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Abstract 

Planar two and three-link manipulators are often used in Robotics as testbeds for various algorithms or theories. In this paper, the 
case of a three-link planar manipulator is considered. For this type of robot a solution to the inverse kinematics problem, needed 
for generating desired trajectories in the Cartesian space (2D) is found by using a feed-forward neural network. 
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1. Introduction 

In the forward kinematics problem the end-effecter’s location in the Cartesian space (or work space), that is its 
position and orientation, is determined based on the joint variables. The joint variables are the angles between the 
links, in the case of rotational joints, or the link extension, in the case of prismatic joints. Conversely, given a desired 
end-effecter position and orientation, the inverse kinematics problem refers to finding the values of the joint 
variables that allow the manipulator to reach the given location. 

The relationship between forward and inverse kinematics, as well as the relationship between joint space and 
Cartesian space is shown in Fig. 1. 
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Fig. 1. Forward and inverse kinematics.[6,16] 

Solving the inverse kinematics problem for robotic manipulators is a difficult and also quite challenging task. The 
complexity of this problem is given by the robot’s geometry and the nonlinear trigonometric equations that describe 
the mapping between the Cartesian space and the joint space [6,12,18,21]. 

Although a closed form solution to this problem is preferable in many applications, most of the time this is 
impossible to find. Therefore, various other ways to determine the solution to the inverse kinematics problem were 
proposed. These include, among others, listed in [3], geometrical solutions (where possible), numerical algorithms 
based on optimization techniques [7,20,24], evolutionary computing [14,15,19,21,23] or neural networks [5,10,13] 

Neural networks have long been recognized as being able to represent non-linear relationships that occur between 
input and output data. Their ability to learn by example make them a good candidate to provide the mapping 
between the Cartesian space and the joint space required by the inverse kinematics problem. 

In [22] several neural network structures used for solving the inverse kinematics problem are analyzed. These 
include backpropagation trained feed-forward neural networks or neural networks whose weights are defined in 
terms of sin and cos to fit the forward kinematics representation of the robot. 

This paper investigates the use of a neural network to produce the solution to the inverse kinematics problem for a 
three-link robotic manipulator. The neural network is trained using the data provided by the forward kinematics to 
learn the inverse forward mapping of the configuration space. This means the end effecter’s position and orientation 
are given as inputs and the neural network identifies which joint configuration corresponds to the given localization 
of the end effecter. 

2. Problem formulation 

A hypothetical robotic arm is considered as testbed for the proposed algorithm. It is a three-link planar 
manipulator with rotational joints whose links have all the same size: 
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and whose joint movements are limited within the following ranges: 
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Fig. 2 shows a representation of the planar robotic arm. The arm consists of three movable links, OAl1 , 
ABl2 and  BEl3 that move within a plane. These links are connected by rotational joints whose axes are all 

perpendicular to the plane of the links. 
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Fig. 2. A three link planar manipulator 

The forward kinematic equations of the robotic arm are given in (3). 
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Equations (3) define the coordinates of the end-effecter in the frame attached to the base of the robot (Ox0y0).  
To completely locate the end-effecter within the plane its desired position and orientation are needed. While 

position is defined by equations (3), the orientation of the end-effecter can be described as the angle of rotation of 
the frame attached to the end-effecter relative to the fixed frame attached to the base of the robot. The end-effecter’s 
orientation ΘE is related to the actual joint displacements as: 

321 qqqE   (4) 

Equations (3) and (4) describe the position and orientation of the robot end-effecter viewed from the fixed 
coordinate system attached to the base of the robot in relation to the joint variables q1, q2, q3 [4] 

The robotic arm is required to perform a circular trajectory in its workspace. The points on this trajectory are 
defined using the parametric form of the equation of the circle as: 
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where r is the radius of the circle, (xc,yc) are the coordinates of the circle’s centre and φ is the parametric variable 
in the range 0 to 2π. 

Equations (5) correspond to the desired position of the end-effecter. The desired orientation of the end-effecter is 
expressed by the angle between the positive x coordinate axis and the line that connects the origin of the frame 
attached to the base of the robot and a point on the circle trajectory. This is equivalent to: 
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To produce the above specified trajectory the computation of the inverse kinematics is necessary for each 
considered point on the circle. 

