
A Comparative Study of Industrial Static

Analysis Tools

Pär Emanuelsson
1 ,2

Ericsson AB
Datalinjen 4

SE-583 30 Linköping, Sweden

Ulf Nilsson
1 ,3

Dept. of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Abstract

Tools based on static analysis can be used to find defects in programs. Tools that do shallow analyses based
on pattern matching have existed since the 1980’s and although they can analyze large programs they have
the drawback of producing a massive amount of warnings that have to be manually analyzed to see if they
are real defects or not. Recent technology advances has brought forward tools that do deeper analyses that
discover more defects and produce a limited amount of false warnings. These tools can still handle large
industrial applications with millions lines of code. This article surveys the underlying supporting technology
of three state-of-the-art static analysis tools. The survey relies on information in research articles and
manuals, and includes the types of defects checked for (such as memory management, arithmetics, security
vulnerabilities), soundness, value and aliasing analyses, incrementality and IDE integration. This survey is
complemented by practical experiences from evaluations at the Ericsson telecom company.

Keywords: Static analysis, dataflow analysis, defects, security vulnerabilities.

1 Introduction

Almost all software contain defects. Some defects are found easily while others are

never found, typically because they emerge seldom or not at all. Some defects that

emerge relatively often even go unnoticed simply because they are not perceived as

errors or are not sufficiently severe. Software defects may give rise to several types

of errors, ranging from logical/functional ones (the program sometimes computes

1 Thanks to Dejan Baca, Per Flodin, Fredrik Hansson, Per Karlsson, Leif Linderstam, and Johan Ringström
from Ericsson for providing tool evaluation information.
2 Email: par.emanuelsson@ericsson.com
3 Email: ulfni@ida.liu.se

Electronic Notes in Theoretical Computer Science 217 (2008) 5–21

1571-0661© 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.06.039
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82122251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:par.emanuelsson@ericsson.com
mailto:ulfni@ida.liu.se
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


incorrect values) to runtime errors (the program typically crashes), or resource leaks

(performance of the program degrades possibly until the program freezes or crashes).

Programs may also contain subtle security vulnerabilities that can be exploited by

malicious attackers to gain control over computers.

Fixing defects that suddenly emerge can be extremely costly in particular if

found at the end of the development cycle, or even worse, after deployment. Many

simple defects in programs can be found by modern compilers, but the predominat-

ing method for finding defects is testing. Testing has the potential of finding most

types of defects, however, testing is costly and no amount of testing will find all

defects. Testing is also problematic because it can be applied only to executable

code, i.e. rather late in the development process. Alternatives to testing, such as

dataflow analysis and formal verification, have been known since the 1970s but

have not gained widespread acceptance outside academia—that is, until recently;

lately several commercial tools for detecting runtime error conditions at compile

time have emerged. The tools build on static analysis [27] and can be used to find

runtime errors as well as resource leaks and even some security vulnerabilities stat-

ically, i.e. without executing the code. This paper is a survey and comparison of

three market leading static analysis tools in 2006/07: PolySpace Verifier, Coverity

Prevent and Klocwork K7. The list is by no means exhaustive, and the list of com-

petitors is steadily increasing, but the three tools represent state-of-the-art in the

field at the moment.

The main objective of this study is (1) to identify significant static analysis func-

tionality provided by the tools, but not addressed in a normal compiler, and (2) to

survey the underlying supporting technology. The goal is not to provide a ranking

of the tools; nor is it to provide a comprehensive survey of all functionality pro-

vided by the tools. Providing such a ranking is problematic for at least two reasons:

Static analysis is generally only part of the functionality provided by the tool; for

instance, Klocwork K7 supports both refactoring and software metrics which are

not supported by the two other tools. Even if restricting attention only to static

analysis functionality the tools provide largely non-overlapping functionality. Sec-

ondly, even when the tools seemingly provide the same functionality (e.g. detection

of dereferencing of null pointers) the underlying technology is often not comparable;

each tool typically finds defects which are not found by any of the other tools.

Studying the internals of commercial and proprietary tools is not without prob-

lems; in particular, it is virually impossible to get full information about technical

solutions. However, some technical information is publicly available in manuals

and white papers; some of the tools also originate from academic tools which have

been extensively described in research journals and conference proceedings. While

technical solutions may have changed somewhat since then, we believe that such

information is still largely valid. We have also consulted representatives from all

three providers with the purpose to validate our descriptions of the tools. Still it

must be pointed out that the descriptions of suggested technical solutions is subject

to a certain amount of guessing in some respects.

This technological survey is then complemented by a summary and some exam-

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–216



ples of tool evaluations at Ericsson.

The rest of the report is organized as follows: In Section 2 we define what we

mean by the term static analysis and survey some elementary concepts and precon-

ditions; in particular, the trade off between precision and analysis time. In Section

3 we summarize the basic functionality provided by the three tools—Coverity Pre-

vent, Klocwork K7 and PolySpace Verifier/Desktop—focusing in particular on the

support for the C and C++ programming languages. The section also surveys sev-

eral industrial evaluations of the tools over time at Ericsson, in particular involving

the products from Coverity and Klocwork. Section 4 contains conclusions.

2 Static analysis

Languages such as C and, to a lesser extent, C++ are designed primarily with

efficiency and portability in mind 4 , and therefore provide little support to avoid or

to deal with runtime errors. For instance, there is no checking in C that read or

write access to an array is within bounds, that dereferencing of a pointer variable

is possible (that the variable is not null) or that type casting is well-defined. Such

checks must therefore be enforced by the programmer. Alternatively we must make

sure that the checks are not needed, i.e. guarantee that the error conditions will

never occur in practice.

