The phase transition in a random hypergraph

Michał Karonski ${ }^{\text {a,b }}$, Tomasz Łuczak ${ }^{\text {a,b, }, *, 1}$
${ }^{a}$ Department of Discrete Mathematics, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA

Received 26 October 2000; received in revised form 12 January 2001

Abstract

We show that in the evolution of the random d-uniform hypergraph $\mathbb{G}^{d}(n, M)$ the phase transition occurs when $M=n / d(d-1)+O\left(n^{2 / 3}\right)$. We also prove local limit theorems for the distribution of the size of the largest component of $\mathbb{G}^{d}(n, M)$ in the subcritical and in the early supercritical phase. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 05C80; 05C65

1. Introduction

A hypergraph \mathscr{H} is a pair (V, \mathscr{E}), where V denotes the set of vertices of \mathscr{H} and \mathscr{E} is a family of subsets of V called edges. We say that \mathscr{H} is d-uniform, or, simply, uniform, if $|E|=d$ for every $E \in \mathscr{E}$. The random hypergraph $\mathbb{G}^{d}(n, M)$ is defined as a hypergraph chosen uniformly at random from the family of all $\left(\begin{array}{c}\left(\begin{array}{c}n \\ d \\ M\end{array}\right)\end{array}\right) d$-uniform labelled hypergraphs with vertex set $[n]=\{1,2, \ldots, n\}$ and M edges. (Note that $\mathbb{G}(n, M)=\mathbb{G}^{2}(n, M)$, i.e., for $d=2$ the notion of a 2-uniform random hypergraph coincides with that of the random graph.) We study the behaviour of $\mathbb{G}^{d}(n, M)$ as $n \rightarrow \infty$, where the number of edges $M=M(n)$ may vary as a function of n. In particular, we say that for a given function $M=M(n)$ graph property holds for $\mathbb{G}^{d}(n, M)$ asymptotically almost surely, or, briefly, a.a.s., if the probability that $\mathbb{G}^{d}(n, M)$ has this property tends to 1 as $n \rightarrow \infty$.

One of the most striking results of the seminal paper on random graphs by Erdős and Rényi [4] was the discovery of the abrupt change in the structure of $\mathbb{G}(n, M)$, when $M=c n$ and $c \sim \frac{1}{2}$. They proved that if $c<\frac{1}{2}$, then a.a.s. $\mathbb{G}(n, M)$ consists of many small components, while for $c>\frac{1}{2}$,

[^0]it a.a.s. has one large component which dominates the whole graph. The component structure for random hypergraphs was studied by Schmidt-Pruzan and Shamir [9]. In particular, they proved that if $d \geqslant 2, M=c n$ and $c<1 / d(d-1)$, then a.a.s. the largest component of $\mathbb{G}^{d}(n, M)$ is of the order $\log n$, for $c=1 / d(d-1)$ it has $\Theta\left(n^{2 / 3}\right)$ vertices, and finally, when $c>1 / d(d-1)$, a.a.s. $\mathbb{G}^{d}(n, M)$ contains the unique giant component of size $\Theta(n)$. Thus, as in the case of the random graph, the largest component of $\mathbb{G}^{d}(n, M)$ grows rapidly when the number of edges is roughly $n / d(d-1)$.

The study of the behaviour of the component structure of $\mathbb{G}(n, M)$ when $2 M / n \rightarrow 1$ is much more difficult. Erdős and Rényi [4] suggested that in this case the largest component has a.a.s. $\Theta\left(n^{2 / 3}\right)$ vertices. The fact that it is not true was first observed by Bollobás, who in his pioneering work [2] (see also [3, Chapter VI]) precisely described the structure of $\mathbb{G}(n, M)$ for $2 M / n \rightarrow 1$ (his results were later supplemented by Łuczak [8]). Thus, in the subcritical phase, when $M=n / 2-m$ and $m / n^{2 / 3} \rightarrow$ ∞, the largest components of $\mathbb{G}(n, M)$ have roughly similar size while for $M=n / 2+m$, where $m / n^{2 / 3} \rightarrow \infty$ as $n \rightarrow \infty$ (supercritical phase) a.a.s. $\mathbb{G}(n, M)$ contains a unique largest component significantly larger than all its competitors. (For a more detailed description of the phase transition phenomenon in $\mathbb{G}(n, M)$ see [5], [6, Chapter 5].)

