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Abstract

We show that in the evolution of the random d-uniform hypergraph Gd(n;M) the phase transition occurs when
M = n=d(d − 1) + O(n2=3). We also prove local limit theorems for the distribution of the size of the largest compo-
nent of Gd(n;M) in the subcritical and in the early supercritical phase. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 05C80; 05C65

1. Introduction

A hypergraph H is a pair (V;E), where V denotes the set of vertices of H and E is a family
of subsets of V called edges. We say that H is d-uniform, or, simply, uniform, if |E|=d for every
E ∈E. The random hypergraph Gd(n;M) is de:ned as a hypergraph chosen uniformly at random

from the family of all
(

( n
d )
M

)
d-uniform labelled hypergraphs with vertex set [n] = {1; 2; : : : ; n} and M

edges. (Note that G(n;M) =G2(n;M), i.e., for d= 2 the notion of a 2-uniform random hypergraph
coincides with that of the random graph.) We study the behaviour of Gd(n;M) as n → ∞, where
the number of edges M =M (n) may vary as a function of n. In particular, we say that for a given
function M =M (n) graph property holds for Gd(n;M) asymptotically almost surely, or, brie@y,
a.a.s., if the probability that Gd(n;M) has this property tends to 1 as n → ∞.

One of the most striking results of the seminal paper on random graphs by Erdős and R'enyi
[4] was the discovery of the abrupt change in the structure of G(n;M), when M = cn and c ∼ 1

2 .
They proved that if c¡ 1

2 , then a.a.s. G(n;M) consists of many small components, while for c¿ 1
2 ,
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it a.a.s. has one large component which dominates the whole graph. The component structure for
random hypergraphs was studied by Schmidt-Pruzan and Shamir [9]. In particular, they proved that
if d¿ 2, M = cn and c¡ 1=d(d− 1), then a.a.s. the largest component of Gd(n;M) is of the order
log n, for c= 1=d(d − 1) it has K(n2=3) vertices, and :nally, when c¿ 1=d(d − 1), a.a.s. Gd(n;M)
contains the unique giant component of size K(n). Thus, as in the case of the random graph, the
largest component of Gd(n;M) grows rapidly when the number of edges is roughly n=d(d− 1).

The study of the behaviour of the component structure of G(n;M) when 2M=n → 1 is much more
diMcult. Erdős and R'enyi [4] suggested that in this case the largest component has a.a.s. K(n2=3)
vertices. The fact that it is not true was :rst observed by Bollob'as, who in his pioneering work [2]
(see also [3, Chapter VI]) precisely described the structure of G(n;M) for 2M=n → 1 (his results were
later supplemented by  Luczak [8]). Thus, in the subcritical phase, when M = n=2−m and m=n2=3 →
∞, the largest components of G(n;M) have roughly similar size while for M = n=2 + m, where
m=n2=3 → ∞ as n → ∞ (supercritical phase) a.a.s. G(n;M) contains a unique largest component
signi:cantly larger than all its competitors. (For a more detailed description of the phase transition
phenomenon in G(n;M) see [5], [6, Chapter 5].)

In this paper, we study the asymptotic behaviour of the random hypergraph near the critical range,
i.e., for M ∼ n=d(d− 1). It turns out that in the subcritical phase, now determined by the condition
that M = n=d(d − 1) − m and m=n2=3 → ∞ as n → ∞, the structure of Gd(n;M) is not hard to
analyze. In this case, a.a.s. Gd(n;M) consists of hypertrees and unicyclic components and one can
obtain a local limit distribution for the size of the largest component using elementary method of
moments. The problem of describing the component structure of Gd(n;M) when M = n=d(d−1)+m
and m=n2=3 → ∞, seems to be a much more challenging task. However, in Section 3 we observe
that the asymptotic distribution of the size of the largest component can be deduced from the result
on the number of connected hypergraphs with a given number of vertices and edges. As a matter of
fact in this way one can obtain a surprisingly precise local limit result on the joint distribution of
the two random variables which measure the number of vertices and edges in the largest component
(Theorems 8 and 9), which has not been known even for random graphs, when d= 2.