3. The neural network 

To compute the solution to the inverse kinematics problem a feed-forward neural network is proposed. In order to 
produce the training data for the neural network, random joint angle values that uniformly cover the ranges specified 
in equation (2) are generated. To each set Tqqq 321 ,,  of joint angle values, by using the forward kinematics 
equations (3) and (4), the corresponding localization of the end-effecter is computed. The resulting values are stored 
in a vector of the form T

EEE yx ,,  
Fig. 3 shows the resulting position location of the end-effecter (*: position (xE,yE),—: orientation  ΘE) for 1000 

random generated sets of joint angle values. As seen, by accumulating the resulting values, the actual workspace of 
the robot is shaping up. Three random poses of the robotic arm are also shown in Fig. 3 

 

 

Fig. 3.The resulting localization of the end-effecter for random generated joint parameters 

The process of finding a solution to the inverse kinematics problem, in this case, can be seen as an inversion 
problem for neural networks. This means, finding the inputs (joint parameters) that yield a desired output 
(localization of the end-effecter)[17,22]. For this purpose, the neural network is trained using the training data 
obtained according to the procedure mentioned above. For the training stage, the input data is the localization vector 

T
EEE yx ,,  resulted from the forward kinematics and the target data is its corresponding joint parameters set 
Tqqq 321 ,,  of randomly generated values. 

Since, for the same localization in space of the end-effecter, the inverse kinematics problem has multiple 
solutions, duplicates in the neural network input data are identified and the corresponding training set (input data 
and target data) is removed. This way each configuration the neural network is learning refers to a unique mapping 
from Cartesian space to joint space. 

The training set is subjected to a final processing stage, before being used for the actual training, that scales all 
the available values to the [-1,1] interval. 

The structure of the neural network used to learn the inverse kinematics of the robot is shown in Fig. 4. 
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Fig. 4. The structure of the neural network 

This feed-forward neural network consists of 3 inputs, 100 neurons in the hidden layer and 3 neurons in the 
output layer. The transfer function for the neurons in the hidden layer is the hyperbolic tangent sigmoid, shown in 
equation (7) and for the output neurons is the linear function, shown in equation (8). 
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The output of the neural network represents a 3 by 1 vector of joint angles corresponding to the three joints of the 
robotic arm. It is determined based on the desired position and orientation of the end-effecter, according to equation 
(9). 
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where: iW  is100 by 3 matrix containing the weights in the hidden layer, T
iiii bbbB 10021 ,...,,  is the vector of 

biases for the neurons in the hidden layer; oW is 3 by 100 matrix of the weights in the output layer and T
ooo bbb 321 ,,  

are the biases for output neurons. 
The Levenberg-Marquardt training algorithm was used, which is known to assure fast convergence of the training 

error [1, 2, 8 ,9, 11, 25], and is also a very popular curve-fitting algorithm [8]. 
From the set of 1000 collected samples 15% are used for validation and 15% for testing the neural network. The 

other 70% of the samples are used for the actual training of the neural network. 
The performance of the neural network was determined based on the mean squared error between the neural 

network’s actual output and the desired output. It’s evolution is shown in Fig. 5 for the three categories of samples 
mentioned before. 
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Fig. 5. The neural network’s performance. 

4. Results 

Once the training is done, the coordinates and orientation of the points on the desired trajectory in the Cartesian 
space can be applied as inputs to the neural network, which will produce the joint parameters that place the end-
effecter on the required trajectory. 

Fig. 6 shows the resulting joint space trajectories corresponding to the circular trajectory defined in the Cartesian 
space, which was specified by equation (5). 

 

Fig. 6. Joint space trajectories. 

The points on the joint space trajectories can be easily interpolated to 5th order polynomials and the trajectory 
repeated over and over, without having to appeal each time to the computational requirements of the neural network 

Fig. 7 shows the tracking capabilities of the robot whose joint parameters are outputted by the neural network 
based on the desired trajectory in the Cartesian space. Fig 7.a shows how the end-effecter tracks the desired position 
and Fig. 7.b shows the end-effecter’s tracking capabilities for the desired orientation. 
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Fig. 7. (a) End-effecter position; (b) End-effecter orientation. 

Fig. 8 provides an overall image of the system, showing a representation of the robot tracking the desired 
trajectory. 

 

Fig. 8. Three-link planar manipulator trajectory tracking 

5. Conclusion and future work 

All results shown in the previous section were obtained using Matlab modeling of the proposed system. 
The inverse kinematics problem for a three-link robotic manipulator was transformed in a fitting problem, in 

which a neural network was used to map between a data set of numeric inputs and a set of numeric targets. The data 
sets, used for training the neural network, were determined based on the forward kinematics equations of the robot 
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and the neural network was trained to solve an inversion problem, producing the inputs (joint parameters) that match 
the outputs (localization of the end-effecter). 

As seen, the two-layer feed-forward network with sigmoid hidden neurons and linear output neurons can fit 
multi-dimensional mapping problems arbitrarily well, given consistent data and enough neurons in its hidden layer. 

Although the results show promising trajectory tracking capabilities, the problem of using a neural network for 
the inverse kinematics should be further addressed. There are several directions that require further attention, such as 
optimizing the size / structure of the neural network, improving the performance of the neural network, and, of 
course, applying the algorithm to real robotic manipulators. 
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