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ABSTRACT 

Control theory has long provided a rich source of motivation for developments in 

matrix theory. Accordingly, we discuss some open problems in matrix theory arising 

from theoretical and practical issues in linear systems theory and feedback control. The 

problems discussed include robust stability, matrix exponent& induced norms, stabi- 

lizability and pole assignability, and nonstandard matrix equations. A substantial num- 

ber of references are included to acquaint matrix theorists with problems and trends in 
this application area. 

1. INTRODUCTION 

Feedback control theory has long provided a rich source of motivation for 
developments in matrix theory. The purpose of this paper is to discuss several 
open problems in matrix theory that arise from theoretical and practical issues 
in feedback control theory and the associated area of linear systems theory. 
Many of these problems are remarkably simple to state, are of intense interest 
in control theory and applications, and yet remain unsolved. Besides leading to 
the resolution of these problems, it is hoped that this paper will help to 
stimulate increased interaction between matrix and control theorists. Accord- 
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ingly, the paper includes some brief tutorial discussions and provides motiva- 
tion for these problems. 

The problems we discuss are divided into five topics, namely, robust 
stability, matrix exponentials, induced norms, stabilizability and pole 
assignability, and nonstandard matrix equations. It is important to note that 
these problems are not my own, but have originated in a variety of control- 
and matrix-theory applications and are due to a multitude of researchers. 

2. ROBUST STABILITY 

A fundamental problem in the analysis of linear systems is the following: 
Given a collection of matrices J? c Wnx", determine a subset Jo c ~2 such 
that if every element of Jo is stable (that is, each of its eigenvalues has 
negative real part), then every element of J is also stable. This problem 
arises when the modeling data are uncertain and guarantees of stability are 
desired. A related problem involves a set of polynomials 9 rather than a set of 
matrices. Consider, for example, the set of polynomials 

where, for i = 0, * * *, n - 1, the lower and upper coefficient bounds _Pi and & 
are given. In this case the rather remarkable result of Kharitonov [48] states 
that every element of 9 is stable if every element of 9, is stable, where Y0 
is the subset of 9 consisting of the following four polynomials: 

where the Q-cyclic pattern of the coefficients is repeated for successively 
decreasing powers of s. Thus, to determine whether every polynomial in P’ is 
stable, it suffices to check only these four polynomials. Kharitonov’s result has 
generated considerable interest and has been generalized in numerous direc- 
tions [6, 7, 91. 
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The corresponding problem for matrices is, however, much more difficult. 
Consider, for example, the case in which JZ is a polytope of matrices, that is, 

A= kAiMi: $jX,=l,h,>O,i=l,*-*,r , 

l i=l i=l I 
(2.3) 

where M,; . *, M, are given matrices. In contrast to the situation involving 
polynomials, it is shown by counterexample in [8] that it does not suffice to 
check the subset 

~‘,={hMi+(l-X)Mj:lgi<j~r,OghQ1}, (2.4) 

which consists of all edges (e-dimensional faces) of the polytope. Furthermore, 
it is shown in [8] that checking .L, does not suffice even if each matrix Mi 

contains only one nonzero element, that is, the case of a hyperrectangle. A set 
Jo that does suffice is illustrated by a result given in [22]. There it is shown 
that it suffices to check every point in 

A, = {faces of d of dimension 2 n - 4). (2.5) 

To show that improvement is possible when the elements of JZ have 
special structure, consider 

.A= 
0(,-1)X1 k-1 

-p. . . . --k-l 1 
:_Pi~Pi~Pi,i=O;...n-l 

where I,_r denotes the (n - 1) x (n - 1) identity matrix. In this case it 

suffices to check the set 

A, = 1[ . . . 
[ . . 
I . . 
[ . . 

O(,-1)X1 &l-l 

-&4 1 -&-3 -p,_2 -En_, ’ 

o(“-l)xl &i-l 

-pn_.g 1 -&3 -_p,_2 -En_1 ’ 

qn-1)X1 h-1 

-Pn_‘j 1 -L -_pd! -&1 ’ 

opt-1)X1 L-1 

-&l -iL -L -_p,-l 11 
, (2.7) 
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which consists of four matrices. That 4, given by (2.7) is sufficient is an 
immediate consequence of Kharitonov’s result, since each matrix is in compan- 
ion form. Note that A,, consists of four matrices regardless of n. Hence 
considerable simplification is possible when & has special structure. A 
direct, matrix-based proof of this result is unknown. Such a proof could lead to 
improvements in treating more general matrix polytopes. 