In this paper, we study the asymptotic behaviour of the random hypergraph near the critical range, i.e., for $M \sim n / d(d-1)$. It turns out that in the subcritical phase, now determined by the condition that $M=n / d(d-1)-m$ and $m / n^{2 / 3} \rightarrow \infty$ as $n \rightarrow \infty$, the structure of $\mathbb{G}^{d}(n, M)$ is not hard to analyze. In this case, a.a.s. $\mathbb{G}^{d}(n, M)$ consists of hypertrees and unicyclic components and one can obtain a local limit distribution for the size of the largest component using elementary method of moments. The problem of describing the component structure of $\mathbb{G}^{d}(n, M)$ when $M=n / d(d-1)+m$ and $m / n^{2 / 3} \rightarrow \infty$, seems to be a much more challenging task. However, in Section 3 we observe that the asymptotic distribution of the size of the largest component can be deduced from the result on the number of connected hypergraphs with a given number of vertices and edges. As a matter of fact in this way one can obtain a surprisingly precise local limit result on the joint distribution of the two random variables which measure the number of vertices and edges in the largest component (Theorems 8 and 9), which has not been known even for random graphs, when $d=2$.

2. Connected hypergraphs

Let H be a d-uniform hypergraph with r vertices and s edges. Define the excess of H as

$$
\operatorname{ex}(H)=(d-1) s-r
$$

Note that from the definition of the excess it follows that if ex $(H)=k$, then $(d-1) \mid(r+k)$. Observe also that if H is connected, then $\operatorname{ex}(H) \geqslant-1$. A connected hypergraph H for which $\operatorname{ex}(H)=-1$ we call a hypertree, or, briefly, a tree; if for a connected H we have ex $(H)=0$ we say that H is unicyclic. Finally, we call a connected hypergraph H complex if its excess is positive.

Let $C_{d}(s, k)$ denote the number of connected d-uniform hypergraphs with $r=s(d-1)-k$ vertices and s edges. In the case of graphs, i.e., when $d=2$, the behaviour of $C_{2}(s, k)$ has been thoroughly studied by many authors, and finally settled down by Bender et al. (see [1] and references therein).

For $d \geqslant 2$ the value of $C_{d}(s,-1)$ is given by the following result (see [10]). We remark that all asymptotic estimates in this note are made under the assumption that d is fixed, i.e., the hidden constants in $O(\cdot)$ may, and typically do, depend on d.

Lemma 1. Let $r=s(d-1)+1$. Then the number of connected d-uniform hypertrees with r vertices, s edges is given by

$$
C_{d}(s,-1)=\frac{\left[(s(d-1)]![s(d-1)+1]^{s-1}\right.}{s![(d-1)!]^{s}} .
$$

In particular, if $s \rightarrow \infty$, then

$$
C_{d}(s,-1)=\left(1+O\left(\frac{1}{s}\right)\right) \frac{1}{\sqrt{d-1}} \frac{s^{s(d-1)-1}}{\mathrm{e}^{s(d-2)-1 /(d-1)}}\left[\frac{(d-1)^{d-1}}{(d-2)!}\right]^{s}
$$

Selivanov [10] gave also the following formula for $C_{d}(s, 0)$.

Lemma 2. The number of connected d-uniform hypergraphs with $r=s(d-1)$ vertices and s edges is given by

$$
C_{d}(s, 0)=\frac{[s(d-1)]!}{2[(d-2)!]^{s} S^{s-1}} \sum_{j=2}^{s} \frac{1}{s^{j}(s-j)!} .
$$

Thus, for $s \rightarrow \infty$,

$$
C_{d}(s, 0)=\left(1+O\left(\frac{1}{s}\right)\right) \sqrt{\frac{\pi(d-1)}{8}} \frac{s^{s(d-1)-1 / 2}}{\mathrm{e}^{s(d-2)}}\left[\frac{(d-1)^{d-1}}{(d-2)!}\right]^{s} .
$$

Finally, for a given d and $k=o(\log s / \log \log s)$, the asymptotic value of $C_{d}(s, k)$ was determined by the following result of Karoński and Łuczak [7].

Lemma 3. Let $d \geqslant 2$ and let $k=k(s)$ be a function of s such that $k \rightarrow \infty$ but $k \log \log s / \log s \rightarrow 0$ as $s \rightarrow \infty$. Then

$$
\begin{aligned}
C_{d}(s, k)= & \left(1+O\left(\frac{1}{k}+\frac{k^{2}}{s}+\sqrt{\frac{k^{3}}{r}}+\frac{k^{100 d^{2} k}}{r}\right)\right) \sqrt{\frac{3}{4 \pi}}\left(\frac{\mathrm{e}}{12 k}\right)^{k / 2} \\
& \times \frac{(d-1)^{s(d-1)+k+1 / 2}}{[(d-2)!]^{s}} s^{s(d-1)+(k-1) / 2} \mathrm{e}^{s(2-d)-k /(d-1)} .
\end{aligned}
$$

3. Subcritical phase

As in the case of the random graph $\mathbb{G}(n, M)$, the random hypergraph $\mathbb{G}^{d}(n, M)$ has a particularly simple structure whenever $M=n / d(d-1)-m$, and $m / n^{2 / 3} \rightarrow \infty$.

