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Abstract

We show that in the evolution of the random d-uniform hypergraph G?(n,M) the phase transition occurs when
M =n/d(d — 1) + O(n**). We also prove local limit theorems for the distribution of the size of the largest compo-
nent of G(n, M) in the subcritical and in the early supercritical phase. (©) 2002 Elsevier Science B.V. All rights reserved.

MSC: 05C80; 05C65

1. Introduction

A hypergraph # is a pair (V,&), where V denotes the set of vertices of # and & is a family
of subsets of V' called edges. We say that & is d-uniform, or, simply, uniform, if |E|=d for every
E € &. The random hypergraph G?(n,M) is defined as a hypergraph chosen uniformly at random

from the family of all (S?}) d-uniform labelled hypergraphs with vertex set [n]={1,2,...,n} and M

edges. (Note that G(n, M )= G*(n,M), i.e., for d =2 the notion of a 2-uniform random hypergraph
coincides with that of the random graph.) We study the behaviour of G?(n,M) as n — oo, where
the number of edges M = M (n) may vary as a function of n. In particular, we say that for a given
function M =M (n) graph property holds for G%(n,M) asymptotically almost surely, or, briefly,
a.a.s., if the probability that G¢(n, M) has this property tends to 1 as n — oo.

One of the most striking results of the seminal paper on random graphs by Erdds and Rényi
[4] was the discovery of the abrupt change in the structure of G(n,M), when M =cn and ¢ ~ %
They proved that if ¢ < 1, then a.a.s. G(n, M) consists of many small components, while for ¢ > 1,
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it a.a.s. has one large component which dominates the whole graph. The component structure for
random hypergraphs was studied by Schmidt-Pruzan and Shamir [9]. In particular, they proved that
ifd >2, M=cnand ¢ < 1/d(d — 1), then a.a.s. the largest component of G(n,M) is of the order
logn, for c=1/d(d — 1) it has ©(n*?) vertices, and finally, when ¢ > 1/d(d — 1), a.a.s. G¥(n,M)
contains the unique giant component of size O(n). Thus, as in the case of the random graph, the
largest component of G?(n, M) grows rapidly when the number of edges is roughly n/d(d — 1).

The study of the behaviour of the component structure of G(n, M) when 2M/n — 1 is much more
difficult. Erdés and Rényi [4] suggested that in this case the largest component has a.a.s. ©(n?*?)
vertices. The fact that it is not true was first observed by Bollobas, who in his pioneering work [2]
(see also [3, Chapter VI]) precisely described the structure of G(n,M ) for 2M/n — 1 (his results were
later supplemented by Euczak [8]). Thus, in the subcritical phase, when M =n/2 —m and m/n*? —
0o, the largest components of G(n, M) have roughly similar size while for M =n/2 4+ m, where
m/n*? — oo as n — oo (supercritical phase) a.a.s. G(n,M) contains a unique largest component
significantly larger than all its competitors. (For a more detailed description of the phase transition
phenomenon in G(n, M) see [5], [6, Chapter 5].)

In this paper, we study the asymptotic behaviour of the random hypergraph near the critical range,
i.e., for M ~ n/d(d — 1). It turns out that in the subcritical phase, now determined by the condition
that M =n/d(d — 1) — m and m/n*? — oo as n — oo, the structure of G(n, M) is not hard to
analyze. In this case, a.a.s. G?(n, M) consists of hypertrees and unicyclic components and one can
obtain a local limit distribution for the size of the largest component using elementary method of
moments. The problem of describing the component structure of G¢(n, M) when M =n/d(d —1)+m
and m/n*® — oo, seems to be a much more challenging task. However, in Section 3 we observe
that the asymptotic distribution of the size of the largest component can be deduced from the result
on the number of connected hypergraphs with a given number of vertices and edges. As a matter of
fact in this way one can obtain a surprisingly precise local limit result on the joint distribution of
the two random variables which measure the number of vertices and edges in the largest component
(Theorems 8 and 9), which has not been known even for random graphs, when d =2.

2. Connected hypergraphs

Let H be a d-uniform hypergraph with » vertices and s edges. Define the excess of H as
ex(H)=(d —1)s—r.