3. THE MATRIX EXPONENTIAL 

The matrix exponential plays a central role in linear systems and control 
theory. Here we shall review the role of the matrix exponential, mention a few 
of its interesting properties, and point out some related unsolved problems. 

Consider the linear system 

i(t) = Ax(t) + Bu(t), x(0) = ra, t 3 0, (3-I) 

where the state x(t) ER”, AER”~“, the control u(t) E W”, and ~~~~~~ 
The state x(t) is given explicitly by the well-known formula 

J 
t 

r(t) = 0 eAtx + eA(t-S)Bu( s) ds. (3.2) 
0 

If x0 = 0 and u(a) is allowed to be an arbitrary integrable function on the 
interval [0, t), then the set of all states x(t) reachable at time t is the subspace 
of Rn given by the range of the nonnegative definite matrix Q(t) E Rnxn 

defined by 

Q(t) P JteASBBTeATSds. (3.3) 
0 

Furthermore, for t > 0 the range of Q(t) is independent of t and is given by 
[18, 56, 74, 951 

ImQ(t) =Im[B AB AaR . . . A”-‘B] 7 (3.4) 

where Im denotes image or range. If A is asymptotically stable, then Q A 
lim t _oD Q(t) exists and is given by the controllability Gramian 

Q=s,_ eAtBBTeATf dt, (3.5) 
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which is the unique solution to the Lyapunov equation [53, 56, 74, 951 

0 = AQ + QAr + BB=. P-6) 

Interesting problems arise immediately if the matrix A is perturbed by 
another matrix, say A. For example, it may be of interest to understand the 
relationship between e* and e*+* -(where t = 1 for convenience here). If A 
and A commute, then clearly e*e* = e*e* _ e *+*, whereas if A and A do 
not commute then e*e’ , e*e*, and e*+* are generally different [13]. 
Furthermore, ‘as shown by examples in [85], e *ea = ede * does not imply 
e*e* = c*+*, c*e* = e*e* = 

eA+A does not imply eqe* = 
eA+A does not imply AA = &A, and e*e* = 

e*e’ If however, A and 6 have only algebraic . 
entries then e*e* = e*e* implies that A and A commute [85, 861. If A and 
A have’algebraic entries and e *e A - - e*+‘, then it is reasonable to conjecture 
that A and d must commute, but this case is not discussed in [85] and 
remains open. Specializing to the case A = AT, a related open question is the 
following [14]: Does there exist a nonnormal matrix A satisfying either 
eAeAT = eATeA or eAeAT _ - eA+AT? Some relevant results are given in [75]. 

In a somewhat different vein, the Campbell-Baker-Hausdorff formula from 
Lie group theory [lo, 79, 83, 84, 871 states that if A and A have sufficiently 
small norm, then there exists a matrix D in the Lie algebra generated by 
{ A, A} that satisfies 

e*ei = eD. (3.7) 

Specifically, D is given by the expansion 

D=A+A+i[A,A] +k[A.[A,A]] +$[[A,A],d] +..., (3.8) 

where [A, A] A AA - AA. Of course, at least one such matrix D satisfying 
(3.7) must always exist, and it need not be unique [ll, p. 2021. The expansion 
(3.8), however, is only locally convergent [83]. Thus (3.8) can only be used to 
determine the existence of D in the Lie algebra generated by { A, A} when 
the norm of [A, A] is sufficiently small. 

A remarkable result of a related, but slightly different, nature is given in 
[80]. If A and d have sufficiently small norm, then there exist invertible 
matrices S and T (depending upon A and A) such that 

eAei = eSAS-‘+TziT-L 
(3.9) 
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Furthermore, it is known that S and T are of the form ep and eo where P and 

Q are elements of the Lie algebra generated by A and A. 