By the term static analysis we mean automatic methods to reason about run-

time properties of program code without actually executing it. Properties that we

consider include those which lead to premature termination or ill-defined results of

the program, but precludes for instance purely syntactic properties such as syntax

errors or simple type errors. 5 Nor does static analysis address errors involving

the functional correctness of the software. Hence, static analysis can be used to

check that the program execution is not prematurely aborted due to unexpected

runtime events, but it does not guarantee that the program computes the correct

result. While static analysis can be used to check for e.g. deadlock, timeliness

or non-termination there are other, more specialized, techniques for checking such

properties; although relying on similar principles. Static analysis should be con-

trasted with dynamic analysis which concerns analysis of programs based on their

execution, and includes e.g. testing, performance monitoring, fault isolation and

debugging.

Static analysis does not in general guarantee the absence of runtime errors, and

while it can reduce the need for testing or even detect errors that in practice cannot

be found by testing, it is not meant to replace testing.

The following is a non-exhaustive list of runtime problems that typically cannot

be detected by traditional compilers and may be difficult to find by testing, but

which can be found by static analysis:

4 Or so it is often claimed; in fact, even in ANSI/ISO Standard C there are many language constructs
which are not semantically well-defined and which may lead to different behavior in different compilers.
5 The borderline is not clear; some checks done by compilers, such as type checking in a statically typed
language, are closer to runtime properties than syntactic ones. In fact, in a sufficiently rich type system
some type checking must be done dynamically.

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 7



• Improper resource management: Resource leaks of various kinds, e.g. dynamically

allocated memory which is not freed, files, sockets etc. which are not properly

deallocated when no longer used;

• Illegal operations: Division by zero, calling arithmetic functions with illegal values

(e.g. non-positive values to logarithm), over- or underflow in arithmetic expres-

sions, addressing arrays out of bounds, dereferencing of null pointers, freeing

already deallocated memory;

• Dead code and data: Code and data that cannot be reached or is not used. This

may be only bad coding style, but may also signal logical errors or misspellings

in the code;

• Incomplete code: This includes the use of uninitialized variables, functions with

unspecified return values (due to e.g. missing return statements) and incomplete

branching statements (e.g. missing cases in switch statements or missing else

branches in conditional statements).

Other problems checked for by static analysis include non-termination, uncaught

exceptions, race conditions etc.

In addition to finding errors, static analysis can also be used to produce more

efficient code; in particular for “safe” languages like Java, where efficiency was not

the primary objective. Many runtime tests carried out in Java programs can in

practice be avoided given certain information about the runtime behavior. For

instance, tests that array indices are not out-of-bounds can be omitted if we know

that the value of the indices are limited to values in-bounds. Static analysis can

provide such information.

Static analysis can also be used for type inference in untyped or weakly typed

languages or type checking in languages with non-static type systems [21]. Finally

static analysis can be used for debugging purposes (see e.g. [1]), for automatic test

case generation (see e.g. [19]), for impact analysis (see e.g. [26]), intrusion detection

(see e.g. [29]) and for software metrics (see e.g. [30]). However, in this paper we

focus our attention on the use of static analysis for finding defects and software

vulnerabilities which typically would not show up until the code is executed.

Most interesting properties checked by static analyses are undecidable, meaning that

it is impossible, even in theory, to determine whether an arbitrary program exhibits

the property or not. As a consequence static analyses are inherently imprecise—

they typically infer that a property (e.g. a runtime error) may hold. This implies

that

(i) if a program has a specific property, the analysis will usually only be able

to infer that the program may have the property. In some special cases the

analysis may also be able to infer that the program does have the property.

(ii) if the program does not have the property, there is a chance that (a) our analysis

is actually able to infer this (i.e. the program does not have the property), but

it may also happen that (b) the analysis infers that the program may have the

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–218



property.

If the property checked for is a defect then we refer to case (ii)(b) as a false positive.

Hence, if the analysis reports that a program may divide by zero we cannot tell in

general whether it is a real problem (item (i)) or if it is a false positive (item (ii)(b)).

The precision of the analysis determines how often false positives are reported. The

more imprecise the analysis is, the more likely it is to generate false positives.

Unfortunately precision usually depends on analysis time. The more precise

the analysis is, the more resource consuming it is, and the longer it takes. Hence,

precision must be traded for time of analysis. This is a very subtle trade-off—if the

analysis is fast it is likely to report many false positives in which case the alarms

cannot be trusted. On the other hand a very precise analysis is unlikely to terminate

in reasonable time for large programs.

One way to avoid false positives is to filter the result of the analysis, removing

potential errors which are unlikely (assuming some measure of likelihood). However,

this may result in the removal of positives which are indeed defects. This is known

as a false negative—an actual problem which is not reported. False negatives may

occur for at least two other reasons. The first case is if the analysis is too optimistic,

making unjustified assumptions about the effects of certain operations. For instance,

not taking into account that malloc may return null. The other case which may

result in false negatives is if the analysis is incomplete; not taking account of all

possible execution paths in the program.