Note that from the definition of the excess it follows that if ex(H )=k, then (d — 1)|(r + k). Observe
also that if H is connected, then ex(H) = — 1. A connected hypergraph H for which ex(H)= —1
we call a hypertree, or, briefly, a tree; if for a connected H we have ex(H)=0 we say that H is
unicyclic. Finally, we call a connected hypergraph H complex if its excess is positive.

Let C4(s, k) denote the number of connected d-uniform hypergraphs with » =s(d — 1) — k vertices
and s edges. In the case of graphs, i.e., when d =2, the behaviour of C,(s,k) has been thoroughly
studied by many authors, and finally settled down by Bender et al. (see [1] and references therein).

For d = 2 the value of C,(s,—1) is given by the following result (see [10]). We remark that all
asymptotic estimates in this note are made under the assumption that d is fixed, i.e., the hidden
constants in O(-) may, and typically do, depend on d.
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Lemma 1. Let r =s(d—1)+1. Then the number of connected d-uniform hypertrees with r vertices,
s edges is given by

[(S(d - 1)]'[S(d — 1) + 1]5—1
S!(d — DI :

Ca(s,—1)=

In particular, if s — oo, then

1 N (G dana
Cai(s,—1)= (1 +0(S>) Jd = 1 e@=2=1/d=1 [ (d —2)! ] :

Selivanov [10] gave also the following formula for C,(s,0).

Lemma 2. The number of connected d-uniform hypergraphs with r =s(d — 1) vertices and s edges
is given by

[s(d—1] <« 1

Cd(S,O): 2[(d — 2)!]Sssfl = S-j(S —j)‘ .

Thus, for s — oo,

1 [n(d — 1)@= D=12 [(d —1)"~17°
Ci(s,0)=(140| - .
4(5,0) < + <s>> 3 od—2) (d —2)!
Finally, for a given d and k = o(log s/loglogs), the asymptotic value of Cy(s,k) was determined
by the following result of Karonski and fuczak [7].

Lemma 3. Let d > 2 and let k =k(s) be a function of s such that k — oo but kloglogs/logs — 0
as s — oo. Then

1 k2 i3 klOOde 3 e \K2
=1 SR e U (S
Cals,k) ( +0<k+s+ P 4n(12k>

(d _ l)s(d—l)+k+1/2
[(d —2)IF

s(d=D)+(k=1)/2 gs(2—d)—k/(d—1)

3. Subcritical phase

As in the case of the random graph G(n, M), the random hypergraph G¢(n, M) has a particularly
simple structure whenever M =n/d(d — 1) — m, and m/n*>? — occ.

Theorem 4. Let M =n/d(d — 1) —m, where m/n*? — 0o as n — oco. Then, a.a.s. G*(n,M) consists
of hypertrees and unicyclic components.
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Proof. We say that a sequence of edges ey,...,e, t = 1, is a path if |e;Ne; | =1 fori=1,2,...,t—1,
and e; Ne; = whenever |i — j| > 2. Our argument is based on the observation that any component
of a hypergraph which is neither a hypertree, nor a unicyclic component contains a structure of one
of the two following types.

Type 1: There is a path ej,...,e;, t > 1, and a edge f such that fNe; #0, f Ne #( and

t
Sn Uei
i=1

Type 2: There is a path ey,...,e,_1, t =2, and edges [, f» such that /i Ne  #0, frNe 1 #D
and

= 3.

=2 forj=1,2.

-1
fin U e
i=1

Observe that the number of hypergraphs w(¢) of one of the above types with precisely #+ 1 edges
which are contained in the complete d-uniform hypergraph on n vertices is bounded above by

wdy< - (" V0a-n[ " sz3 "
d—1\4 d—1 d—3
d n d 1 n t72d42 n 2
a1\ @=1 d—1 a2

812d*
[(d—-2)7"

Let Y denote the number of structures of types 1 and 2 which are contained in G?(n, M), where
M =n/d(d — 1) — m and m/n** — oco. Then,

n+1 n n
P >0y <Er =Y w@) [ \g) "7} / J
r=1 M

M—t—1

< p@=Dih-1

Observe that, for ¢ large enough,

0 (C)

M—-t-1

M—t—1 <[(d—2)!]’+' m+zf“<[(d—2)!]f+‘ mt
(1-"%) (%)

(n) S T @D+ n S T a—nen P
—t—1
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Hence,
ntl o ) 2
t t
P(Y > 0) <84 :—exp(— "i) < 8d5/ e dx=16d° .
—n n 0 N m
Since m/n*? — oo, the above sum tends to 0 as n — oo, i.e., a.a.s. ¥ =0 and the assertion follows.