Theorem 4. Let $M=n / d(d-1)-m$, where $m / n^{2 / 3} \rightarrow \infty$ as $n \rightarrow \infty$. Then, a.a.s. $\mathbb{G}^{d}(n, M)$ consists of hypertrees and unicyclic components.

Proof. We say that a sequence of edges $e_{1}, \ldots, e_{t}, t \geqslant 1$, is a path if $\left|e_{i} \cap e_{i+1}\right|=1$ for $i=1,2, \ldots, t-1$, and $e_{i} \cap e_{j}=\emptyset$ whenever $|i-j| \geqslant 2$. Our argument is based on the observation that any component of a hypergraph which is neither a hypertree, nor a unicyclic component contains a structure of one of the two following types.

Type 1: There is a path $e_{1}, \ldots, e_{t}, t \geqslant 1$, and a edge f such that $f \cap e_{1} \neq \emptyset, f \cap e_{t} \neq \emptyset$ and

$$
\left|f \cap \bigcup_{i=1}^{t} e_{i}\right| \geqslant 3
$$

Type 2: There is a path $e_{1}, \ldots, e_{t-1}, t \geqslant 2$, and edges f_{1}, f_{2} such that $f_{1} \cap e_{1} \neq \emptyset, f_{2} \cap e_{t-1} \neq \emptyset$ and

$$
\left|f_{j} \cap \bigcup_{i=1}^{t-1} e_{i}\right| \geqslant 2 \quad \text { for } j=1,2
$$

Observe that the number of hypergraphs $w(t)$ of one of the above types with precisely $t+1$ edges which are contained in the complete d-uniform hypergraph on n vertices is bounded above by

$$
\begin{aligned}
w(d) \leqslant & \frac{d}{d-1}\binom{n}{d}\left[(d-1)\binom{n}{d-1}\right]^{t-1} t d^{3}\binom{n}{d-3} \\
& +\frac{d}{d-1}\binom{n}{d}\left[(d-1)\binom{n}{d-1}\right]^{t-2} d^{4} t^{2}\binom{n}{d-2}^{2} \\
\leqslant & n^{(d-1)(t+1)-1} \frac{8 t^{2} d^{4}}{[(d-2)!]^{t}} .
\end{aligned}
$$

Let Y denote the number of structures of types 1 and 2 which are contained in $\mathbb{G}^{d}(n, M)$, where $M=n / d(d-1)-m$ and $m / n^{2 / 3} \rightarrow \infty$. Then,

$$
\left.\left.\mathbb{P}(Y>0) \leqslant \mathbb{E} Y=\sum_{r=1}^{n+1} w(d)\binom{n}{d}-t-1\right) /\binom{n}{M-t-1} / \begin{array}{c}
d \\
M
\end{array}\right) .
$$

Observe that, for t large enough,

$$
\left.\begin{array}{l}
\binom{\binom{n}{d}-t-1}{M-t-1} /\binom{n}{d} \\
M
\end{array}\right) .
$$

Hence,

$$
\mathbb{P}(Y>0) \leqslant 8 d^{5} \sum_{t=1}^{n+1} \frac{t^{2}}{n} \exp \left(-\frac{m t}{n}\right) \leqslant 8 d^{5} \int_{0}^{\infty} \frac{x^{2}}{n} \mathrm{e}^{-m x / n} \mathrm{~d} x=16 d^{5} \frac{n^{2}}{m^{3}}
$$

Since $m / n^{2 / 3} \rightarrow \infty$, the above sum tends to 0 as $n \rightarrow \infty$, i.e., a.a.s. $Y=0$ and the assertion follows.