There are a number of well-established techniques that can be used to trade-off

precision and analysis time. A flow-sensitive analysis takes account of the control

flow graph of the program while a flow-insensitive analysis does not. A flow-sensitive

analysis is usually more precise—it may infer that x and y may be aliased (only)

after line 10, while a flow-insensitive analysis only infers that x and y may be

aliased (anywhere within their scope). On the other hand, a flow-sensitive analysis

is usually more time consuming.

A path-sensitive analysis considers only valid paths through the program. It

takes account of values of variables and boolean expressions in conditionals and loops

to prune execution branches which are not possible. A path-insensitive analysis

takes into account all execution paths—even infeasible ones. Path-sensitivity usually

implies higher precision but is usually more time consuming.

A context-sensitive analysis takes the context—e.g. global variables and actual

parameters of a function call—into account when analyzing a function. This is also

known as inter-procedural analysis in contrast to intra-procedural analysis which

analyses a function without any assumptions about the context. Intra-procedural

analyses are much faster but suffer from greater imprecision than inter-procedural

analyses.

Path- and context-sensitivity rely on the ability to track possible values of pro-

gram variables; for instance, if we do not know the values of the variables in the

boolean expression of a conditional, then we do not know whether to take the then-

branch or the else-branch. Such value analysis can be more or less sophisticated; it

is common to restrict attention to intervals (e.g. 0 < x < 10), but some approaches

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 9



rely on more general relations between several variables (e.g. x > y+z). Another

important issue is aliasing (see e.g. [14,28]); when using pointers or arrays the value

of a variable can be modified by modifying the value of another variable. Without

a careful value and aliasing analyses we will typically have large numbers of false

positives, or one has do ungrounded, optimistic assumptions about the values of

variables.

The undecidability of runtime properties implies that it is impossible to have

an analysis which always finds all defects and produces no false positives. A frame-

work for static analysis is said to be sound (or conservative or safe) if all defects

checked for are reported, i.e. there are no false negatives but there may be false

positives. 6 Traditionally, most frameworks for static analysis have aimed for sound-

ness while trying to avoid excessive reporting of false positives (e.g. the products

from PolySpace). However, most commercial systems today (e.g. Coverity Prevent

and Klocwork K7) are not sound (i.e. they will not find all actual defects) and also

typically produce false positives.

It is sometimes claimed that static analysis can be applied to incomplete code

(individual files and/or procedures). While there is some truth to this, the quality

of such an analysis may be arbitrarily bad. For instance, if the analysis does not

know how a procedure or subprogram in existing code is called from outside it

must, to be sound, assume that the procedure is called in an arbitrary way, thus

analyzing executions that probably cannot occur when the missing code is added.

This is likely to lead to false positives. Similarly incomplete code may contain a

call to a procedure which is not available, either because it is not yet written, or it

is a proprietary library function. Such incomplete code can be analyzed but is also

likely to lead to a large number of false positives and/or false negatives depending

on if the analysis makes pessimistic or optimistic assumptions about the missing

code.

On the positive side, it is often not necessary to provide complete code for

missing functions or function calls. It is often sufficient to provide a stub or a

top-level function that mimics the effects of the properties checked for.

The tools studied in this report adopt different approaches to deal with incom-

plete code and incremental analysis when only some code has been modified (as

discussed in the next section).

3 A comparison of the tools

Shallow static analysis tools based on pattern matching such as FlexeLint [17] have

existed since the late 1980s. Lately several sophisticated industrial-strength static

analysis tools have emerged. In this report we study tools from three of the main

6 Soundness can be used in two completely different senses depending on if the focus is on the reporting of
defects or on properties of executions. In the former (less common) sense soundness would mean that all
positives are indeed defects, i.e. there are no false positives. However, the more common sense, and the one
used here, is that soundness refers to the assumptions made about the possible executions. Even if there is
only a small likelihood that a variable takes on a certain value (e.g. x=0) we do not exclude that possibility.
Hence if the analysis infers that X may be zero in an expression 1/x, there is a possibility that there will be
a runtime error; otherwise not. This is why a sound analysis may actually result in false positives, but no
false negatives.

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–2110



providers—PolySpace, Coverity and Klocwork. There are several other static anal-

ysis tools around, including PREfix/PREfast from Microsoft [3], Astree [7], which

are not as widely available. A tool which has existed for some years but not un-

til recently has become commercially available is CodeSonar from Grammatech,

founded by Tim Teitelbaum and Tom Reps, which is similar in style and ambition

level to Coverity Prevent and Klocwork K7, see [18]. Even if we focus here on tools

intended for global and “deep” (=semantic) analysis of code, more lightweight tools

like FlexeLint may still be useful in more interactive use and for local analysis.

There are also dynamic tools that aim for discovering some of the kinds of defects

as the static analysis tools do. For example Insure++ [22] and Rational Purify [24]

detect memory corruption errors.

A rough summary of major features of the three systems studied here can be

found in Table 1. Such a table is by necessity incomplete and simplistic and in the

following sub-section we elaborate on the most important differences and similari-

ties. A more thorough exposition of the tools can be found in the full version of the

paper, see [16].

3.1 Functionality provided

While all three tools have much functionality in common, there are noticeable dif-

ferences; in particular when comparing PolySpace Verifier [15,23] against Coverity

Prevent [10,11] and Klocwork K7 [20]. The primary aim of all three tools obviously

is to find real defects, but in doing so any tool will also produce some false positives

(i.e. false alarms). While Coverity and Klocwork are prepared to sacrifice finding

all bugs in favor of reducing the number of false positives, PolySpace is not; as a

consequence the former two will in general produce relatively few false positives but

will also typically have some false negatives (defects which are not reported). It is

almost impossible to quantify the rate of false negatives/positives; Coverity claims

that approximately 20 to 30 per cent of the defects reported are false positives.