An alternative, globally convergent expansion is given by [70] 

where, for k = 0, 1; . *, 

1 
c -- 

‘+’ - k + 1 
{(A+A)C,+ [A,&]}, c,=O, (3.11) 

eA+A = eAeA + 5 C,, 

k=2 
(3.10) 

D k+l = j-&{ADk + 0, A), D, = 1. (3.12) 

Another class of related results involves inequalities for spectral functions 

of products of exponentials. Such bounds may be useful for robust stability of 1 
sampled-data control systems [16]. For example, if A and A are symmetric, 

then [24, 571 

tr eAfA < tr eAeA, 

while for arbitrary A we also have [12, 231 

(3.13) 

tr eAeAT ,< tr eA+AT. 

A closely related result [76, p. 7421 is 

(3.14) 

&,( eAeAT) < k,,( eA+AT). (3.15) 

An interesting open question that immediately arises is whether or not it is 

possible to derive (3.12)-(3.15) d irectly from any of the formulas (3.8), (3.9) 

or (3.10). In this regard (3.10) appears to be the most promising candidate. 

Finally, note that for t E [0,03) (3.14) implies 

tr .AteATt < tr e(A+AT)t. (3.16) 

Hence if A is stable, then the left-hand side of (3.16) will converge to zero, 

whereas the right-hand side may be unbounded, rendering the bound useless. 

A generalization of (3.14) in the spirit of (3.9) with 6 = AT may be useful 
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here. To resolve the possible conservatism in (3.16) for t + 00, it is natural to 
conjecture generalizations of (3.14) to include terms of the form eATP+PA, 
where the positive definite matrix P is chosen as in Lyapunov stability theory 
to render ATP + PA negative definite. 

4. INDUCED NORMS 

The performance of a control system is often measured by its ability to 
reject undesirable disturbances. One mathematical setting for this problem is 
to define a class 9 of disturbances and a class d of error signals and consider 

i(t) = Ax(t) + h(t)> (4.1) 

z(t) = ET(~), (4.2) 

where x(t)~W”, AeWnxn, w(t)ERd> DERnXd, z(t) E R p, EeRpXn, and 
where w(m) E 9 is the disturbance signal and z(e) E 6 is the error signal. In 
particular, we wish to determine the “size” of z( .) given that w( *) E g. 

Two settings for this problem are generally considered. In the stochastic 
case, w( *) denotes white noise, and performance is measured by the steady- 
state quadratic criterion [53] 

J= ii;~[z’(t)z(t)] = trEQET, (4.3) 

where FZ denotes expectation and the state covariance Q A 
lim t.+_ E[ x( t) x’(t)] satisfies 

0 = AQ + QA= + DD=, (44 

or, equivalently, 

Q = lmeAtDDT,*‘I dt. (4.5) 
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Note the similarity between the steady-state convariance (4.5) and the control- 
lability Gramian (3.5). It now follows from Parseval’s theorem that 

J= tr JwEeAtDDTeATtETdt 
0 

1 O1 

= zFtr J 
E(jwZ, - A)-‘DDT( -jwZ, - A)-TETdW, (4.6) 

--oo 

or, equivalently, 

EeAtDIJ; dt = L 2?r J_= IIG(+JJ)II~,~~~ 03 (4.7) 

where ]] MIIF b [tr MM ] * '1' denotes the Frobenius norm, and the transfer 
function G(s) from w to z is given by 

G(s) b E(sZ, - A)-?I. (4.8) 

Note that (4.8) is just the Laplace-transform version of (4.1) and (4.2). Hence, 

by (4.7), 

where I] * 11 2 denotes the H, norm [3I]. 
On the other hand, let 9 and d denote L, spaces on [0, w), and define 

the induced norm 

II = II 2 
p sup -. 

W(.)E9 II w II 2 

Then 

. 
I = sup %aX ~G(.@)l ) o&3 

where a,, denotes the maximum singular value. That is, 

(4.10) 

(4.11) 

(4.12) 

the H,,, norm of G(s) [31]. 
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Immediately this raises the following question: Do there exist normed 
spaces 9 and B such that the H, norm is induced? From (4.7) the answer to 
this question would appear to be related to the following question: Is the 
Frobenius matrix norm induced? Since )I I,(] F = ~6, the answer is no $ the 
domain and ranges spaces of Z, are assigned the same norms. However, this 
does not rule out the possibility of assigning different norms to, say W” and 
W” for inducing the Frobenius norm of ME R”x”. This remains a fundamen- 
tal open problem. 