2. Connected hypergraphs

Let H be a d-uniform hypergraph with r vertices and s edges. De:ne the excess of H as

ex(H) = (d− 1)s− r:

Note that from the de:nition of the excess it follows that if ex(H) = k, then (d−1)|(r+k). Observe
also that if H is connected, then ex(H)¿− 1. A connected hypergraph H for which ex(H) = − 1
we call a hypertree, or, brie@y, a tree; if for a connected H we have ex(H) = 0 we say that H is
unicyclic. Finally, we call a connected hypergraph H complex if its excess is positive.

Let Cd(s; k) denote the number of connected d-uniform hypergraphs with r = s(d−1)− k vertices
and s edges. In the case of graphs, i.e., when d= 2, the behaviour of C2(s; k) has been thoroughly
studied by many authors, and :nally settled down by Bender et al. (see [1] and references therein).

For d¿ 2 the value of Cd(s;−1) is given by the following result (see [10]). We remark that all
asymptotic estimates in this note are made under the assumption that d is :xed, i.e., the hidden
constants in O(·) may, and typically do, depend on d.
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Lemma 1. Let r = s(d−1)+1. Then the number of connected d-uniform hypertrees with r vertices;
s edges is given by

Cd(s;−1) =
[(s(d− 1)]![s(d− 1) + 1]s−1

s![(d− 1)!]s
:

In particular; if s → ∞; then

Cd(s;−1) =
(

1 + O
(

1
s

))
1√
d− 1

ss(d−1)−1

es(d−2)−1=(d−1)

[
(d− 1)d−1

(d− 2)!

]s
:

Selivanov [10] gave also the following formula for Cd(s; 0).

Lemma 2. The number of connected d-uniform hypergraphs with r = s(d− 1) vertices and s edges
is given by

Cd(s; 0) =
[s(d− 1)]!

2[(d− 2)!]sss−1

s∑
j=2

1
sj(s− j)!

:

Thus; for s → ∞;

Cd(s; 0) =
(

1 + O
(

1
s

))√
�(d− 1)

8
ss(d−1)−1=2

es(d−2)

[
(d− 1)d−1

(d− 2)!

]s
:

Finally, for a given d and k = o(log s=log log s), the asymptotic value of Cd(s; k) was determined
by the following result of Karo'nski and  Luczak [7].

Lemma 3. Let d¿ 2 and let k = k(s) be a function of s such that k → ∞ but k log log s=log s → 0
as s → ∞. Then

Cd(s; k) =

(
1 + O

(
1
k

+
k2

s
+

√
k3

r
+

k100d2k

r

))√
3

4�

( e
12k

)k=2

×(d− 1)s(d−1)+k+1=2

[(d− 2)!]s
ss(d−1)+(k−1)=2es(2−d)−k=(d−1):

3. Subcritical phase

As in the case of the random graph G(n;M), the random hypergraph Gd(n;M) has a particularly
simple structure whenever M = n=d(d− 1) − m, and m=n2=3 → ∞.

Theorem 4. Let M = n=d(d−1)−m; where m=n2=3 → ∞ as n → ∞. Then; a.a.s. Gd(n;M) consists
of hypertrees and unicyclic components.
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Proof. We say that a sequence of edges e1; : : : ; et , t¿ 1, is a path if |ei∩ei+1|= 1 for i= 1; 2; : : : ; t−1,
and ei ∩ ej = ∅ whenever |i− j|¿ 2. Our argument is based on the observation that any component
of a hypergraph which is neither a hypertree, nor a unicyclic component contains a structure of one
of the two following types.