Klocwork K7 seems to produce a higher rate of false positives, but stays in approx-

imately the same league. However, the rate of false positives obviously depends on

the quality of the code. The rate of false negatives is even more difficult to estimate,

since it depends even more on the quality of the code. (Obviously there will be no

false negatives if the code is already free of defects.) According to Coverity the rate

of defect reports is typically around 1 defect per 1-2 KLoC.

PolySpace, on the other hand, does in general mark a great deal of code in

orange color which means that it may contain a defect, as opposed to code that

is green (no defects), red (definite defect) or grey (dead code). If orange code

is considered a potential defect then PolySpace Verifier produces a high rate of

false positives. However, this is a somewhat unfair comparison; while Coverity and

Klocwork do not even give the developer the opportunity to inspect all potential

defects, PolySpace provides that opportunity and provides instead a methodology

in which the developer can systematically inspect orange code and classify it either

as correct or faulty. In other words, Coverity and Klocwork are likely to “find

some bugs”, but provide no guarantees—the rest of the code may contain defects

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 11



which are not even reported by the tool. PolySpace on the other hand can provide

guarantees—if all code is green (or grey) it is known not to contain any bugs (wrt

the properties checked for, that is). On the other hand it may be hard to eliminate

all orange code.

All three tools rely at least partly on inter-procedural analyses, but the ambi-

tion level varies significantly. PolySpace uses the most advanced technical solution

where relationships between variables are approximated by convex polyhedra [8] and

all approximations are sound—that is, no execution sequences are forgotten, but

some impossible execution paths may be analyzed due to the approximations made.

Coverity Prevent and Klocwork K7 account only of interval ranges of variables in

combination with “simple” relationships between variables in a local context with

the main purpose to prune some infeasible execution paths, but do not do as well as

PolySpace. Global variables and nontrivial aliasing are not accounted for or treated

only in a restricted way. As a consequence neither Coverity nor Klocwork take all

possible behaviors into account which is one source of false negatives. It is some-

what unclear how Coverity Prevent and Klocwork K7 compare with each other, but

impression is that the former does a more accurate analysis.

Another consequence of the restricted tracking of arithmetic values of variables

in Coverity Prevent and Klocwork K7 is that the products are not suitable for

detecting arithmetic defects, such as over- and underflows or illegal operations like

division by zero. The products did not even provide arithmetic checkers at the time

of the study. PolySpace on the other hand does provide several arithmetic checkers,

setting it apart from the others.

While PolySpace is the only tool that provides arithmetic checkers, it is also the

only one among the three which does not provide any checkers for resource leaks;

in particular there is no support for discovering defects in dynamic management

(allocation and deallocation) of memory. As a consequence there are also no checkers

e.g. for “use-after-free”. This lack can perhaps be explained by PolySpace’s focus

on the embedded systems market, involving safety or life critical applications where

no dynamic allocation of memory is possible or allowed.

While PolySpace appears to be aiming primarily for the embedded systems mar-

ket, Klocwork and Coverity have targeted in particular networked systems and ap-

plications as witnessed, for instance, by a range of security checkers. Klocwork and

Coverity address essentially the same sort of security issues ranging from simple

checks that critical system calls are not used inappropriately to more sophisticated

analyses involving buffer overruns (which is also supported by PolySpace) and the

potential use of so-called tainted (untrusted) data. The focus on networked appli-

cation also explains the support for analyzing resource leaks since dynamic manage-

ment of resources such as sockets, streams and memory is an integral part of most

networked applications.

Coverity supports incremental analysis of a whole system, where only parts

have been changed since last analysis. Results of an analysis are saved and reused

in subsequent analyses. An automatic impact analysis is done to detect and, if

necessary, re-analyze other parts of the code affected indirectly by the change. Such

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–2112



Table 1
Summary of features of Coverity Prevent, Klocwork K7 and PolySpace Verifier

Functionality Coverity KlocWork PolySpace

Coding style No Some No

Buffer overrun Yes Yes Yes

Arithmetic over/underflow No No Yes

Illegal shift operations No No Yes

Undefined arithmetic operations No No Yes

Bad return value Yes Yes Yes

Memory/resource leaks Yes Yes No

Use after free Yes Yes No

Uninitialized variables Yes Yes Yes

Size mismatch Yes Yes Yes

Stack use Yes No No

Dead code/data Yes Yes Yes (code)

Null pointer dereference Yes Yes Yes

STL checkers Some Some No?

Uncaught exceptions Beta (C++) No No

User assertions No No Yes

Function pointers No No Yes

Nontermination No No Yes

Concurrency Lock order No Shared data

Tainted data Yes Yes No

Time-of-check Time-of-use Yes Yes No

Unsafe system calls Yes Yes No

MISRA support No No Yes

Extensible Yes Some No

Incremental analysis Yes No No

False positives Few Few Many

False negatives Yes Yes No

Software metrics No Yes No

Language support C/C++ C/C++/Java C/C++/Ada

an incremental analysis may take significantly less time than analyzing the whole

system from scratch. With the other tools analysis of the whole system has to be

redone. All of the tools provide the possibility to analyze a single file. However

such an analysis will be much more shallow than analyzing a whole system where

complete paths of execution can be analyzed.