More generally, it is possible to define matrix norms that satisfy submulti- 

plicativity (II AB hot G II AIMI B II,) or mixed submultiplicativity (11 AB )Ia 
Q II Allall BI],) conditions [37-391. Is it possible to show that such norms are 
induced or cannot be induced? Note that mixed induced norms satisfy mixed 
submultiplicativity conditions. 

The idea of mixed induced norms can be applied on the operator level as 
well. In [89], for example, it is shown that -if 9 is an L, space with a 
Euclidean spatial norm and d is an L, space also with a Euclidean spatial 
norm. then 

II z IL 
w;;:c2 II w II2 

= hn,(WT). (4.13) 

Hence the H, norm (4.3) is an upper bound for the induced norm (4.13), 
which measures worst-case error amplitude due to bounded energy signals. 
Related issues involving the norm of the Hankel operator 

w = CeA(t+S)Bw( s) ds (4.14) 

are also of interest [33, 89, 901. 

5. STABILIZABILITY AND POLE ASSIGNABILITY 

Consider the linear system 

i(t) = Ax(t) + Bu(t), (5.1) 
y(t) = cqt), F-2) 

where Ae@Jnx”, BEW”~~, and CEW’~“, and where x(t)~W”, u(~)ER”, 
and y(t) E W’ denote the state, control, and output respectively. Furthermore, 
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consider the static output feedback control law 

u(t) = Ky(t), (5.3) 

where KE Rmxl. The word “static” here refers to the fact that the control 
signal u(t) at time t is a linear function of the output y(t) also at time t. Later 
we shall replace the static control law (5.3) with a dynamic control law. 

The closed-loop system (5.1)-(5.3) is thus given by 

i(t) = (A + BKC)x(t). (5.4) 

One of the most basic unsolved problems in control theory is the problem of 
output feedback stabilizability: Determine necessary and sufficient conditions 
on (A, B, C) under which there exists K such that A + BKC is asymptotically 
stable. If C is the identity matrix (the full-state feedback case), then the 
solution is remarkably simple and well known: The pair (A, B) must be 
stabilizable [96]. This condition can be expressed analytically as [46, p. 2061 

rank[XI,-A B] =n, XEU( A) rl G”, (5.5) 

where 1, is the n x n identity, a( A) denotes the spectrum of A, and G’ 
denotes the closed right half plane. The condition (5.5) is weaker than 
controllability as characterized by the condition [42, 461 

rank[AZ,-A B] = n, XEU( A), (5.6) 

which is equivalent to the Kalman controllability condition 

rank[g Ag Asg . . . A”-‘B] = f2. (5.7) 

If B is the identity matrix, then the dual condition for output feedback 
stabilizability is detectability, which can be written as 

rank Xl,, - AT 1 CT] = n, ku(A)n@? (5-s) 

If neither B nor C is the identity, then the output feedback stabilizability 
problem becomes considerably more difficult. Partial results are given in [2, 4, 
191, with [I91 focusing on stabilizability for generic classes of systems. Condi- 
tions for exact stabilizability, however, are unknown. 
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For practical control-system implementation, it is often desirable to con- 
sider a decentralized static controller structure of the form 

(5.9) 

(5.10) 

with feedback law 

Ui(t) = KiYi(t), i = l;**, r, (5.11) 

where, for i = 1; - -, r, one has q(t) E W”:, Bi E Rnx”i, y,(t) E R’i, Ci E R’ixn, 

and K. E Wmlx’i. Note that in this problem the control ui(t) is constrained to 
depend solely upon the output y,(t). Th e number of feedback channels is 
denoted by r. For this problem the objective is to determine whether 

K,,* * *> K, exist such that the closed-loop dynamics matrix A + C,T,rB,K,C, is 
stable. Hence this problem can be viewed as a generalization of the central- 
ized problem (5.1)-(5.3) to include a block-diagonal structure constraint on 
K. Although some results have been obtained for this problem [3], the theory 
is far from complete. 