0

In order to study the phase transition phenomenon, we need precise estimates on the number of
complex components at different stages of the evolution of a random uniform hypergraph. Thus, let
Xo.m(s,k) denote the random variable which counts components on » =s(d — 1) — k vertices and s
edges of G¥(n,M). Then, for the expectation of X, y(r,k), we have

" n—r n
EX, pm(r k)= (r) Ca(s, k) d / d

M—s M

Now, from Stirling’s formula,

n 1 ne 2 P Lo r N 1
= exp| — — — — — 4+ ).
r N 2mr 1" P 2n  6n? nwoor

Furthermore,
n—r n
d / d
M—s M

_ (= Ty (0 (5))
n

nd(M—s) nds

roor? r 52 s s s A\ M\’
—exp(— (C+ D D Y am -5y - 2 - o2+ .
exp( <n+2n2 +3n3> ( $) e <n+n3>>< nd )

Let M =n/d(d — 1) — m, where m/n*? — oo but m=o(n). Then
s s B s?d(d — 1) B ms*d*(d — 1)? B sd*(d — 1)? Lo (ms3>

2M  6M? 2n 2n? 6n?

AM\  [(d-2)F d(d — Dym\’
(%) =t (155

_[@-2)7 exp(_ msd(d —1) _n’sd’d —1) | <m3s>> |

and

nsd—1) n 252 nt
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Combining the above formulae and substituting » =s(d — 1) — k we get
n—r n
n
< > ( d ) / (d)
r
M —s M

L [@d-2) n*
N V21 (d — 1) d=D—k+1/2 gs(d=D)—k+1/2

k ms?d(d — 1) m?sd*(d — 1)*  s3(d —1)*
d—2 - — — 1
X exp <S( )T 2n? 22 o2 ) 1
where ~ means that the asymptotic equation holds up to a factor of
1 s st+ms+m’s ks k?
1+0(++4++ .

s n n n s

Theorem 4 states that in the subcritical phase, when M =n/d(d — 1) —m and m/n*? — oo, a.a.s.

G“(n, M) contains no complex components. Since for k= — 1,0 the asymptotic value of Cy(s,k) is
given by Lemmas 1 and 2, from (1) we get
m?sd*(d —1)>  ms*d(d —1)>  s3(d —1)*
2n? 2n? 6n?

1
EX0(5,0) ~ ” exp( (2)

and

[EX,,,M(S, —1)

1 1 " m?sd*(d —1)>  ms*d(d — 1)  $3(d—-1)*
~N —— —— — X — — —
V2 (d — 1) 552 P 2n? 2n? 6n2 ’
where in both of the above cases we omitted the factor
1+0<1+s+s4+msz+m3s>‘
s n n

For a natural number ¢ let U, = Uy(n,M) denote the number of edges of the /th largest uni-
cyclic component of G¥(n,M). The following theorem describes the limit distribution of U, in the
subcritical phase.

Theorem 5. Let / > 1 be a fixed natural number and let M =n/d(d — 1) — m, where m/n*? — oo
but m/n — 0 as n — oo. Then, for every function u=u(n) such that u(n) — x >0 as n — oo,

tim P (U, > 24" e 3
M\ gy ) T 2w )

and

B 2un? B m*d*(d — 1)> /! e
P (vr=| g ) ) =0 et e
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where

HZM(X)Z/ :\_ﬁ d.

Proof. Let Z(u)=Z, y(u)=) >, Xnu(s,0) denote the number of unicyclic components with at
least a(u) = |2un®/m*d*(d — 1)*] edges. Then, from (2), we get

2n?

EZ(u)= Z EX, 1(s,0)=(1 + o(1)) Z 41Sexp<

s=a(u) s=a(u)

B sm>d*(d — 1)2>

where the quantity o(1) tends to 0 uniformly for all u such that, say, 1/log(m?/n?) < u < log(m’/n?).
Hence,

EZ(u)=(1 + 0(1))/ :;i dr=(1+ o(1).