Both Klocwork and Coverity provide means for writing user defined checkers and

integrating them with the analysis tools, see e.g. [9,4]. However, the APIs are non-

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 13



trivial and writing new, non-trivial checkers is both cumbersome and error prone.

There are no explicit guidelines for writing correct checkers and no documented

support for manipulation of abstract values (e.g. interval constraints). There is also

no support for reusing the results of other checkers. Termination of the checker is

another issue which may be problematic for users not familiar with the mathematical

foundations of static analysis, see e.g. [6,27].

All three tools support analysis of the C programming language and C++. At

the initial time of this study only Klocwork supported analysis of Java but Coverity

was announcing a new version of Prevent with support for Java. Only PolySpace

supported analysis of Ada. Klocwork was the only provider which claimed to handle

mixed language applications (C/C++/Java).

The downside of PolySpace’s sophisticated mechanisms for tracking variable val-

ues is that the tool cannot deal automatically with very large code bases without

manual partitioning of the code. While Coverity Prevent and Klocwork K7 are able

to analyze millions of lines of code off-the-shelf and overnight, PolySpace seems to

reach the complexity barrier already at around 50 KLoC with the default settings.

On the other hand PolySpace advocates analyzing code in a modular fashion. Anal-

ysis time is typically not linear in the number of lines of code—analyzing 10 modules

of 100 KLoC is typically orders of magnitude faster than analyzing a single program

consisting of 1,000 KLoC. However this typically involves human intervention and

well-defined interfaces (which may be beneficial for other quality reasons...)

On the more exotic side Coverity provides a checker for stack use. It is unclear

how useful this is since there is no uniform way of allocating stack memory in

different compilers. Klocwork is claimed to provide similar functionality but in a

separate tool. PolySpace set themselves aside from the others by providing checkers

for non termination, both of functions and loops. Again it is unclear how useful such

checkers are considering the great amount of research done on dedicated algorithms

for proving termination of programs (see e.g. [13,2]). Coverity has a checker for

uncaught exceptions in C++ which was still a beta release. PolySpace provides

a useful feature in their support for writing general assertions in the code. Such

assertions are useful both for writing stubs and may also be used for proving partial

correctness also of functional properties; see [25].

None of the tools provide very sophisticated support for dealing with concur-

rency. Klocwork currently provides no support at all. Coverity is able to detect

some cases of mismatched locks but does not take concurrency into account dur-

ing analysis of concurrent threads. The only tool which provides more substantial

support is PolySpace which is able to detect shared data and whether that data is

protected or not.

Both Coverity and Klocwork have developed lightweight versions of their tools

aimed for frequent analysis during development. These have been integrated with

Eclipse IDEs. However the defect databases for Coverity and Klocwork have not

been integrated into Eclipse IDEs or TPTP. PolySpace has integrated with the

Rhapsody UML tool to provide a UML static analysis tool. It analyzes generated

code and links back references to the UML model to point out where defects have

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–2114



been detected. Besides that PolySpace has its general C++ level advantages with a

sound analysis (no false negatives) and presumably problems with analyzing large

code bases (larger than 50-100 KLoC)—a restriction which should be more severe

in the UML situation compared to hand-coded C++.

3.2 Experiences at Ericsson

A number of independent evaluations of static analysis tools were performed by de-

velopment groups at Ericsson. Coverity was evaluated by several groups. Klocwork

has also been subject to evaluations but not quite as many. There was an attempt

to use PolySpace for one of the smallest applications, but the evaluation was not

successful; the tool has either presented no results within reasonable time (a couple

of days’ execution) or the results were too weak to be of use (too much orange code

to analyze). We do not know if this was due to the tool itself or to the actual

configuration of the evaluations. It would have been valuable to compare results

from PolySpace, which is sound, to those of Klocwork and Coverity. Perhaps that

would give some hint on the false negative rate in Klocwork and Coverity.

Some general experiences from use of Coverity and Klocwork were:

• The tools are easy to install and get going. The development environment is easy

to adapt and no incompatible changes in tools or processes are needed.

• The tools are able to find bugs that would hardly be found otherwise.

• It is possible to analyze even large applications with several million lines of code

and the time it takes is comparable to build time.

• Even for large applications the false positive rate is manageable.

• Several users had expected the tools to find more defects and defects that were

more severe. On the other hand, several users were surprised that the tools found

bugs even in applications that had been tested for a long time. There might be a

difference in what users find reasonable to expect from these tools. There might

also be large differences in what users classify as a false positive, a bug or a severe

bug.

• It is acceptable to use tools with a high false positive rate (such as FlexeLint) if

the tool is introduced in the beginning of development and then used continuously.

• It is unacceptable to use tools with a high false positive rate if the product is

large and the tool is introduced late in the development process.

• Many of the defects found could not cause a crash in the system as it was defined

and used at the moment. However if the system would be only slightly changed

or the usage was changed the defect could cause a serious crash. Therefore these

problems should be fixed anyway.

• Even if the tools look for the same categories of defects, for instance memory

leaks, addressing out of array bounds etc, the defects found in a given category

by one tool can be quite different from those found by another tool.

• Handling of third party libraries can make a big difference to analysis results.

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 15



Declarations for commercial libraries that come with the analysis tool can make

the analysis of own code more precise. If source for the library is available defects

in the library can be uncovered, which may be as important to the quality of the

whole application as the own code.