The decentralized static controller problem is of particular interest in that, 
as we shall now show, it encompasses the problem of stabilization via dynamic 

compensators of arbitrary fixed order (i.e., dimension). For example, consider 

2(t) = Ax(t) + h(t), (5.12) 

y(t) = Cx(t), 

with dynamic 

= A,x,(t) + B,y(t), (5.14) 

o(t) = C&(t)> (5.15) 

where n, is a given positive integer denoting the order of the dynamic 
compensator, x,(t) E Rnc, A,E Rncx”c, B,E RncXz, and C,E RmX”c. Then the 
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dynamics matrix of the closed-loop system (5.12)-(5.15) can be written as 

+ I:, B,[ C 01 + [B O]C,[ 0 ‘nc]> (5.16) 
[ I 

which is of the decentralized structure (5.9)-(5.11) with r = 3, K, = A,, 

K, = B,, and K, = C,. If n, = n, then necessary and sufficient conditions for 
stabilizability are well known, namely, (A, B) must be stabilizable and (C, A) 
must be detectable [53]. Stabilizability for the case n2, < n is unsolved; for 
partial results see [59, 731. Conversely, it is shown in [44] that ( A, B) 
stabilizable and (C, A) detectable is actually a necessary condition for stabiliza- 
tion by means of arbitrary controllers. 

A further extension of this problem is to require repetition of certain gain 
matrices in different feedback channels, that is, to impose constraints of the 
form Kj = K, for selected indices. It can be shown using the techniques of 
[63] that this generalization encompasses all &nely parameterized static and 
dynamic feedback structures. 

Beyond the question of existence, it is of interest to be able to characterize 
(and perhaps parameterize) the set of stabilizing feedback gains. Such a 
parameterization would then be useful for selecting gains with desirable 
properties beyond stabilization. 

A refinement of the stabilizability problem is the pole (i.e., eigenvalue) 
assignability problem. In this problem the goal is to determine feedback gains 
that place the closed-loop spectrum within a specified region or at specified 
locations in the left half plane. In the full-state-feedback case C = I,,, it is 
known that if X E a( A) and 

rank[ XI,, - A B] = n, (5.17) 

then all repetitions of the open-loop eigenvalue h can be arbitrarily reassigned 
in the closed-loop. Note, however, that if X E u( A) is a multiple eigenvalue and 

rank[ XI, - A B] < n, (5.18) 

then it may still be possible to place some repetitions of X, although this is not 
discernible from (5.18). These observations follow by decomposing the state 
space into controllable and uncontrollable subspaces. A complete theory of 
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such questions for the full-state-feedback case in the absence of complete 
controllability is given in [98, 991. Hence in the full-state-feedback case 
controllability is equivalent to pole assignability. In the output-feedback case, 
however, controllability and pole placement are not equivalent. Although this 
problem is essentially unsolved, some partial results are available [l, 17, 26, 

30, 45, 49, 71, 781. 

6. OPTIMAL FEEDBACK CONTROL AND NONSTANDARD 
MATRIX EQUATIONS 

Consider the classical linear-quadratic regulator (LQR) problem: Given the 
plant 

“(t) = Ax(t) + &J(t) + D,w(t), (6.1) 

y(r) = r(t)7 (6.2) 

with full-state feedback controller 

U(t) = Ky(t 

determine K to minimize 

17 (6.3) 

J(K) A h$nJ[ XT(t)Rl+) + ~‘(t)R22+)], (6.4 

where R, 2 0, R, > 0, and w(e) is white noise. A mathematically equivalent 
formulation is to replace (6.1) by 

and minimize 

l;(t) = A+) + Bu(t), r(6) = x0, (6.5) 

j(K) g S,=[ xT(t)R1+) + uT(t)R,u(t)] dt. (6.6) 

We shall adopt the white-noise formulation (6.1), since it provides a consistent 
framework for treating problems with measurement noise considered below. 

