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Improved Detection of Common Variants
Associated with Schizophrenia by Leveraging
Pleiotropy with Cardiovascular-Disease Risk Factors

Ole A. Andreassen,1,2,3,* Srdjan Djurovic,1,2 Wesley K. Thompson,3 Andrew J. Schork,4,5,6

Kenneth S. Kendler,7 Michael C. O’Donovan,8 Dan Rujescu,9 Thomas Werge,10 Martijn van de Bunt,11

Andrew P. Morris,11 Mark I. McCarthy,11 International Consortium for Blood Pressure GWAS, Diabetes
Genetics Replication and Meta-analysis Consortium, Psychiatric Genomics Consortium Schizophrenia
Working Group, J. Cooper Roddey,4,13 Linda K. McEvoy,4,12 Rahul S. Desikan,4,12

and Anders M. Dale3,4,12,13,*

Several lines of evidence suggest that genome-wide association studies (GWASs) have the potential to explain more of the ‘‘missing heri-

tability’’ of common complex phenotypes. However, reliable methods for identifying a larger proportion of SNPs are currently lacking.

Here, we present a genetic-pleiotropy-informedmethod for improving gene discovery with the use of GWAS summary-statistics data.We

applied this methodology to identify additional loci associated with schizophrenia (SCZ), a highly heritable disorder with significant

missing heritability. Epidemiological and clinical studies suggest comorbidity between SCZ and cardiovascular-disease (CVD) risk factors,

including systolic blood pressure, triglycerides, low- and high-density lipoprotein, body mass index, waist-to-hip ratio, and type 2 dia-

betes. Using stratified quantile-quantile plots, we show enrichment of SNPs associated with SCZ as a function of the association with

several CVD risk factors and a corresponding reduction in false discovery rate (FDR). We validate this ‘‘pleiotropic enrichment’’ by

demonstrating increased replication rate across independent SCZ substudies. Applying the stratified FDR method, we identified 25

loci associated with SCZ at a conditional FDR level of 0.01. Of these, ten loci are associated with both SCZ and CVD risk factors, mainly

triglycerides and low- and high-density lipoproteins but also waist-to-hip ratio, systolic blood pressure, and body mass index. Together,

these findings suggest the feasibility of using genetic-pleiotropy-informedmethods for improving gene discovery in SCZ and identifying

potential mechanistic relationships with various CVD risk factors.
Introduction

Complex human traits and disorders are influenced by

numerous genes that each have small individual effects,1

and thousands of SNPs have been identified by genome-

wide association studies (GWASs).2,3 However, these SNPs

fail to explain a substantial proportion of the heritability

of the complex phenotypes studied;4 this is often referred

to as the ‘‘missing heritability.’’ Recent results indicate that

GWASs have the potential to explain a greater proportion

of the heritability of common complex phenotypes,5,6

and additional SNPs are likely to be identified in larger

samples.7 Because of the polygenic architecture of most

complex traits and disorders, a large number of SNPs

have associations too weak to be identified in the currently

available sample sizes.4 Cost-effective analytical methods

are needed for reliably identifying a larger proportion of

SNPs associated with complex diseases and phenotypes

given that recruitment and genotyping of new participants
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is expensive. Here, we present a genetic-pleiotropy-

informed approach for GWASs to capture more of the

polygenic effects in complex disorders and traits. Given

the high number of traits in humans and the relative small

number of genes (~20,000), some genes have to affect

multiple traits (genetic pleiotropy).8 By combining inde-

pendent GWASs from associated traits or comorbid disor-

ders, we hypothesize that a genetic-pleiotropy-informed

approach can significantly improve discovery of genes

and help capture a greater proportion of the missing

heritability.

