt)+ ω5(Qx + Qy)+ f8 − f3 − f6 − f7

ρvc = f +2 (Ex− Ee2dt, t − dt)+ ω2Qy + f
+

5 (Ex− Ee5dt, t − dt)+ ω5(Qx + Qy)+ f6 − f4 − f7 − f8. (17)

It should be noted that unlike the flat boundary, the number and the direction of the incorrect distribution functions at
each correction node are different along the curved boundary. Therefore, no explicit solution of Eq. (17) is derived here.
Rather, matrix inversion is used to obtain density and correctors (Qx, Qy), and hence f1, f2 and f5. It is noted that the matrix
coefficients are functions of the weighting functions of the incorrect distribution functions and are independent of the
distance of the correction nodes to the wall. Similar procedure can be applied to other correction nodes to enforce the
correct momentum.

4. Numerical results

4.1. Decaying vortex

In this subsection, the numerical accuracy of the Lattice Boltzmannmodel incorporating with the embedded boundary is
examined. The test example is the decaying vortex problemwhich is used frequently since the analytic solution is available.
The solution is shown below.

u(x, y, t) = −U cos(πx/L) sin(πy/L)e−2π
2Ut/(ReL), (18)

v(x, y, t) = U sin(πx/L) cos(πy/L)e−2π
2Ut/(ReL), (19)

ρ(x, y, t) = ρo −
ρoU2

4C2s
[cos(2πx/L)+ sin(2πy/L)]e−4π

2Ut/(ReL). (20)

In this test, the computational domain is chosen as [−L, L] × [−L, L] where L = 1. The dimensionless relaxation time is
τ = 0.65, the Reynolds number is UL/ν = 10, and the computations are all up to time Ut/L = 1. Four different uniform
grids (N × N,N = 41, 81, 161, 321) are used in the simulations. The Eulerian grid spacing is ∆x = ∆y = 2/(N − 1), the
time step size is∆t = ∆x.
The exact time varying conditions are imposed along the nodes external to the circular embedded boundary, where the

radius is 0.5. The predicted velocity vector and the circular boundary are shown in Fig. 4, where the velocity vector is clearly
not influenced by the presence of the circular boundary. Fig. 5 shows the maximum (or L∞) errors for the solutions at time
Ut/L = 1, where the errors for the Eulerian grid velocity component u are listed. The rate of convergence is computed by
taking logarithmic for the ratio of the two successive errors as Rate = log2

EN
EN/2
, where EN denotes the error of the grid

resolution N . As shown, the present method is approximately second-order accurate.

4.2. Transient flow induced by an abruptly rotating ring

Here, the flow considered is a ring rotating at the center of a square domain [−D,D] × [−D,D] where D(= 2R) the
diameter of the rotating ring is 1. The dimensionless relaxation time is τ = 0.65 and the Reynolds number isUθmaxD/ν = 10.
Numerical mesh adopted is 160 × 160. Since the ring starts abruptly from rest, the flow inside the ring is driven by the
rotating ring. After the transient stage, the flow reaches solid body rotation state within the ring. The analytic solution for
this rotating ring flow can be expressed as,

uθ =
∞∑
n=1

cn exp
(
−
ν(α1n)

2t
R2

)
J1

(
α1nr
R

)
+ rΩ (21)
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Fig. 4. Velocity vector and immersed boundary of decaying vortex.

Fig. 5. Maximum relative error of decaying vortex.

where

cn =

∫ R
0 −r

2ΩJ1
(
α1n r
R

)
dr∫ R

0 rJ
2
1

(
α1n r
R

)
dr

(22)

J1(x) =
∞∑
m=0

(−1m)
m!Γ (m+ 2)

( x
2

)2m+1
(23)

α1n is the n
th zero root of J1(x).

Numerical solutions are compared with the analytic solutions as shown in Fig. 6 at different time t∗ = νt/R2. The
migration of the flow from rest to solid body rotation profiles can be clearly observed. Numerical solutions agree well with
the analytic solution, indicating the accuracy of the present methodology.