The solution to the LQR problem is well known: The minimizing feedback 
gain K is given by 

K = -R-‘BTP 
2 > (6.7) 
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where P 2 0 satisfies the matrix algebraic Riccati equation (C 2 RR, ‘EST) 

0 = ATP + PA - PEP + R, (6.8) 

with optimal performance (V, b D, Dy) 

J(K) = tr PV,. (6.9) 

Properties of solutions of the matrix algebraic Riccati equation such as exis- 
tence, multiplicity, definiteness, monotonicity, and parameter dependence 
have been extensively studied [21, 25, 28, 29, 34-36, 50, 54, 55, 60, 62, 64, 
66-68, 72, 91-941. Here we note that the analysis of (6.8) is closely associated 
with the stabilizability of the pair (A, B) and the detectability of (A, R,). 
Furthermore, many properties of the solutions to the algebraic Riccati equa- 
tion are obtained by considering the Hamiltonian matrix [SS] 

-A C 
x4 R 

[ 1 1 
AT> (6.10) 

while monotonicity results [68, 941 involve the symmetric comparison matrix 

gg R, AT 
[ 1 A -c . 

(6.11) 

If the full state x(t) is not available for feedback as in (6.2), but rather only 
partial, noisy measurements of the form 

y(t) = Cx(t) + D,w(t) (6.12) 

are available, then one may seek a dynamic controller of the form 

“c(t) = O,(t) + U(t)> (6.13) 

(6.14) u(t) = c&(t). 
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If x,(t) E Rn, then this is the linear-quadratic Gaussian (LQG) problem. NOW 
the solution is given by 

A, = A + BC, - B,C, (6.15) 

B, = QC=V,-l, (6.16) 

C c = -R-‘R=P 2 I (6.17) 

where Q 2 0 and P 2 0 are given by the pair of matrix algebraic Riccati 
equations 

0 = AQ + QA= - QZQ + V,, (6.18) 

0 = A=P + PA - PEP + R,, (6.19) 

where E A BR,‘BT, x b CTVFIC, and V, g D, 0:. Furthermore, the opti- 
mal performance is given by 

J( A,, B,, Cc) = tr[ QR, + PQEQ] = tr[ PI’, + QPBP] . (6.20) 

Here for simplicity we have assumed uncorrelated plant disturbance and 
measurement noise, that is, D, Dz = 0. The additional Riccati equation (6.18), 
which corresponds to the observer portion (6.13) of the dynamic compensator, 
is a dual version of (6.19). Note that (6.18) and (6.19) are not coupled and that 
the gain C, given by (6.17) coincides with the full-state-feedback gain K given 
by (6.7). This is not a coincidence, but rather is the result of the separation 
principle of feedback control in the presence of partial, noisy measurements. 

Now we consider some extensions of the LQR and LQG problems. 
Suppose that only partial measurements are available but that these are noise 
free, that is, 

y(t) = c+), 

in place of (6.2) or (6.12). Then the optimal static (nondynamic) output-feed- 
back controller of the form 

u(t) = KY(t) (6.22) 

is given by 

K = - R;‘B=PQC=( CQC=) -l, (6.23) 



424 DENNIS S. BERNSTEIN 

where now P 2 0 and Q > 0 are given by [58] 

0 = (A - CPv)Q + Q( A - EPv)~ + V,, (6.24) 

0 = ATP + PA - PCP + VT PCPv I +R,, (6.25) 

with performance 

.I( K) = tr PV, = tr[ Q( R, + V~PCPV)] . 

In (6.24)-(6.26), B and Ye are defined by 

v A QCT(CQCT)-k, vI g 1, - v, 

(6.26) 

(6.27) 

under the assumption that CQCT is positive definite. A sufficient condition for 
CQCT to be positive definite is CV,CT positive definite. Note that v2 = v and 

a- VI-- Vl, that is, v and vI are projections. If C = I,, that is, the full-state- 
feedback case (6.2), then v = I,, v I = 0, (6.25) reduces to (6.8), and (6.24) 
plays no role. In the general case, however, (6.24) and (6.25) must be 
considered as a coupled system of matrix equations. 

Although (6.24) and (6.25) provide a transparent and elegant generaliza- 
tion of (6.8), it is a remarkable fact that virtually nothing is known about their 
solution properties. It is quite reasonable to conjecture, however, that progress 
will depend upon the output-feedback stabilizability problem discussed in 
Section 5, that is, the existence of a matrix K such that A + BKC is 
asymptotically stable. Hence, these two unsolved problems go hand in hand. 