Reports indicate overlapping SNPs between several

human traits9,10 and disorders.11,12 To date, methods for

assessing genetic pleiotropy have not taken full advantage

of the existing GWAS data, and the majority of these

studies have focused on the subset of SNPs exceeding

a Bonferroni-corrected threshold of significance for each

trait or disorder.10,13 However, this approach cannot

detect SNPs that reach genome-wide significance in the
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combined analysis (hereafter referred to as polygenic plei-

otropy) but do not meet Bonferroni-corrected significance

in the individual phenotype. Combining GWASs from two

traits or disorders also provides increased power to discover

genes associated with common biological mechanisms

and to potentially inform shared pathophysiological rela-

tionships between the phenotypes. In the current study,

we use schizophrenia (SCZ [MIM 181500]) as an example

of how a pleiotropy-informed analytical approach can

improve gene discovery in a disorder with high herita-

bility14 and for which, despite recent discoveries,13,15,16

most of the underlying genetic architecture remains

unknown.13

SCZ, a debilitating mental health disorder, is among

the leading global causes of disability17 and constitutes a

substantial portion of disease burden worldwide. System-

atic reviews and meta-analyses indicate that individuals

with SCZ have significantly higher mortality rates than

the general population, and this corresponds to a 10–20

year reduction in life expectancy.18–20 Although the

mortality rate from suicide is high, lifestyle and cardiovas-

cular-disease (CVD) risk factors contribute substantially to

life-expectancy reduction in SCZ.19–21 Epidemiological

research has shown increased rates of dyslipidemia, type

2 diabetes (T2D [MIM 125853]), and obesity (MIM

601665) and a high prevalence of metabolic syndrome

among people with SCZ.22 This increase in CVD risk

factors has been primarily attributed to lifestyle factors

such as unhealthy diet, sedentary habits, excessive

smoking, and the side effects of antipsychotic medica-

tion.19,23–25 However, as suggested by studies predating

the introduction of antipsychotics,26 studies of untreated

first-episode individuals and their healthy relatives,27 and

the identification of overlapping candidate genes,28 shared

genetics between SCZ and CVD risk factorsmight also be of

importance.

Large GWASs have reported SNPs associated with a

number of CVD risk factors, including systolic blood pres-

sure (SBP), diastolic blood pressure (DBP),29 low-density

lipoprotein (LDL) cholesterol,30 high-density lipoprotein

(HDL) cholesterol,30 triglycerides (TGs),30 T2D,31 body

mass index (BMI),32 and waist-to-hip ratio (WHR).33 In

the current study, we employed model-free strategies and

leveraged the power of multiple large independent GWASs

to identify SNPs exhibiting pleiotropy between SCZ and

eight CVD risk factors by using summary statistics from

six studies. After applying genomic inflation control, we

computed the stratified empirical cumulative distribution

functions (cdfs) of the nominal p values. Strata were deter-

mined by the relative enrichment of pleiotropic SNPs in

SCZ as a function of increased nominal p values in the

different CVD risk factors. For each nominal p value,

an estimate of the stratum-specific true discovery rate

(TDR ¼ 1 – false discovery rate [FDR]) was obtained from

the empirical cdfs.34,35 We demonstrate that the stratified

analysis improves power to detect SNPs by computing

replication rates for nominal p value thresholds by using
198 The American Journal of Human Genetics 92, 197–209, February
independent substudies for discovery and replication

samples. We show that for a given replication rate,

nominal p value thresholds are approximately 100 times

larger for the most pleiotropic SNPs in SCZ than for all

SNPs (hereafter referred to as genetic enrichment). Using

this stratified methodology, we constructed a two-dimen-

sional (2D) FDR ‘‘look-up’’ table in which the FDR in SCZ

SNPs was computed conditionally on nominal CVD-risk-

factor p values (this is referred to as conditional FDR). Using

this table, we identified 25 loci that are significantly associ-

ated with SCZ at a conditional FDR level of 0.01. Finally, we

constructed the conjunction FDR to investigate SNPs signif-

icantly associated with both SCZ and CVD risk factors.

Specifically, we computed the conditional FDR for SCZ

given CVD-risk-factor nominal p values, as well as con-

ditional FDR for CVD risk factors given SCZ nominal

p values, and we took the maximum of both values as

the conjunction FDR. With this approach, we identified

ten pleiotropic loci implicating overlapping genetic mech-

anisms between SCZ and blood lipids.
Material and Methods

Participant Samples
We obtained complete GWAS results in the form of summary-

statistics p values from public-access websites or through collabo-

ration with investigators (T2D cases and controls were from the

Diabetes Genetics Replication and Meta-analysis [DIAGRAM]