4.3. Flow over an asymmetrically placed cylinder in a channel

The flow past a stationary circular cylinder is a typical problem and has been widely investigated [13,14,18,19]. For
Reynolds number below 47, the flow structure remains steady with stationary recirculating vortices behind the cylinder. As
the Reynolds number is elevated, the steadiness breaks down and the vortex starts to shed up and down alternatively. This
shedding frequency and the intensity of the vortex also increase in tandemwith the elevated level of the Reynolds number.
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Fig. 6. The numerical velocity profiles compared with analytic resolution.

Fig. 7. Configuration of flow over an asymmetrically placed cylinder in a channel.

Schafer and Turek [18] reported a set of 2D and 3D benchmark results for laminar flows over a circular cylinder of radius r
that is asymmetrically placed inside a channel. The distances from the center of the cylinder to the upperwall and lowerwall
are 4.2r and 4.0r , respectively. The 2D geometric layout is shown in Fig. 7. The inlet boundary is placed at 4 radii upstream
of the cylinder center, l+ = 4.0r , and the exit boundary is located 40 radii downstream of the cylinder center. In the present
study, r = 30∆x is used. The grid resolutions in the x and y directions are 1321 and 247, respectively. The Eulerian grid
spacing is ∆x = ∆y = 1/40, the time step size is ∆t = ∆x. The Reynolds numbers are Re = 2rUave/ν = 20 and 100. At
Re = 100, the flow becomes unsteady and periodic vortex shedding is observed.
A parabolic velocity profile of maximum speed Umax is applied to the inlet boundary, and the inlet Mach number of Umax

is Mc = Umax/Cs = 0.1. No-slip boundary condition are applied along the walls, and at the exit, linear extrapolation is
applied for the unknown distribution functions.
The Reynolds number based on the average inlet velocity Uave = 2Umax/3 is Re = 2rUave/ν. The drag and lift coefficient

over the cylinder are defined as,

CD =
FD

ρinU2aver
, CL =

FL
ρinU2aver

. (24)

The drag force (FD) and lift force (FL) generated by the cylinder can be obtained by integrating the local pressure and stress
distributions along the cylinder wall. However, this method may not be straightforward due to the interpolation procedure
involved. Another simple alternative is by applying the volume integral of the Navier–Stokes equation, and the momentum
deficits due to the presence of the cylinder are the drag and lift, i.e.

−FD =
∫
vol

(
∂ρu
∂t
+
∂ρuu
∂x
+
∂ρuv
∂y
+
∂p
∂x
− ν

[
∂

∂x

(
2ρ
∂u
∂x

)
+
∂

∂y
ρ

(
∂v

∂x
+
∂u
∂y

)])
dvol

−FL =
∫
vol

(
∂ρv

∂t
+
∂ρuv
∂x
+
∂ρvv

∂y
− ν

[
∂

∂x
ρ

(
∂v

∂x
+
∂u
∂y

)
+
∂

∂y

(
2ρ
∂v

∂y

)])
dvol. (25)

Here, the divergence of the velocity field is small and is neglected.
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Table 1
CD variations using different grid for the flow over a cylinder asymmetrically placed in a channel at Re = 20.

GRID CD Eq. (25) CD Eq. (26) CD − CDref Eq. (26) Order

440× 82 5.637127 5.637792 0.030657
880× 164 5.614934 5.614887 0.007752 1.99
1320× 246 (ref) 5.607235 5.607135 0

Table 2
CD and CL for the flow over a cylinder asymmetrically placed in a channel at Re = 20.

Re = 20 Present method Chen et al. [14] Schäfer and Turek [18]

CD 5.607 5.679 5.57–5.59
CL 0.0113 0.0114 0.0104–0.0110

Table 3
CD , CL , and St for the flow over a cylinder asymmetrically placed in a channel at Re = 100.