Furthermore, it is easy to check that, for every j > 1, the jth factorial moment [E;Z(u) of Z(u)
converges to w/. Thus, Z(u) converges in distribution to a random variable with Poisson distribution
with the expectation p and (3) follows.

Finally, note that

n
()
M —u

P(U, =u) = <u(d”_ 1)> Cu(,0)

n
/ (d) P(Z(u)=¢ — 1)+ o(1)

M

/—1

= (1 + 0(1))[EXn,M(u50)(/‘u_ 1)!e_u

2 2(d — 12l !
:(1_1_0(1))%%

—x—p

8x(/ — 1)! ’

where in the first line of the above equation the quantity o(1) stands for the probability that G¢(n, M)
contains two unicyclic components of size s. [

Arguing in a similar way one can prove an analogous result for the number of edges L, =L/(n,M)
contained in the /th largest component of G%(n, M).

Theorem 6. Let / > 1 be a fixed natural number and M =n/d(d — 1) — m, where m/n** — oo but
m/n — 0 as n — oo. Then, a.a.s. the (th largest component of G%(n,M) is a hypertree.
Furthermore, let t =t(n) be a function which tends to y, —oco < y < oo as n — oco. Then

. 2n? m 5 m’ — _;
nli{lgolp <L/ < m <1Ogn2 — Eloglog’? +l>> = 2 ?!e
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and
2n? m? 5 m’
p(L/_Liz(d—l)zmz <lognz—2loglognz+t)J>
m*d>d—-1)y> '
=(1 1))— Y
=+ o) =g e
where
i d*d — e
/I:A(y):(i).

NG

As an immediate consequence of Theorems 4—6 we get the following fact.

Corollary 7. Let M =n/d(d — 1) —m, where m/n*® — 0o as n — oo. Then a.a.s. G(n,M) contains
no components with more than n*? edges.

4. Supercritical phase

In this section, we prove the main result concerned with the number of vertices and the number of
edges in the largest component of GY(n, M) in the supercritical case, i.e., when M =n/d(d — 1)+ m
and m/n*3 — oo as n — oo. Unfortunately, we are able to do it only under the additional assumption
that m/n*? tends to infinity slowly enough, more precisely that m = o(n*> log n/loglog n).

Let psx = psi(n,M) denote the probability that the lexicographically first largest component of
G“%(n,M) contains r =s(d — 1) — k vertices and s edges. (We remark that for this range of M the
largest component of G“(n,M) is a.a.s. always unique; thus the words “lexicographically first” we
are using to make p;; well defined are not very relevant.) The main result of this section gives us
the precise joint distribution of s and £ in the early supercritical phase.

Theorem 8. Let M =n/d(d — 1) + m, where m*/n> — oo but m’loglogn/n*logn — 0 as
n — oo. Then the largest component of G¥(n,M) a.a.s. contains (1 + o(1))2dm/(d — 1) edges
and has excess (1 + o(1))2(d — 1)’m?/3n®. Furthermore, let x =x(n), y= y(n) be functions such
that x(n) — a, y(n) — b as n — oo. Set

S:\‘2dm N X 2n? J @)

d—1 d—1\dd—Dm

_ 3,3 _ 3,3
k{ww/wwwm )

Then
ps,k:(1+o(1))fd_lexp< zcﬂ V lsab—ib2>. 6)
Y

and

dm 2
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Proof. Let M, s, and k be defined as above and let » =s(d —1)—k. In order to construct a d-uniform
hypergraph on n vertices in which the largest component has » =s(d — 1) — k vertices and s edges,
first choose the vertices and the edges of the largest component in one of ()Cy(s, k) possible ways
and then pick the remaining M — s edges such that no components of more than  vertices emerges.
One can easily check that

g _n=r 23,
<M s d(d—l))/” >

as n — oo. Thus, Corollary 7 implies that the probability that the largest component of G(n—r, M —s)

is larger than n*>=o(s) tends to 0 as n — oo uniformly for the range of s and k we consider.
Consequently,
" n—r n
Psi = (1 +05x(1)) <r> Ca(s, k) d / dj |,
M—s M

where here and below o, (1) denotes the value which tends to 0 as # — oo uniformly for every
s=s(n,M) such that dm < s(d — 1) <3dm and k=k(n,M) for which (d — 1)d*m?/2n*> <k <
(d — Dd?>m?/n?.
The asymptotic value of
n—r n
() () (G)
M—s M

is given by formula (1) (note that since M =n/d(d — 1)+ m, the sign of m in (1) must be changed).
Furthermore, Lemma 3 provides the value for C,(s, k). Thus, we arrive at