In order to study the phase transition phenomenon, we need precise estimates on the number of complex components at different stages of the evolution of a random uniform hypergraph. Thus, let $X_{n, M}(s, k)$ denote the random variable which counts components on $r=s(d-1)-k$ vertices and s edges of $\mathbb{G}^{d}(n, M)$. Then, for the expectation of $X_{n, M}(r, k)$, we have

$$
\left.\left.\mathbb{E} X_{n, M}(r, k)=\binom{n}{r} C_{d}(s, k)\binom{n-r}{d}\right) /\binom{n}{M-s}\right) .
$$

Now, from Stirling's formula,

$$
\binom{n}{r}=\frac{1}{\sqrt{2 \pi r}} \frac{n^{r} \mathrm{e}^{r}}{r^{r}} \exp \left(-\frac{r^{2}}{2 n}-\frac{r^{3}}{6 n^{2}}+O\left(\frac{r^{4}}{n^{3}}+\frac{1}{r}\right)\right) .
$$

Furthermore,

$$
\left.\begin{array}{l}
\left.\binom{n-r}{d}\right) /\binom{n}{M-s} \\
d
\end{array}\right) .
$$

Let $M=n / d(d-1)-m$, where $m / n^{2 / 3} \rightarrow \infty$ but $m=o(n)$. Then

$$
-\frac{s^{2}}{2 M}-\frac{s^{3}}{6 M^{2}}=-\frac{s^{2} d(d-1)}{2 n}-\frac{m s^{2} d^{2}(d-1)^{2}}{2 n^{2}}-\frac{s^{3} d^{2}(d-1)^{2}}{6 n^{2}}+O\left(\frac{m s^{3}}{n^{3}}\right)
$$

and

$$
\begin{aligned}
\left(\frac{d!M}{n^{d}}\right)^{s} & =\frac{[(d-2)!]^{s}}{n^{s(d-1)}}\left(1+\frac{d(d-1) m}{n}\right)^{s} \\
& =\frac{[(d-2)!]^{s}}{n^{s(d-1)}} \exp \left(-\frac{m s d(d-1)}{n}-\frac{m^{2} s d^{2}(d-1)^{2}}{2 n^{2}}+O\left(\frac{m^{3} s}{n^{4}}\right)\right) .
\end{aligned}
$$

Combining the above formulae and substituting $r=s(d-1)-k$ we get

$$
\left.\begin{array}{l}
\left.\binom{n}{r}\left(\binom{n-r}{d}\right) /\binom{n}{d}\right) \\
M-s
\end{array}\right) /\left(\begin{array}{l}
1 \\
 \tag{1}\\
\sim \frac{[(d-2)!]^{s}}{\sqrt{2 \pi}} \frac{n^{-k}}{(d-1)^{s(d-1)-k+1 / 2}} \frac{s^{s(d-1)-k+1 / 2}}{} \\
\quad \times \exp \left(s(d-2)+\frac{k}{d-1}-\frac{m s^{2} d(d-1)^{3}}{2 n^{2}}-\frac{m^{2} s d^{2}(d-1)^{2}}{2 n^{2}}-\frac{s^{3}(d-1)^{4}}{6 n^{2}}\right),
\end{array}\right.
$$

where \sim means that the asymptotic equation holds up to a factor of

$$
1+O\left(\frac{1}{s}+\frac{s}{n}+\frac{s^{4}+m s^{3}+m^{3} s}{n^{4}}+\frac{k s}{n}+\frac{k^{2}}{s}\right)
$$

Theorem 4 states that in the subcritical phase, when $M=n / d(d-1)-m$ and $m / n^{2 / 3} \rightarrow \infty$, a.a.s. $\mathbb{G}^{d}(n, M)$ contains no complex components. Since for $k=-1,0$ the asymptotic value of $C_{d}(s, k)$ is given by Lemmas 1 and 2, from (1) we get

$$
\begin{equation*}
\mathbb{E} X_{n, M}(s, 0) \sim \frac{1}{4 s} \exp \left(-\frac{m^{2} s d^{2}(d-1)^{2}}{2 n^{2}}-\frac{m s^{2} d(d-1)^{3}}{2 n^{2}}-\frac{s^{3}(d-1)^{4}}{6 n^{2}}\right) \tag{2}
\end{equation*}
$$

and

$$
\mathbb{E} X_{n, M}(s,-1) \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{(d-1)^{2}} \frac{n}{s^{5 / 2}} \exp \left(-\frac{m^{2} s d^{2}(d-1)^{2}}{2 n^{2}}-\frac{m s^{2} d(d-1)^{3}}{2 n^{2}}-\frac{s^{3}(d-1)^{4}}{6 n^{2}}\right)
$$

where in both of the above cases we omitted the factor

$$
1+O\left(\frac{1}{s}+\frac{s}{n}+\frac{s^{4}+m s^{3}+m^{3} s}{n^{4}}\right)
$$

For a natural number ℓ let $U_{\ell}=U_{\ell}(n, M)$ denote the number of edges of the ℓ th largest unicyclic component of $\mathbb{G}^{d}(n, M)$. The following theorem describes the limit distribution of U_{ℓ} in the subcritical phase.