Consortium, and SCZ cases and controls were from the Psychiatric

GWAS Consortium [PGC] [Table S1, available online]). There was

no overlap between participants in the CVD GWAS and the SCZ

case-control sample (n ¼ 21,856), except for 2,974 of 12,462

(24%) controls.13

The SCZ GWAS summary-statistics results were obtained from

the PGC,13 which consists of 9,394 cases with SCZ or schizoaffec-

tive disorder and 12,462 controls (52% screened) from a total of

17 samples from 11 countries. The quality of phenotypic data

was verified by a systematic review of data-collection methods

and procedures at each site, and only studies that fulfilled these

criteria were included. This involved the following nine key items:

(1) the use of a structured psychiatric interview, (2) systematic

training of interviewers in the use of the instrument, (3) system-

atic quality control of diagnostic accuracy, (4) reliability trials,

(5) review of medical-record information, (6) best-estimate proce-

dure employed, (7) specific inclusion and exclusion criteria devel-

oped and utilized, (8) final diagnostic determination made by

MDs or PhDs, and (9) special additional training for the final

SCZ PGC sample. One sample from Sweden used another

approach, but further empirical support for the validity of this

approach was provided. Controls consisted of 12,462 European-

ancestry samples collected from the same countries. Because the

prevalence of SCZ is low, a large control sample in which some

controls were not screened for SCZ was utilized. For further details

on sample characteristics and quality-control procedures applied,

please see Ripke et al.13 A total of 2,974 controls in the SCZ UK

case-control sample16 from the Wellcome Trust Case Control

Consortium (WTCCC) were also included in several of the CVD-

risk-factor GWASs. This constitutes 24% of the total number of

controls (n ¼ 12,462) in the SCZ PGC sample.13
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More information about inclusion criteria and phenotype char-

acteristics of the CVD-risk-factor samples of the different GWASs is

included in the original publications.29–33 The relevant institu-

tional review boards or ethics committees approved the research

protocol of the individual GWASs used in the current analysis,

and all human participants gave written informed consent.
Statistical Analyses
Stratified Quantile-Quantile Plots

Quantile-quantile (Q-Q) plots compare a nominal probability

distribution against an empirical distribution. In the presence of

all null relationships, nominal p values form a straight line on

a Q-Q plot when they are plotted against the empirical distribu-

tion. For each phenotype, for all SNPs, and for each categorical

subset (strata), �log10 nominal p values were plotted against

�log10 empirical p values (stratified Q-Q plots). Leftward deflec-

tions of the observed distribution from the projected null line

reflect increased tail probabilities in the distribution of test statis-

tics (Z scores) and, consequently, an overabundance (also termed

‘‘enrichment’’) of low p values compared to that expected by

chance.

Under large-scale testing paradigms, such as GWASs, quantita-

tive estimates of probably true associations can be estimated

from the distributions of summary statistics.36,37 A common

method for visualizing the enrichment of statistical association

relative to that expected under the global null hypothesis is

through Q-Q plots of nominal p values obtained from GWAS

summary statistics. The usual Q-Q curve has the nominal p value,

denoted by ‘‘p,’’ as the y ordinate and the corresponding value of

the empirical cdf, denoted by ‘‘q,’’ as the x ordinate. Under the

global null hypothesis, the theoretical distribution is uniform on

the interval [0, 1]. As is common in GWASs, we instead plot

�log10(p) against �log10(q) to emphasize tail probabilities of the

theoretical and empirical distributions. Therefore, genetic enrich-

ment results in a leftward shift in the Q-Q curve, corresponding to

a larger fraction of SNPs with a nominal �log10 p value greater

than or equal to a given threshold. Stratified Q-Q plots are con-

structed by the creation of subsets of SNPs on the basis of levels

of an auxiliary measure for each SNP and the computation of

Q-Q plots separately for each level. If SNP enrichment is captured

by variation in the auxiliary measure, this is expressed as succes-

sive leftward deflections in a stratified Q-Q plot as levels of the

auxiliary measure increase.