V6 (e(d — 1)4s3 )"/2 exp(_mzsdz(d — 1) N ms’d(d —1)°  s3(d— 1)4> ‘

s,k = 1 s,k )
Pok =+ 0u0) o = o o on2
(7)

Routine but not very exciting calculations show that for every function w= w(n) which tends to
infinity as n — oo,

s+ =[2dm/(d — 1)+ wn//m)|

and
ki=|2(d — Dd*m®/3n* + om®?/n],
we have
s+ kg
Z Z Ds,k = 1+ Os,k(l)'
s=S_ k=k_

Finally, if we put into (7) the value of s and k£ given by (4) and (5) then, after tedious computations,
it reduces to (6). O

As an immediate corollary of the above result we get the following.
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Theorem 9. Let M =n/d(d — 1) + m, where m*/n* — oo but m>loglogn/n*logn — 0 as n — oo.
Furthermore, let X, and Y, denote the number of edges and the excess in the lexicographically
first largest component of G(n,M), and

- de
X":< /\/d(d—l)m

1NVg3,3 — 1\ 73,3
7 (y _2d=Ddm 10(d = Ddm
3n?

3n?

and

Then the random variable (X,Y) converges in distribution to (X,Y), where (X,Y) has the stan-
darized normal distribution with correlation \/15/5. O

The structure of G?(n, M) can be easily deduced from Theorems 5 and 6, Corollary 7 and Theorem
8. Let us call a component of G¢(n, M) large if it contains more than n*> edges and small otherwise.
Then, in the supercritical phase, a.a.s. GY(n, M) contains precisely one large component, whose size
and excess are characterized by Theorem 8. Furthermore, the distribution of the sizes of the small
components can be characterized in a similar way as in Theorems 5 and 6; since we would not like
to repeat lengthy and complicated formulae we give the local limit theorem only for the size of the
/th largest component.

Theorem 10. Let M =n/d(d — 1) + m, where m’/n> — oo but m?loglogn/n*logn — 0 as
n — oo. Then a.a.s. GY(n,M) consists of one large complex component and some number of
small components which are either hypertrees or unicyclic.

Furthermore, let £ =2 be a fixed number and let t=1t(n) be a function which tends to y,
—00 < y<oo as n — oo. Then the (th largest component of G¥(n,M) is a hypertree with L,
edges, where

2n? m? 5 m?
PlL,=|—"  (log’= — 2loglog —
(” {d%d—l)zmz<°gn2 PR W)J)

m ds(d )3 /1/—2

= (o) g e
and
- _d3(d—1)e_y
h=in) ==

Proof. Let M =n/d(d — 1)+ m, where m*/n*> — oo but m*loglogn/n*logn — 0 as n — oco. Let us
remove from G?(n, M) the vertices of the largest component. Then, from Theorem 8 we infer that

a.a.s. the random graph @d(n,M ) obtained in this way has
n' =n—2dm + O(n//m)
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vertices, and

n 2dm n n' n
M=—— - 4O —= = - ol —
dd-n " a1 " <\/ﬁ> dd-1n " («Fm)
edges. Note that, if we fix #n’ and M’, then each such hypergraph with largest component smaller

than, say, n?>, is equally likely to appear as @d. Furthermore, from Corollary 7 it follows that

~d ..
a.a.s. the largest component of G has at most n%3 edges. Thus, to complete the proof it is enough

to observe that the limit distributions given in Theorem 6 remain unchanged if we replace n by
n'=n—2dm — O(n/\/m) and m by m'=m + O(n/\/m). O

Theorems 8 and 9 describe the structure of the largest component of G%(n,M) only for the early
supercritcal phase, when M =n/d(d —1)+m, and m/n*3 = o(log n/loglogn). We conjecture however
that a similar result holds for every m such that m/n*? — oo but m = o(n); i.e., then the appropriately
standarized random variables X, and Y, in Theorem 9 converge in distribution to the standarized
bivariate normal distribution with correlation coefficient m/S.
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