Theorem 5. Let $\ell \geqslant 1$ be a fixed natural number and let $M=n / d(d-1)-m$, where $m / n^{2 / 3} \rightarrow \infty$ but $m / n \rightarrow 0$ as $n \rightarrow \infty$. Then, for every function $u=u(n)$ such that $u(n) \rightarrow x>0$ as $n \rightarrow \infty$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(U_{\ell} \geqslant \frac{2 u n^{2}}{d^{2}(d-1)^{2} m^{2}}\right)=\sum_{i=0}^{\ell-1} \frac{\mu^{i}}{i!} \mathrm{e}^{-\mu} \tag{3}
\end{equation*}
$$

and

$$
\mathbb{P}\left(U_{\ell}=\left\lfloor\frac{2 u n^{2}}{d^{2}(d-1)^{2} m^{2}}\right\rfloor\right)=(1+o(1)) \frac{m^{2}}{n^{2}} \frac{d^{2}(d-1)^{2} \mu^{\ell-1}}{8 x(\ell-1)!} \mathrm{e}^{-x-\mu}
$$

where

$$
\mu=\mu(x)=\int_{x}^{\infty} \frac{\mathrm{e}^{-t}}{4 \sqrt{t}} \mathrm{~d} t
$$

Proof. Let $Z(u)=Z_{n, M}(u)=\sum_{s \geqslant u} X_{n, M}(s, 0)$ denote the number of unicyclic components with at least $a(u)=\left\lfloor 2 u n^{2} / m^{2} d^{2}(d-1)^{2}\right\rfloor$ edges. Then, from (2), we get

$$
\mathbb{E} Z(u)=\sum_{s \geqslant a(u)} \mathbb{E} X_{n, M}(s, 0)=(1+o(1)) \sum_{s \geqslant a(u)} \frac{1}{4 s} \exp \left(-\frac{s m^{2} d^{2}(d-1)^{2}}{2 n^{2}}\right),
$$

where the quantity $o(1)$ tends to 0 uniformly for all u such that, say, $1 / \log \left(m^{3} / n^{2}\right) \leqslant u \leqslant \log \left(m^{3} / n^{2}\right)$. Hence,

$$
\mathbb{E} Z(u)=(1+o(1)) \int_{x}^{\infty} \frac{\mathrm{e}^{-t}}{4 \sqrt{t}} \mathrm{~d} t=(1+o(1)) \mu
$$

Furthermore, it is easy to check that, for every $j \geqslant 1$, the j th factorial moment $\mathbb{E}_{j} Z(u)$ of $Z(u)$ converges to μ^{j}. Thus, $Z(u)$ converges in distribution to a random variable with Poisson distribution with the expectation μ and (3) follows.

Finally, note that

$$
\left.\begin{array}{rl}
\mathbb{P}\left(U_{\ell}=u\right) & \left.=\binom{n}{u(d-1)} C_{d}(u, 0)\binom{\binom{n}{d}}{M-u} /\binom{n}{d}\right) \mathbb{P}(Z(u)=\ell-1)+o(1) \\
M
\end{array}\right)
$$

where in the first line of the above equation the quantity $o(1)$ stands for the probability that $\mathbb{G}^{d}(n, M)$ contains two unicyclic components of size s.

Arguing in a similar way one can prove an analogous result for the number of edges $L_{\ell}=L_{\ell}(n, M)$ contained in the ℓ th largest component of $\mathbb{G}^{d}(n, M)$.

Theorem 6. Let $\ell \geqslant 1$ be a fixed natural number and $M=n / d(d-1)-m$, where $m / n^{2 / 3} \rightarrow \infty$ but $m / n \rightarrow 0$ as $n \rightarrow \infty$. Then, a.a.s. the ℓ th largest component of $\mathbb{G}^{d}(n, M)$ is a hypertree.