• There are several aspects of the tools that are important when making a tool

selection that has not been a part of the comparison in this paper; such as pricing,

ease of use, integration in IDEs, other functionality, interactiveness etc.

Below follows some more specific results from some of the evaluations. We do not

publish exact numbers of code sizes and found bugs etc for confidentiality reasons

since some of the applications are commercial products in use.

Evaluation 1 (Coverity and FlexeLint): The chosen application had been

thoroughly tested, both with manually designed tests and systematic tests that were

generated from descriptions. FlexeLint was applied and produced roughly 1,200,000

defect reports. The defects could be reduced to about 1,000 with a great deal of

analysis and following filtering work. These then had to be manually analyzed.

Coverity was applied to the same piece of code and found about 40 defects; there

were very few false positives and some real bugs. The users appreciated the low

false positive rate. The opinion was that the defects would hardly have been found

by regular testing.

The users had expected Coverity to find more defects. It was believed that there

should be more bugs to be found by static analysis techniques. It was not known if

this was the price paid for the low false positive rate or if the analyzed application

actually contained only a few defects. The users also expected Coverity to find more

severe defects. Many of the findings were not really defects, but code that simply

should be removed, such as declarations of variables that were never used. Other

defects highlighted situations that could not really occur since the code was used in

a restricted way not known to the analysis tool.

Evaluation 2 (Coverity): A large application was analyzed with Coverity. Part

of the code had been previously analyzed with FlexeLint. The application had been

extensively tested.

Coverity was perceived both as easy to install and use, and no modifications to

existing development environment was needed. The error reports from the analysis

were classified as follows

• 55 per cent were no real defects but perceived only as poor style,

• 2 per cent were false positives,

• 38 per cent were considered real bugs, and 1 per cent were considered severe.

The users appreciated that a fair number of defects were found although the code

had already been thoroughly tested.

Evaluation 3 (Coverity and Klocwork): An old version of an application that

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–2116



was known to have some memory leaks was analyzed using Coverity and Klocwork.

In total Klocwork reported 32 defects including 10 false positives and Coverity

reported 16 defects including 1 false positive. Only three defects were common to

both tools! Hence Klocwork found more defects, but also had a larger false positive

rate. Although the tools looked for similar defects the ones actually found were

largely specific to each tool. This suggests that each of the tools fail in finding

many defects.

Looking at only the memory leaks the results were similar. Klocwork reported

12 defects of which 8 were false, totalling 4 real defects and Coverity reported 7

defects all of which were true defects. None of the tools found any of the known

memory leaks.

Evaluation 4 (Coverity and Klocwork): Old versions of two C++ products

were analyzed with Coverity and Klocwork. Trouble reports for defects that had

been detected by testing were available. One purpose was to compare how many

faults each of the tools found. Another purpose was to estimate how many of the

faults discovered in testing were found by the static analysis tools.

Coverity found significantly more faults and also had significantly less false pos-

itives than Klocwork. One of the major reasons for this was the handling of third

party libraries. Coverity analyzed the existing source code for the libraries and

found many faults in third party code! Klocwork did not analyze this code and

hence did not find any of these faults. Besides that the analysis of the libraries that

Coverity did resulted in fewer false positives in the application code since it could

be derived that certain scenarios could not occur.

The time of analyses was about the same as build time for both tools—i.e. is

good enough for overnight batch runs but not for daily, interactive use during de-

velopment.

Both tools lacked integration with CM tool Clearcase, the source code had to be

copied into the repository of the analysis tools. There was no way to do inspection

of analysis results from an IDE, but the reviews had to be done in the GUI of the

analysis tools.

Coverity was preferred by the C++ developers. It had incremental analysis that

would save time and it could easily analyze and report on single components.

Although the main part of the evaluation was on old code some studies were done

on programs during the development. The development code had more warnings

and most of them were real faults; most of these were believed to have been found

during function test. It had been anticipated that more faults would be found in

low level components, but these components proved to be stable and only a few

defects were discovered. More faults were however found in high level components

with more frequent changes.

Evaluation 5 (Coverity, Klocwork and CodePro): A Java product with

known bugs was analyzed. A beta version of Coverity Prevent with Java analysis

capabilities was used. None of the known bugs were found by the tools. Coverity

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 17



found more real faults and had far less false positives than Klocwork. For Coverity

one third of the warnings were real bugs.

Klocwork generated many warnings; 7 times the number of warnings of Coverity.

The missing analysis of the third party library seemed to be the major reason.

However, Klocwork does a ranking of the potential defects and when only the four

most severe levels of warnings were considered the results were much better—there

were few false positives.

CodePro Analytix (developed and marketed by Instantiations) is a tool aimed

for analysis during development. It is integrated into the Eclipse IDE and the results

of an analysis cannot be persistently saved, but only exist during the development

session with the IDE. The analysis is not as deep as that of Coverity or Clockwork,

but is faster and can easily be done interactively during development. The tool

generates a great deal of false positives, but these can be kept at a tolerable level

by choosing an appropriate set of analysis rules. No detailed analysis was done of

the number of faults and if they were real faults or not.

In this evaluation there was a large difference in the number of warnings gener-

ated, Coverity 92 warnings, Klocwork 658 warnings (in the top four severities 19),

CodePro 8,000 warnings (with all rules activated).