Type 1: There is a path e1; : : : ; et , t¿ 1, and a edge f such that f ∩ e1 �= ∅, f ∩ et �= ∅ and∣∣∣∣∣f ∩
t⋃

i=1

ei

∣∣∣∣∣¿ 3:

Type 2: There is a path e1; : : : ; et−1, t¿ 2, and edges f1; f2 such that f1 ∩ e1 �= ∅, f2 ∩ et−1 �= ∅
and ∣∣∣∣∣fj ∩

t−1⋃
i=1

ei

∣∣∣∣∣¿ 2 for j = 1; 2:

Observe that the number of hypergraphs w(t) of one of the above types with precisely t+1 edges
which are contained in the complete d-uniform hypergraph on n vertices is bounded above by

w(d)6
d

d− 1

(
n

d

)[
(d− 1)

(
n

d− 1

)]t−1

td3

(
n

d− 3

)

+
d

d− 1

(
n

d

)[
(d− 1)

(
n

d− 1

)]t−2

d4t2
(

n

d− 2

)2

6 n(d−1)(t+1)−1 8t2d4

[(d− 2)!]t
:

Let Y denote the number of structures of types 1 and 2 which are contained in Gd(n;M), where
M = n=d(d− 1) − m and m=n2=3 → ∞. Then,

P(Y ¿ 0)6 EY =
n+1∑
r=1

w(d)



(

n

d

)
− t − 1

M − t − 1



/

(

n

d

)

M


 :

Observe that, for t large enough,

(

n

d

)
− t − 1

M − t − 1



/

(

n

d

)

M




6




M − t − 1(
n

d

)
− t − 1




t

6
[(d− 2)!]t+1

n(d−1)(t+1)

(
1 − m + t

n

)t+1

6
[(d− 2)!]t+1

n(d−1)(t+1) exp
(
− mt

n

)
:
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Hence,

P(Y ¿ 0)6 8d5
n+1∑
t=1

t2

n
exp
(
− mt

n

)
6 8d5

∫ ∞

0

x2

n
e−mx=n dx= 16d5 n

2

m3 :

Since m=n2=3 → ∞, the above sum tends to 0 as n → ∞, i.e., a.a.s. Y = 0 and the assertion follows.

In order to study the phase transition phenomenon, we need precise estimates on the number of
complex components at diQerent stages of the evolution of a random uniform hypergraph. Thus, let
Xn;M (s; k) denote the random variable which counts components on r = s(d− 1) − k vertices and s
edges of Gd(n;M). Then, for the expectation of Xn;M (r; k), we have

EXn;M (r; k) =

(
n

r

)
Cd(s; k)



(
n− r

d

)

M − s



/

(

n

d

)

M


 :

Now, from Stirling’s formula,(
n

r

)
=

1√
2�r

nrer

rr
exp
(
− r2

2n
− r3

6n2 + O
(
r4

n3 +
1
r

))
:

Furthermore,

(
n− r

d

)

M − s



/

(

n

d

)

M




=
(n− r)d(M−s)

nd(M−s)

(M)s(d!)s

nds
exp
(
O
( s
n

))

= exp
(
−
(
r
n

+
r2

2n2 +
r3

3n3

)
d(M − s) − s2

2M
− s3

6M 2 + O
(
s
n

+
s4

n3

))(
d!M
nd

)s
:

Let M = n=d(d− 1) − m, where m=n2=3 → ∞ but m= o(n). Then

− s2

2M
− s3

6M 2 = − s2d(d− 1)
2n

− ms2d2(d− 1)2

2n2 − s3d2(d− 1)2

6n2 + O
(
ms3

n3

)

and (
d!M
nd

)s
=

[(d− 2)!]s

ns(d−1)

(
1 +

d(d− 1)m
n

)s

=
[(d− 2)!]s

ns(d−1) exp
(
− msd(d− 1)

n
− m2sd2(d− 1)2

2n2 + O
(
m3s
n4

))
:
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Combining the above formulae and substituting r = s(d− 1) − k we get

(
n

r

) 
(
n− r

d

)

M − s



/

(

n

d

)

M




∼ 1√
2�

[(d− 2)!]s

(d− 1)s(d−1)−k+1=2

n−k

ss(d−1)−k+1=2

× exp
(
s(d− 2) +

k
d− 1

− ms2d(d− 1)3

2n2 − m2sd2(d− 1)2

2n2 − s3(d− 1)4

6n2

)
; (1)

where ∼ means that the asymptotic equation holds up to a factor of

1 + O
(

1
s

+
s
n

+
s4 + ms3 + m3s

n4 +
ks
n

+
k2

s

)
:

Theorem 4 states that in the subcritical phase, when M = n=d(d− 1) −m and m=n2=3 → ∞, a.a.s.
Gd(n;M) contains no complex components. Since for k = − 1; 0 the asymptotic value of Cd(s; k) is
given by Lemmas 1 and 2, from (1) we get

EXn;M (s; 0) ∼ 1
4s

exp
(
−m2sd2(d− 1)2

2n2 − ms2d(d− 1)3

2n2 − s3(d− 1)4

6n2

)
(2)

and

EXn;M (s;−1) ∼ 1√
2�

1
(d− 1)2

n
s5=2 exp

(
−m2sd2(d− 1)2

2n2 − ms2d(d− 1)3

2n2 − s3(d− 1)4

6n2

)
;

where in both of the above cases we omitted the factor

1 + O
(

1
s

+
s
n

+
s4 + ms3 + m3s

n4

)
:

For a natural number ‘ let U‘ =U‘(n;M) denote the number of edges of the ‘th largest uni-
cyclic component of Gd(n;M). The following theorem describes the limit distribution of U‘ in the
subcritical phase.

Theorem 5. Let ‘¿ 1 be a <xed natural number and let M = n=d(d− 1) −m; where m=n2=3 → ∞
but m=n → 0 as n → ∞. Then; for every function u= u(n) such that u(n) → x¿ 0 as n → ∞;

lim
n→∞P

(
U‘¿

2un2

d2(d− 1)2m2

)
=

‘−1∑
i=0

!i

i!
e−! (3)

and

P
(
U‘ =

⌊
2un2

d2(d− 1)2m2

⌋)
= (1 + o(1))

m2

n2

d2(d− 1)2!‘−1

8x(‘ − 1)!
e−x−!;
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where

!= !(x) =
∫ ∞

x

e−t

4
√
t

dt:

Proof. Let Z(u) =Zn;M (u) =
∑

s¿u Xn;M (s; 0) denote the number of unicyclic components with at
least a(u) = �2un2=m2d2(d− 1)2� edges. Then, from (2), we get

EZ(u) =
∑

s¿a(u)

EXn;M (s; 0) = (1 + o(1))
∑

s¿a(u)

1
4s

exp
(
− sm2d2(d− 1)2

2n2

)
;

where the quantity o(1) tends to 0 uniformly for all u such that, say, 1=log(m3=n2)6 u6 log(m3=n2).
Hence,

EZ(u) = (1 + o(1))
∫ ∞

x

e−t

4
√
t

dt = (1 + o(1))!:

Furthermore, it is easy to check that, for every j¿ 1, the jth factorial moment EjZ(u) of Z(u)
converges to !j. Thus, Z(u) converges in distribution to a random variable with Poisson distribution
with the expectation ! and (3) follows.

Finally, note that

P(U‘ = u) =
(

n
u(d− 1)

)
Cd(u; 0)



(
n
d

)
M − u


/



(
n
d

)
M


P(Z(u) = ‘ − 1) + o(1)

= (1 + o(1))EXn;M (u; 0)
!‘−1

(‘ − 1)!
e−!

= (1 + o(1))
m2

n2

d2(d− 1)2!‘−1

8x(‘ − 1)!
e−x−! ;

where in the :rst line of the above equation the quantity o(1) stands for the probability that Gd(n;M)
contains two unicyclic components of size s.

Arguing in a similar way one can prove an analogous result for the number of edges L‘ =L‘(n;M)
contained in the ‘th largest component of Gd(n;M).

Theorem 6. Let ‘¿ 1 be a <xed natural number and M = n=d(d− 1)−m; where m=n2=3 → ∞ but
m=n → 0 as n → ∞. Then; a.a.s. the ‘th largest component of Gd(n;M) is a hypertree.