Furthermore, let $t=t(n)$ be a function which tends to $y,-\infty<y<\infty$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(L_{\ell} \leqslant \frac{2 n^{2}}{d^{2}(d-1)^{2} m^{2}}\left(\log \frac{m^{3}}{n^{2}}-\frac{5}{2} \log \log \frac{m^{3}}{n^{2}}+t\right)\right)=\sum_{i=0}^{\ell-1} \frac{\lambda^{\ell}}{\ell!} \mathrm{e}^{-\lambda}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left(L_{\ell}=\left\lfloor\frac{2 n^{2}}{d^{2}(d-1)^{2} m^{2}}\left(\log \frac{m^{3}}{n^{2}}-\frac{5}{2} \log \log \frac{m^{3}}{n^{2}}+t\right)\right\rfloor\right) \\
& \quad=(1+o(1)) \frac{m^{2}}{n^{2}} \frac{d^{5}(d-1)^{3}}{8 \sqrt{\pi}} \frac{\lambda^{\ell-1}}{(\ell-1)!} \mathrm{e}^{-y-\lambda},
\end{aligned}
$$

where

$$
\lambda=\lambda(y)=\frac{d^{3}(d-1) \mathrm{e}^{-y}}{4 \sqrt{\pi}} .
$$

As an immediate consequence of Theorems 4-6 we get the following fact.
Corollary 7. Let $M=n / d(d-1)-m$, where $m / n^{2 / 3} \rightarrow \infty$ as $n \rightarrow \infty$. Then a.a.s. $G(n, M)$ contains no components with more than $n^{2 / 3}$ edges.

4. Supercritical phase

In this section, we prove the main result concerned with the number of vertices and the number of edges in the largest component of $\mathbb{G}^{d}(n, M)$ in the supercritical case, i.e., when $M=n / d(d-1)+m$ and $m / n^{2 / 3} \rightarrow \infty$ as $n \rightarrow \infty$. Unfortunately, we are able to do it only under the additional assumption that $m / n^{2 / 3}$ tends to infinity slowly enough, more precisely that $m=o\left(n^{2 / 3} \log n / \log \log n\right)$.

Let $p_{s, k}=p_{s, k}(n, M)$ denote the probability that the lexicographically first largest component of $\mathbb{G}^{d}(n, M)$ contains $r=s(d-1)-k$ vertices and s edges. (We remark that for this range of M the largest component of $\mathbb{G}^{d}(n, M)$ is a.a.s. always unique; thus the words "lexicographically first" we are using to make $p_{s, k}$ well defined are not very relevant.) The main result of this section gives us the precise joint distribution of s and k in the early supercritical phase.

Theorem 8. Let $M=n / d(d-1)+m$, where $m^{3} / n^{2} \rightarrow \infty$ but $m^{3} \log \log n / n^{2} \log n \rightarrow 0$ as $n \rightarrow \infty$. Then the largest component of $\mathbb{G}^{d}(n, M)$ a.a.s. contains $(1+o(1)) 2 d m /(d-1)$ edges and has excess $(1+o(1)) 2(d-1)^{3} m^{3} / 3 n^{2}$. Furthermore, let $x=x(n), y=y(n)$ be functions such that $x(n) \rightarrow a, y(n) \rightarrow b$ as $n \rightarrow \infty$. Set

$$
\begin{equation*}
s=\left\lfloor\frac{2 d m}{d-1}+\frac{x}{d-1} \sqrt{\frac{2 n^{2}}{d(d-1) m}}\right\rfloor \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\left\lfloor\frac{2(d-1) d^{3} m^{3}}{3 n^{2}}+y \sqrt{\frac{10(d-1) d^{3} m^{3}}{3 n^{2}}}\right\rfloor . \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
p_{s, k}=(1+o(1)) \frac{\sqrt{6}}{8 \pi} \frac{d-1}{d m} \exp \left(-\frac{5}{4} a^{2}+\frac{\sqrt{15}}{2} a b-\frac{5}{4} b^{2}\right) . \tag{6}
\end{equation*}
$$

Proof. Let M, s, and k be defined as above and let $r=s(d-1)-k$. In order to construct a d-uniform hypergraph on n vertices in which the largest component has $r=s(d-1)-k$ vertices and s edges, first choose the vertices and the edges of the largest component in one of $\binom{n}{r} C_{d}(s, k)$ possible ways and then pick the remaining $M-s$ edges such that no components of more than r vertices emerges. One can easily check that

$$
\left(M-s-\frac{n-r}{d(d-1)}\right) / n^{2 / 3} \rightarrow-\infty
$$

as $n \rightarrow \infty$. Thus, Corollary 7 implies that the probability that the largest component of $G(n-r, M-s)$ is larger than $n^{2 / 3}=o(s)$ tends to 0 as $n \rightarrow \infty$ uniformly for the range of s and k we consider. Consequently,

$$
\left.\left.p_{s, k}=\left(1+o_{s, k}(1)\right)\binom{n}{r} C_{d}(s, k)\binom{n-r}{d}\right) /\binom{n}{M-s}\right),
$$

where here and below $o_{s, k}(1)$ denotes the value which tends to 0 as $n \rightarrow \infty$ uniformly for every $s=s(n, M)$ such that $d m \leqslant s(d-1) \leqslant 3 d m$ and $k=k(n, M)$ for which $(d-1) d^{3} m^{3} / 2 n^{2} \leqslant k \leqslant$ $(d-1) d^{3} m^{3} / n^{2}$.