4 Conclusions

Static analysis tools for detection of runtime defects and security vulnerabilities can

roughly be categorized as follows

• String and pattern matching approaches: Tools in this category rely mainly

on syntactic pattern matching techniques; the analysis is typically path- and

context-insensitive. Analyses are therefore shallow, taking little account of se-

mantic information except user annotations, if present. Tools typically generate

large volumes of false positives as well as false negatives. Tools (often derivatives

of the lint program) have been around for many years, e.g. FlexeLint, PC-Lint

and Splint. Since the analysis is shallow it is possible to analyze very large pro-

grams, but due to the high rate of false positives an overwhelming amount of

post-processing may be needed. These tools are in our opinion more useful for

providing almost immediate feedback in interactive use and in combination with

user annotations.

• Unsound dataflow analyses: This category of tools which have emerged re-

cently rely on semantic information; not just syntactic pattern matching. Tools

are typically path- and context-sensitive but the precision is limited so in prac-

tice the tools have to analyze also many impossible paths or make more-or-less

justified guesses what paths are (im-)possible. This implies that analyses are

unsound. Aliasing analysis is usually only partly implemented, and tracking of

possible variable values is limited; global variables are sometimes not tracked at

all. A main objective of the tools, represented e.g. by Coverity Prevent and Kloc-

work K7, is to reduce the number of false positives and to allow for analysis of

very large code bases. The low rate of false positives (typically 20–30 per cent

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–2118



in Coverity Prevent) is achieved by a combination of a unsound analysis and fil-

tering of the error reports. The downside is the presence of false negatives. It is

impossible to quantify the rate since it depends very much on the quality of the

code, but in several evaluations Coverity and Klocwork find largely disjoint sets

of defects. This category of tools provide no guarantees—the error reports may

or may not be real defects (it has to be checked by the user), and code which is

not complained upon may still be defective. However, the tools will typically find

some bugs which are hard to find by other techniques.

• Sound dataflow analyses: Tools in this category are typically path- and

context-sensitive. However, imprecision may lead to analysis of some infeasi-

ble paths. They typically have sophisticated mechanisms to track aliasing and

relationships between variables including global ones. The main difficulty is to

avoid excessive generation of false positives by being as precise as possible while

analysis time scales. The only commercial system that we are aware of which has

taken this route is PolySpace Verifier/Desktop. The great advantage of a sound

analysis is that it gives some guarantees: if the tool does not complain about

some piece of code (the code is green in PolySpace jargon) then that piece of

code must be free of the defects checked for.

There is a forth category of tools which we have not discussed here—namely tools

based on model checking techniques [5]. Model checking, much like static analysis,

facilitates traversal and analysis of all reachable states of a system (e.g. a piece

of software), but in addition to allowing for checking of runtime properties, model

checking facilitates checking of functional properties (e.g. safety properties) and also

so-called temporal properties (liveness, fairness and real-time properties). There

are commercial tools for model checking hardware systems, but because of efficiency

issues there are not yet serious commercial competitors for software model checking.

It is clear that the efficiency and quality of static analysis tools have reached

a maturity level were static analysis is not only becoming a viable complement

to software testing but is in fact a required step in the quality assurance of certain

types of applications. There are many examples where static analysis has discovered

serious defects and vulnerabilities that would have been very hard to find using

ordinary testing; the most striking example is perhaps the Scan Project [12] which

is a collaboration between Stanford and Coverity that started in March, 2006 and

has reported on more than 7,000 defects in a large number of open-source projects

(e.g. Apache, Firebird, FreeBSD/Linux, Samba) during the first 18 months.

However, there is still substantial room for improvement. Sound static analysis

approaches, such as that of PolySpace, still cannot deal well with very large code

bases without manual intervention and they produce a large number of false posi-

tives even with very advanced approximation techniques to avoid loss of precision.

Unsound tools, on the other hand, such as those from Coverity and Klocwork do

scale well, albeit not to the level of interactive use. The number of false positives is

surprisingly low and clearly at an acceptable level. The price to be paid is that they

are not sound, and hence, provide no guarantees: they may (and most likely will)

find some bugs, possibly serious ones. But the absence of error reports from such a

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 19



tool only means that the tool was unable to find any potential defects. As witnessed

in the evaluations different unsound tools tend to find largely disjoint defects and

are also known not to find known defects. Hence, analyzed code is likely to contain

dormant bugs which can only be found by a sound analysis.

Most of the evaluations of the tools have been carried out on more or less ma-

ture code. We believe that to fully ripe the benefits of the tools they should not be

used only at the end of the development process (after testing and/or after using

e.g. FlexeLint), but should probably be used throughout the development process.

However, the requirements on the tools are quite different at an early stage com-

pared to at acceptance testing. Some vendors “solve” the problem by providing

different tools, such as PolySpace Desktop and PolySpace Verifier. However, we

rather advocate giving the user means of fine-tuning the behavior of the analysis

engine. A user of the tools today has very limited control over precision and the rate

of false positives and false negatives—there are typically a few levels of precision

available, but the user is basically in the hands of the tools. It would be desirable

for the user to have better control over precision of the analyses. There should for

example be a mechanism to fine-tune the effort spent on deriving value ranges of

variables and the effort spent on aliasing analysis. For some users and in certain

situations it would be acceptable to spend five times more analysis time in order

to detect more defects. Before an important release it could be desirable to spend

much more time than on the day to day analysis runs. In code under development

one can possibly live with some false negatives and non-optimal precision as long as

the tool “finds some bugs”. As the code develops one can improve the precision and

decrease the rate of false positives and negatives; in particular in an incremental tool

such as Coverity Prevent. Similarly it would be desirable to have some mechanism

to control the aggressiveness of filtering of error reports.