Next we consider a minor variation of the LQG dynamic compensation 
theory. Specifically, motivated by the practical need for controller simplicity, 
we constrain the state x,(t) of the dynamic compensator (6.13), (6.14) to have 
dimension n, < n. With this constraint the optimal controller is now given by 

1431 

A, = I’AGT + IY?C, - B,CGT, (6.28) 

B, = I’QCTV;‘, (6.29) 

C 
c 

= -R-‘BTpGT 
2 (6.30) 
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where Q>O, PaO, Q>O, ?aO,andG,I’EW”cX”aregivenby 

O=AQ+QA=+Vr-QEQ+rlQxQr;, 

0=ATP+PA+R1-PXP+7TPCP~I, 

o=(A-CP)Q+Q(A-XP)~+QBQ-~.QBQ~T,, 

o=(A-QE)~++B(A-QZ)+P~P-~~R~P~~, 

rank 0 = rank ? = rank @ = n,, 

7 62 @(@)“, 

425 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

7 = G=MMr, I’G= = I,,,, r1 2 1, - r, MEW"C~"C, (6.37) 

with performance 

.!( A,, R,,c,) = tr[ QR, + P( @Q - 71 (ZQT’,)] 

= tr[ PV, + Q( PCP - rT PEPr,)] . (6.38) 

In (6.36) ( )” d enotes the group generalized inverse [20], which is applicable 
to @, since the product of two nonnegative definite matrices has index one, 
that is, rank Qi = rank (Q$)” [5, 69, 97. Hence, it follows from properties of 
the group inverse that r2 = r, that is, r is idempotent. Note that if n, = n, 
then Q and @ are positive definite [this forces (A,, B,) to be controllable and 
(C,, A,) to be observable], T = I,,, and rL = 0. In this case (6.31) and (6.32) 
specialize to (6.18) and (6.19) while (6.33) and (6.34) play no role except to 
guarantee that (A,, B,, C,) is controllable and observable. 

Again a seemingly minor extension of the standard theory has major 
consequences with respect to the algebraic matrix equations to which it gives 
rise. As with the static output-feedback problem, it can also be expected that 
the analysis of (6.13)-(6.34) is related to the existence of gains A,, B,, C, 
such that the closed-loop dynamics matrix 

is asymptotically stable. 
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Finally, we discuss a further extension of LQR and LQG theory, namely, 
the enforcement of an H,-norm constraint on the closed-loop transfer function 
C?(S) between disturbances w( .) and performance variables z(t) = E,_,x(t) + 

E,,u(t). It can be shown [18, p. 167; 28; 881 that the constraint 

(6.39) 

is equivalent to the existence of a solution to the matrix algebraic Riccati 
equation 

(6.40) 

where (-) denotes matrices associated with the closed-loop system. Although 
the sign of the quadratic term in (6.40) is opposite to the sign appearing in the 
standard Riccati equation (6.8), it turns out that the existence, uniqueness, and 
monotonicity results of [54, 941 remain applicable. 

In the full-state-feedback case, enforcement of the constraint 11 e(s) Ilrn < y 
leads to [65, 1001 

0 = ATP + PA - PCP + Y-~PV,P + RI_,, (6.41) 

with feedback gain K = -R,‘BTP, where R,, 4 ET-E,,, in place of (6.8). 
Now the quadratic term P(ye2V, - Z)P may be indejnite. With the excep- 
tion of [64], virtually no results on the solutions to such indefinite Riccati 
equations are available. Similar extensions to dynamic feedback with and 
without a controller order constraint are given in [15, 27, 33, 411. As can be 
expected, the complexity of the Riccati equations characterizing the optimal 
controllers grows significantly with the imposed constraints. Finally, problems 
involving both order reduction and H, constraints lead to even more complex 
algebraic equations [I5, 40, 411. 

7. CONCLUSIONS 

Linear systems and control theory have long been righ sources of problems 
in matrix theory. The objective of this paper is to demonstrate that this 
situation can be expected to continue strongly into the indefinite future. It 
goes without saying that such a relationship can only be mutually beneficial. 

I wish to thank the special editors and the referees for helpful suggestions 

which were incorporated into the revision of this paper. 
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