The asymptotic value of

$$
\binom{n}{r}\binom{\binom{n-r}{d}}{M-s}\binom{\binom{n}{d}}{M}
$$

is given by formula (1) (note that since $M=n / d(d-1)+m$, the sign of m in (1) must be changed). Furthermore, Lemma 3 provides the value for $C_{d}(s, k)$. Thus, we arrive at

$$
\begin{equation*}
p_{s, k}=\left(1+o_{s, k}\right) \frac{\sqrt{6}}{4 \pi s}\left(\frac{e(d-1)^{4} s^{3}}{12 k n^{2}}\right)^{k / 2} \exp \left(-\frac{m^{2} s d^{2}(d-1)^{2}}{2 n^{2}}+\frac{m s^{2} d(d-1)^{3}}{2 n^{2}}-\frac{s^{3}(d-1)^{4}}{6 n^{2}}\right) . \tag{7}
\end{equation*}
$$

Routine but not very exciting calculations show that for every function $\omega=\omega(n)$ which tends to infinity as $n \rightarrow \infty$,

$$
s_{ \pm}=\lfloor 2 d m /(d-1) \pm \omega n / \sqrt{m}\rfloor
$$

and

$$
k_{ \pm}=\left\lfloor 2(d-1) d^{3} m^{3} / 3 n^{2} \pm \omega m^{3 / 2} / n\right\rfloor,
$$

we have

$$
\sum_{s=s_{-}}^{s_{+}} \sum_{k=k_{-}}^{k_{+}} p_{s, k}=1+o_{s, k}(1) .
$$

Finally, if we put into (7) the value of s and k given by (4) and (5) then, after tedious computations, it reduces to (6).

As an immediate corollary of the above result we get the following.

Theorem 9. Let $M=n / d(d-1)+m$, where $m^{3} / n^{2} \rightarrow \infty$ but $m^{3} \log \log n / n^{2} \log n \rightarrow 0$ as $n \rightarrow \infty$. Furthermore, let X_{n} and Y_{n} denote the number of edges and the excess in the lexicographically first largest component of $\mathbb{G}^{d}(n, M)$, and

$$
\tilde{X}_{n}=\left(X_{n}-\frac{2 d m}{d-1}\right) / \sqrt{\frac{2 n^{2}}{d(d-1) m}}
$$

and

$$
\tilde{Y}_{n}=\left(Y_{n}-\frac{2(d-1) d^{3} m^{3}}{3 n^{2}}\right) / \sqrt{\frac{10(d-1) d^{3} m^{3}}{3 n^{2}}} .
$$

Then the random variable (\tilde{X}, \tilde{Y}) converges in distribution to (X, Y), where (X, Y) has the standarized normal distribution with correlation $\sqrt{15} / 5$.

The structure of $\mathbb{G}^{d}(n, M)$ can be easily deduced from Theorems 5 and 6, Corollary 7 and Theorem 8. Let us call a component of $\mathbb{G}^{d}(n, M)$ large if it contains more than $n^{2 / 3}$ edges and small otherwise. Then, in the supercritical phase, a.a.s. $\mathbb{G}^{d}(n, M)$ contains precisely one large component, whose size and excess are characterized by Theorem 8. Furthermore, the distribution of the sizes of the small components can be characterized in a similar way as in Theorems 5 and 6 ; since we would not like to repeat lengthy and complicated formulae we give the local limit theorem only for the size of the ℓ th largest component.

Theorem 10. Let $M=n / d(d-1)+m$, where $m^{3} / n^{2} \rightarrow \infty$ but $m^{3} \log \log n / n^{2} \log n \rightarrow 0$ as $n \rightarrow \infty$. Then a.a.s. $\mathbb{G}^{d}(n, M)$ consists of one large complex component and some number of small components which are either hypertrees or unicyclic.