Genomic Control

The empirical null distribution in GWASs is affected by global vari-

ance inflation due to population stratification and cryptic related-

ness38 and deflation due to overcorrection of test statistics for

polygenic traits by standard genomic-control methods,39 in addi-

tion to incorrect asymptotic approximation used for computing

the p values. We applied a control method leveraging only inter-

genic SNPs, which are most likely depleted for true associations

(unpublished data). First, we annotated the SNPs to genic

(50 UTR, exon, intron, and 30 UTR) and intergenic regions by using

information from the 1000Genomes Project (1KGP). As illustrated

in Figure S1, there are more functional genic regions than inter-

genic regions in SCZ. We used intergenic SNPs because their rela-

tive depletion of associations suggests that they provide a robust

estimate of true null effects, and they thus seem to be a better cate-

gory for genomic control than all SNPs. We converted all p values

to Z scores, and for each phenotype, we estimated the genomic

inflation factor lGC for intergenic SNPs. We computed the infla-
The Americ
tion factor lGC as the median Z score squared divided by the ex-

pected median of a chi-square distribution with one degree of

freedom, and we adjusted all test statistics by lGC. The stratified

Q-Q plot for SCZ after control for genomic inflation is shown in

Figure S1.

Stratified Q-Q Plots for Pleiotropic Enrichment

To assess pleiotropic enrichment, we used a Q-Q plot stratified by

‘‘pleiotropic’’ effects. For a given associated phenotype, enrich-

ment for pleiotropic signals is present if the degree of deflection

from the expected null line is dependent on SNP associations

with the second phenotype. We constructed stratified Q-Q plots

of empirical quantiles of nominal –log10(p) values for SNP associ-

ation with SCZ for all SNPs, as well as for subsets (strata) of SNPs

determined by the nominal p values of their association with

a given CVD risk factor. Specifically, we computed the empirical

cumulative distribution of nominal p values for a given phenotype

for all SNPs and for SNPs with significance levels below the

indicated cutoffs for the other phenotype (–log10(p) R 0,

–log10(p) R 1, –log10(p) R 2, and –log10(p) R 3 corresponding

to p < 1, p < 0.1, p < 0.01, and p < 0.001, respectively). The

nominal p values (–log10(p)) are plotted on the y axis, and

the empirical quantiles (–log10(q), where q ¼ cdf(p)) are plotted

on the x axis. To assess polygenic effects below the standard

GWAS significance threshold, we focused the stratified Q-Q

plots on SNPs with nominal –log10(p) < 7.3 (corresponding to

p > 5 3 10�8).

Significance of Enrichment

Using Q-Q plots (with 95% confidence intervals [CIs]) of empirical

versus nominal –log10(p) values in SCZ as a function of the signif-

icance of association with the CVD risk factors, we estimated the

significance of the polygenic enrichment (Figures S2A–S2C). After

using intergenic SNPs to estimate and control for genomic infla-

tion (Figure S1), we pruned the SNPs by removing SNPs in linkage

disequilibrium (LD) (r2 R 0.2) and computed 95% CIs for the Q-Q

plots. From these CIs, we calculated standard errors and used two

sample t tests to estimate the difference (degree of departure)

between the empirical distribution of SCZ (phenotype 1) SNPs

that were above a given association threshold (–log10(p) > 1,

–log10(p) > 2, –log10(p) > 3, and –log10(p) > 4; red lines) and

the distribution of SNPs with –log10(p) % 1 for the CVD-risk-

factor (phenotype 2) category (blue line). The p values listed in

Table S5 indicate the most significant difference, as assessed by

a two-sample t test, between the red (–log10(p) > 1, 2, 3, or 4)

and blue (–log10(p)% 1) lines. This is reflected in the largest differ-

ence between the 95% CIs. The 95% CIs also illustrate the region

containing significant differences in the Q-Q plot. For differences

between the distributions, we only report p values appearing

above the –log10(p) > 2 threshold on the Q-Q plots. This clearly

shows significant enrichment conditioning SCZ on TG and WHR.

For the CVD risk factors with significant enrichment, we further

calculated the significance of the enrichment for SNPs with a

Fisher’s combined p value below the genome-wide significance

level of 5 3 10�8, and we hereafter refer to this as ‘‘censoring.’’

This made it possible to examine whether the enrichment was

entirely explained by the most significant pleiotropic SNPs or

whether it was due to a more general, polygenic effect (polygenic

pleiotropy). As illustrated for SCZ and TG in Figure S2C, the poly-

genicpleiotropic enrichment ishighly significant. See alsoTable S5.