Furthermore; let t = t(n) be a function which tends to y; −∞¡y¡∞ as n → ∞. Then

lim
n→∞P

(
L‘6

2n2

d2(d− 1)2m2

(
log

m3

n2 − 5
2

log log
m3

n2 + t
))

=
‘−1∑
i=0

&‘

‘!
e−&
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and

P
(
L‘ =

⌊
2n2

d2(d− 1)2m2

(
log

m3

n2 − 5
2

log log
m3

n2 + t
)⌋)

= (1 + o(1))
m2

n2

d5(d− 1)3

8
√
�

&‘−1

(‘ − 1)!
e−y−&;

where

&= &(y) =
d3(d− 1)e−y

4
√
�

:

As an immediate consequence of Theorems 4–6 we get the following fact.

Corollary 7. Let M = n=d(d− 1)−m; where m=n2=3 → ∞ as n → ∞. Then a.a.s. G(n;M) contains
no components with more than n2=3 edges.

4. Supercritical phase

In this section, we prove the main result concerned with the number of vertices and the number of
edges in the largest component of Gd(n;M) in the supercritical case, i.e., when M = n=d(d− 1) +m
and m=n2=3 → ∞ as n → ∞. Unfortunately, we are able to do it only under the additional assumption
that m=n2=3 tends to in:nity slowly enough, more precisely that m= o(n2=3 log n=log log n).

Let ps;k =ps;k(n;M) denote the probability that the lexicographically :rst largest component of
Gd(n;M) contains r = s(d− 1) − k vertices and s edges. (We remark that for this range of M the
largest component of Gd(n;M) is a.a.s. always unique; thus the words “lexicographically :rst” we
are using to make ps;k well de:ned are not very relevant.) The main result of this section gives us
the precise joint distribution of s and k in the early supercritical phase.

Theorem 8. Let M = n=d(d − 1) + m; where m3=n2 → ∞ but m3 log log n=n2 log n → 0 as
n → ∞. Then the largest component of Gd(n;M) a.a.s. contains (1 + o(1))2dm=(d − 1) edges
and has excess (1 + o(1))2(d − 1)3m3=3n2. Furthermore; let x= x(n); y=y(n) be functions such
that x(n) → a; y(n) → b as n → ∞. Set

s=

⌊
2dm
d− 1

+
x

d− 1

√
2n2

d(d− 1)m

⌋
(4)

and

k =

⌊
2(d− 1)d3m3

3n2 + y

√
10(d− 1)d3m3

3n2

⌋
: (5)

Then

ps;k = (1 + o(1))

√
6

8�
d− 1
dm

exp

(
−5

4
a2 +

√
15
2

ab− 5
4
b2

)
: (6)
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Proof. Let M , s, and k be de:ned as above and let r = s(d−1)−k. In order to construct a d-uniform
hypergraph on n vertices in which the largest component has r = s(d− 1) − k vertices and s edges,
:rst choose the vertices and the edges of the largest component in one of ( nr )Cd(s; k) possible ways
and then pick the remaining M − s edges such that no components of more than r vertices emerges.
One can easily check that(

M − s− n− r
d(d− 1)

)/
n2=3 → −∞

as n → ∞. Thus, Corollary 7 implies that the probability that the largest component of G(n−r;M−s)
is larger than n2=3 = o(s) tends to 0 as n → ∞ uniformly for the range of s and k we consider.
Consequently,

ps;k = (1 + os;k(1))
(
n
r

)
Cd(s; k)



(
n− r
d

)
M − s


/



(
n
d

)
M


 ;

where here and below os;k(1) denotes the value which tends to 0 as n → ∞ uniformly for every
s= s(n;M) such that dm6 s(d − 1)6 3dm and k = k(n;M) for which (d − 1)d3m3=2n26 k6
(d− 1)d3m3=n2.

The asymptotic value of(
n
r

)
(
n− r
d

)
M − s





(
n
d

)
M




is given by formula (1) (note that since M = n=d(d−1)+m, the sign of m in (1) must be changed).
Furthermore, Lemma 3 provides the value for Cd(s; k). Thus, we arrive at

ps;k = (1 + os;k)

√
6

4�s

(
e(d− 1)4s3

12kn2

)k=2
exp
(
−m2sd2(d− 1)2

2n2 +
ms2d(d− 1)3

2n2 − s3(d− 1)4

6n2

)
:

(7)

Routine but not very exciting calculations show that for every function !=!(n) which tends to
in:nity as n → ∞,

s± = �2dm=(d− 1) ± !n=
√
m�

and

k± = �2(d− 1)d3m3=3n2 ± !m3=2=n�;
we have

s+∑
s=s−

k+∑
k=k−

ps;k = 1 + os;k(1):

Finally, if we put into (7) the value of s and k given by (4) and (5) then, after tedious computations,
it reduces to (6).