Furthermore, let $\ell \geqslant 2$ be a fixed number and let $t=t(n)$ be a function which tends to y, $-\infty<y<\infty$ as $n \rightarrow \infty$. Then the ℓ th largest component of $\mathbb{G}^{d}(n, M)$ is a hypertree with L_{ℓ} edges, where

$$
\begin{aligned}
& \mathbb{P}\left(L_{\ell}=\left\lfloor\frac{2 n^{2}}{d^{2}(d-1)^{2} m^{2}}\left(\log \frac{m^{3}}{n^{2}}-\frac{5}{2} \log \log \frac{m^{3}}{n^{2}}+t\right)\right\rfloor\right) \\
& \quad=(1+o(1)) \frac{m^{2}}{n^{2}} \frac{d^{5}(d-1)^{3}}{8 \sqrt{\pi}} \frac{\lambda^{\ell-2}}{(\ell-2)!} \mathrm{e}^{-y-\lambda}
\end{aligned}
$$

and

$$
\lambda=\lambda(y)=\frac{d^{3}(d-1) \mathrm{e}^{-y}}{4 \sqrt{\pi}} .
$$

Proof. Let $M=n / d(d-1)+m$, where $m^{3} / n^{2} \rightarrow \infty$ but $m^{3} \log \log n / n^{2} \log n \rightarrow 0$ as $n \rightarrow \infty$. Let us remove from $\mathbb{G}^{d}(n, M)$ the vertices of the largest component. Then, from Theorem 8 we infer that a.a.s. the random graph $\hat{\mathbb{G}}^{d}(n, M)$ obtained in this way has

$$
n^{\prime}=n-2 d m+O(n / \sqrt{m})
$$

vertices, and

$$
M^{\prime}=\frac{n}{d(d-1)}+m-\frac{2 d m}{d-1}+O\left(\frac{n}{\sqrt{m}}\right)=\frac{n^{\prime}}{d(d-1)}-m+O\left(\frac{n}{\sqrt{m}}\right)
$$

edges. Note that, if we fix n^{\prime} and M^{\prime}, then each such hypergraph with largest component smaller than, say, $n^{2 / 3}$, is equally likely to appear as $\hat{\mathbb{G}}^{d}$. Furthermore, from Corollary 7 it follows that a.a.s. the largest component of $\hat{\mathbb{G}}^{d}$ has at most $n^{2 / 3}$ edges. Thus, to complete the proof it is enough to observe that the limit distributions given in Theorem 6 remain unchanged if we replace n by $n^{\prime}=n-2 d m-O(n / \sqrt{m})$ and m by $m^{\prime}=m+O(n / \sqrt{m})$.

Theorems 8 and 9 describe the structure of the largest component of $\mathbb{G}^{d}(n, M)$ only for the early supercritcal phase, when $M=n / d(d-1)+m$, and $m / n^{2 / 3}=o(\log n / \log \log n)$. We conjecture however that a similar result holds for every m such that $m / n^{2 / 3} \rightarrow \infty$ but $m=o(n)$; i.e., then the appropriately standarized random variables X_{n} and Y_{n} in Theorem 9 converge in distribution to the standarized bivariate normal distribution with correlation coefficient $\sqrt{15} / 5$.

References

[1] E.A. Bender, E.A. Canfield, B.D. McKay, The asymptotic number of labeled connected graphs with a given number of vertices and edges, Random Struct. Algorithms 1 (1990) 127-169.
[2] B. Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc. 286 (1984) 257-274.
[3] B. Bollobás, Random graphs, Academic Press, London, 1985.
[4] P. Erdős, A. Rényi, On the evolution of random graphs, Publ. Math. Sci. Hung. Acad. Sci. 5 (1960) 17-61.
[5] S. Janson, D.E. Knuth, T. Euczak, B. Pittel, The birth of the giant component, Random Struct. Algorithms 4 (1993) 233-358.
[6] S. Janson, T. Euczak, A. Ruciński, Random Graphs, Wiley, New York, 2000.
[7] M. Karoński, T. Euczak, The number of connected sparsely edged uniform hypergraphs, Discrete Math. 171 (1997) 153-167.
[8] T. Euczak, Component behavior near the critical point of the random graph process, Random Struct. Algorithms 1 (1990) 287-310.
[9] J. Schmidt-Pruzan, E. Shamir, Component structure in the evolution of random hypergraphs, Combinatorica 5 (1985) 81-94.
[10] B.I. Selivanov, Perechislenie odnorodnykh hipergrafov c prostoĭ ciklovoĭ strukturoĭ, Kombinatornyĭ Analiz 2 (1972) 60-67.

[^0]: * Corresponding author. Department of Discrete Mathematics, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznan, Poland.

 E-mail address: tomasz@amu.edu.pl (T. Euczak).
 ${ }^{1}$ Partially supported by KBN grant 2 P03A 02117.