Re = 100 Present method Chen et al. [14] Mei et al. [19] Schäfer and Turek [18]

CD 3.292 3.333 3.2275 3.22–3.24
CL 0.974 1.0511 1.0040 0.99–1.01
St 0.302 0.3003 0.3033 0.295–0.305

In the present study, another alternative to compute the drag and lift incurred by the presence of the cylinder is proposed
here. It should be noted that in the present curved boundary technique, there is no force applied at the correction nodes.
Therefore, ameasuremust be adopted to evaluate the force. By assuming that a fictitious force exists at each correction node
to produce momentum change in the process of velocity modification, for example Eq. (16), thus the force is evaluated as,

∆tEF =
∑
p

fp Eep +
∑
i6=p

fi Eei −

[∑
p

f +p (Ex− Eeidt, t − dt) Eep +
∑
i6=p

fi Eei

]

=

∑
p

ωp

c
[Eep · EQ ] Eep (26)

where p is the incorrect distribution function at the correction node and is defined in Eq. (15).
Thus the drag force FD and the lift force FL are obtained from the following equations [13],

FD = −
∑
m

Fx,m∆x2, FL = −
∑
m

Fy,m∆x2 (27)

where m represents the correction node adjacent to the cylinder boundary. Once this fictitious force is obtained, the drag
and lift coefficient is easily determined by Eqs. (24) and (27).
Flows at Re = 20 and Re = 100 are simulated. The flow is steadywhen the Reynolds number is equal to 20. Table 1 shows

the influences of the lattice sizes and force computing methods on the predicted drag coefficient at Re = 20. It is clear that
the proposed method agrees perfectly with the volume integral method and the present method is second order accurate.
Similar trend is observed for the lift coefficient. The predicted drag and lift coefficient remain constant after sufficient time
steps, and compares favorably with other solutions as shown in Table 2.
At Re = 100, periodic vortex shedding is observed. The drag and lift coefficient have a periodic fluctuation, as shown

in Figs. 8 and 9. Two peaks in the drag coefficients correspond to the existence of a weaker vortex and a stronger vortex
alternately shed behind the cylinder. This phenomenon is due to the cylinder is asymmetrically placed in the channel.
Instantaneous vorticity contour at Re = 100 is shown in Fig. 10. Table 3 lists the maximum of CD, CL and the Strouhal
number of the simulation. The present results are shown to be compatible with previous numerical methods. The predicted
Strouhal number St = 2r/UaveT is 0.3002. This agrees very well with the range of Strouhal number (0.2950-0.3050) given
in Ref. [18].

5. Conclusion

In this paper, the boundary condition proposed by Hou et al. [15] is extended to simulate flows embedded with
complex solid object. Present LBM simulation is applied throughout the computational domain evenwithin the solid object.
Therefore, two different boundary conditions are addressed. The boundary condition along the flat computational domain,
where the boundary coincides with the lattice, is similar to that proposed by Hou et al. [15]. A novel technique is used to
model the existence of the solid–fluid boundary. The solid–fluid boundary is represented by a series of Lagrangian markers
and the closest nodes adjacent to the boundary in the fluid domain are used as boundary nodes of the flow domain. The
fluid velocity of the boundary node is obtained by linear interpolation between the velocities of the Lagrangian marker



948 C. Chang et al. / Computers and Mathematics with Applications 58 (2009) 940–949

Fig. 8. The time evolution of drag and lift coefficients at Re = 100.

Fig. 9. The time evolution of drag coefficients at Re = 100.

Fig. 10. The instantaneous vorticity contours at Re = 100, dotted and solid lines denote negative and positive contours.

and the second fluid node further away. Then the distribution functions originates from the solid domain at the boundary
nodes aremodified using known distribution functions and correctors to satisfy themomentum. The technique is examined
by simulating decaying vortex, transient flow induced by an abruptly rotating ring and flow over an asymmetrically placed
cylinder. Numerical simulations indicate that thismethod is second order accurate. A fictitious force formulation is proposed
to compute the drag and lift forces for flows over asymmetrically placed cylinder and the predicted forces agree perfectly
with the more elaborate integral method. The predicted drag and lift coefficient are compatible with the benchmark
solutions, indicating the capability of the present method.
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