As an immediate corollary of the above result we get the following.
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Theorem 9. Let M = n=d(d − 1) + m; where m3=n2 → ∞ but m3 log log n=n2 log n → 0 as n → ∞.
Furthermore; let Xn and Yn denote the number of edges and the excess in the lexicographically
<rst largest component of Gd(n;M); and

X̃ n =
(
Xn − 2dm

d− 1

)/√
2n2

d(d− 1)m

and

Ỹ n =
(
Yn − 2(d− 1)d3m3

3n2

)/√
10(d− 1)d3m3

3n2 :

Then the random variable (X̃ ; Ỹ ) converges in distribution to (X; Y ); where (X; Y ) has the stan-
darized normal distribution with correlation

√
15=5.

The structure of Gd(n;M) can be easily deduced from Theorems 5 and 6, Corollary 7 and Theorem
8. Let us call a component of Gd(n;M) large if it contains more than n2=3 edges and small otherwise.
Then, in the supercritical phase, a.a.s. Gd(n;M) contains precisely one large component, whose size
and excess are characterized by Theorem 8. Furthermore, the distribution of the sizes of the small
components can be characterized in a similar way as in Theorems 5 and 6; since we would not like
to repeat lengthy and complicated formulae we give the local limit theorem only for the size of the
‘th largest component.

Theorem 10. Let M = n=d(d − 1) + m; where m3=n2 → ∞ but m3 log log n=n2 log n → 0 as
n → ∞. Then a.a.s. Gd(n;M) consists of one large complex component and some number of
small components which are either hypertrees or unicyclic.

Furthermore; let ‘¿ 2 be a <xed number and let t = t(n) be a function which tends to y;
−∞¡y¡∞ as n → ∞. Then the ‘th largest component of Gd(n;M) is a hypertree with L‘

edges; where

P
(
L‘ =

⌊
2n2

d2(d− 1)2m2

(
log

m3

n2 − 5
2

log log
m3

n2 + t
)⌋)

= (1 + o(1))
m2

n2

d5(d− 1)3

8
√
�

&‘−2

(‘ − 2)!
e−y−&

and

&= &(y) =
d3(d− 1)e−y

4
√
�

:

Proof. Let M = n=d(d− 1) + m, where m3=n2 → ∞ but m3 log log n=n2 log n → 0 as n → ∞. Let us
remove from Gd(n;M) the vertices of the largest component. Then, from Theorem 8 we infer that
a.a.s. the random graph Ĝd

(n;M) obtained in this way has

n′ = n− 2dm + O(n=
√
m)
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vertices, and

M ′ =
n

d(d− 1)
+ m− 2dm

d− 1
+ O

(
n√
m

)
=

n′

d(d− 1)
− m + O

(
n√
m

)
edges. Note that, if we :x n′ and M ′, then each such hypergraph with largest component smaller
than, say, n2=3, is equally likely to appear as Ĝd

. Furthermore, from Corollary 7 it follows that
a.a.s. the largest component of Ĝd

has at most n2=3 edges. Thus, to complete the proof it is enough
to observe that the limit distributions given in Theorem 6 remain unchanged if we replace n by
n′ = n− 2dm− O(n=

√
m) and m by m′ =m + O(n=

√
m).

Theorems 8 and 9 describe the structure of the largest component of Gd(n;M) only for the early
supercritcal phase, when M = n=d(d−1)+m, and m=n2=3 = o(log n=log log n). We conjecture however
that a similar result holds for every m such that m=n2=3 → ∞ but m= o(n); i.e., then the appropriately
standarized random variables Xn and Yn in Theorem 9 converge in distribution to the standarized
bivariate normal distribution with correlation coeMcient

√
15=5.
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