References

[1] Ball, T. and S. Rajamani, The SLAM Project: Debugging System Software via Static Analysis, ACM
SIGPLAN Notices 37 (2002), pp. 1–3.

[2] Ben-Amram, A. M. and C. S. Lee, Program Termination Analysis In Polynomial Time, ACM Trans.
Program. Lang. Syst. 29 (2007).

[3] Bush, W., J. Pincus and D. Sielaff, A Static Analyzer For Finding Dynamic Programming Errors,
Software, Practice and Experience 30 (2000), pp. 775–802.

[4] Chelf, B., D. Engler and S. Hallem, How to Write System-specific, Static Checkers in Metal, in: PASTE
’02: Proc. 2002 ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and
Engineering (2002), pp. 51–60.

[5] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, Cambridge, MA, USA, 1999.

[6] Cousot, P. and R. Cousot, Abstract Interpretation: A Unified Lattice Model For Static Analysis of
Programs by Construction Or Approximation of Fixpoints, in: Conf. Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (1977), pp. 238–252.

[7] Cousot, P., R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and X. Rival, The ASTRÉE
Analyser, in: M. Sagiv, editor, Proceedings of the European Symposium on Programming (ESOP’05),
Lecture Notes in Computer Science 3444 (2005), pp. 21–30.

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–2120



[8] Cousot, P. and N. Halbwachs, Automatic Discovery of Linear Restraints Among Variables of a Program,
in: Conf. Record of the Fifth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (1978), pp. 84–97.

[9] Coverity Inc., “Coverity ExtendTM User’s Manual (2.4),” (2006).

[10] Coverity Inc., Coverity PreventTM: Static Source Code Analysis for C and C++ (2006), product
information.

[11] Coverity Inc., “Coverity PreventTM User’s Manual 2.4,” (2006).

[12] Coverity Inc., The Scan Ladder (2007), URL: http://scan.coverity.com .

[13] Dershowitz, N. and Z. Manna, Proving Termination With Multiset Orderings, Commun. ACM 22

(1979), pp. 465–476.

[14] Deutsch, A., Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting, in: Proc. PLDI
(1994), pp. 230–241.

[15] Deutsch, A., Static Verification of Dynamic Properties, White paper, PolySpace Technologies Inc
(2003).

[16] Emanuelsson, P. and U.Nilsson, A Comparative Study of Industrial Static Analysis Tools (Extended
Version), Technical Reports in Computer and Information Science no 2008:3, Linköping University
Electronic Press (2008), URL: http://www.ep.liu.se/ea/trcis/2008/003/ .

[17] Gimpel Software, “PC-lint/FlexeLint,” (1999), URL: http://www.gimpel.com/lintinfo.htm .

[18] GrammaTech Inc., Overview of GrammaTech Static Analysis Technology (2007), white paper.

[19] King, J., Symbolic Execution and Program Testing, Comm. ACM 19 (1976), pp. 385–394.

[20] Klocwork Inc., Detected Defects and Supported Metrics (2005), K7 product documentation.

[21] Palsberg, J. and M. Schwartzbach, Object-Oriented Type Inference, in: Conf Proc Object-Oriented
Programming Systems, Languages, And Applications (OOPSLA ’91) (1991), pp. 146–161.

[22] Parasoft Inc., Automating C/C++ Runtime Error Detection With Parasoft Insure++ (2006), white
paper.

[23] PolySpace Technologies, “PolySpace for C Documentation,” (2004).

[24] Rational Software, Purify: Fast Detection of Memory Leaks and Access Errors, White paper (1999).

[25] Rosenblum, D. S., A Practical Approach to Programming With Assertions, IEEE Trans. Softw. Eng.
21 (1995), pp. 19–31.

[26] Ryder, B. and F. Tip, Change Impact Analysis For Object-Oriented Programs, in: Proc. of 2001 ACM
SIGPLAN-SIGSOFT workshop on Program Analysis For Software Tools And Engineering (PASTE
’01) (2001), pp. 46–53.

[27] Schwartzbach, M., Lecture Notes on Static Analysis (2006), BICS, Univ. Aarhus, URL:
http://www.brics.dk/~mis/static.pdf .

[28] Steensgaard, B., Points-to Analysis in Almost Linear Time, in: ACM POPL, 1996, pp. 32–41.

[29] Wagner, D. and D. Dean, Intrusion Detection via Static Analysis, in: Proc. of 2001 IEEE Symp. on
Security and Privacy (SP’01) (2001), pp. 156–168.

[30] Wagner, T., V. Maverick, S. Graham and M. Harrison, Accurate Static Estimators For Program
Optimization, in: Proc. of ACM SIGPLAN 1994 Conf. on Programming Language Design And
Implementation (PLDI ’94) (1994), pp. 85–96.

P. Emanuelsson, U. Nilsson / Electronic Notes in Theoretical Computer Science 217 (2008) 5–21 21

http://scan.coverity.com
http://www.ep.liu.se/ea/trcis/2008/003/
http://www.gimpel.com/lintinfo.htm
http://www.brics.dk/~mis/static.pdf

	Introduction
	Static analysis
	A comparison of the tools
	Functionality provided
	Experiences at Ericsson

	Conclusions
	References