Stratified TDR

Enrichment seen in the stratified Q-Q plots can be directly

interpreted in terms of TDR (equivalent to 1 � FDR40). We

applied the stratified FDR method,35 previously used for GWAS
an Journal of Human Genetics 92, 197–209, February 7, 2013 199



enrichment based on linkage information.34 Specifically, for

a given p value cutoff, the FDR is defined as

FDRðpÞ ¼ p0F0ðpÞ
FðpÞ ; (Equation 1)

where p0 is the proportion of null SNPs, F0 is the null cdf, and F is

the cdf of all SNPs, both null and non-null; see below for details on

this simple mixture-model formulation.41 Under the null hypoth-

esis, F0 is the cdf of the uniform distribution on the unit interval

[0, 1], so Equation 1 reduces to

FDRðpÞ ¼ p0p

FðpÞ : (Equation 2)

The cdf F can be estimated by the empirical cdf q¼Np / N, where

Np is the number of SNPs with a p value less than or equal to

p and N is the total number of SNPs. By replacing F with q in

Equation 2, we get

Estimated FDRðpÞ ¼ p0p

q
; (Equation 3)

which is biased upward as an estimate of the FDR.41 Replacing p0

in Equation 3 with unity gives an estimated FDR that is further

biased upward:

q� ¼ p

q
: (Equation 4)

If p0 is close to 1, as is probably true for most GWASs,

the increase in bias from Equation 3 is minimal. The quantity

1 – p / q is therefore biased downward and hence is a conservative

estimate of the TDR.

Referring to the formulation of the Q-Q plots, we see that q* is

equivalent to the nominal p value divided by the empirical quan-

tile, as defined earlier. Given the –log10 of the Q-Q plots, we can

easily obtain

�log10ðq�Þ ¼ log10ðqÞ � log10ðpÞ; (Equation 5)

demonstrating that the (conservatively) estimated FDR is directly

related to the horizontal shift of the curves in the stratified Q-Q

plots from the expected line x ¼ y, i.e., a larger shift corresponds

to a smaller FDR, as illustrated in Figure 1. As before, the estimated

TDR can be obtained as 1 � FDR. For each range of p values

(stratum) in a pleiotropic trait, we calculated the TDR as a function

of p values in SCZ (indicated by different colored curves) in

Figure 1 by using each observed p value as a threshold according

to Equation 5.

Estimates of Pleiotropy

Let z be the GWAS test statistic for a corresponding p value. The

two-group mixture model for Z scores implicit in Equation 1 is

given by

fðzÞ ¼ p0f0ðzÞ þ ð1� p0Þf1ðzÞ; (Equation 6)

where f0 is the null distribution (standard normal after appropriate

genomic control), f1 is the non-null distribution (which can be

estimated parametrically or nonparametrically),36 and p0 is the

proportion null, as before. We can easily generalize this model to

two Z scores from phenotypes simultaneously (z1 for phenotype

1 and z2 for phenotype 2) by using a bivariate density from the

four-group mixture model,

fðz1; z2Þ ¼ p0f0ðz1; z2Þ þ p1f1ðz1; z2Þ þ p2f2ðz1; z2Þ þ p3f3ðz1; z2Þ;
(Equation 7)
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where p0 is the proportion of SNPs for which both phenotypes are

null, p1 is the proportion of SNPs for which phenotype 1 is non-

null and phenotype 2 is null, p2 is the proportion of SNPs for

which phenotype 1 is null and phenotype 2 is non-null, and p3

is the proportion of SNPs for which both phenotypes are non-

null (i.e., the pleiotropic SNPs). The mixture densities in Equation

7 are given by

f0ðz1; z2Þ ¼ 4ðz1Þ 4ðz2Þ
f1ðz1; z2Þ ¼ g1ðz1Þ 4ðz2Þ
f2ðz1; z2Þ ¼ 4ðz1Þ g2ðz2Þ
f3ðz1; z2Þ ¼ g1ðz1Þ g2ðz2Þ;

(Equation 8)

where f() denotes the standard normal density and g1 and g2
denote the non-null marginal densities of z1 and z2, respectively.

We found that modeling the marginal non-null densities with

normal Laplace densities or the Weibull distribution on the

squared Z scores (z2) (in which case the null densities are central

chi-square with one degree of freedom) fits the data well. The

proportions p ¼ (p0,p1,p2,p3) and the parameters of the non-

null distributions can be estimated with maximum likelihood

or Bayesian methods such as Markov Chain Monte Carlo. From

the probability density function (pdf) (Equation 7), we can

compute the joint and conditional cdfs, and hence the FDR

(Equation 2), of one phenotype conditionally on tail probabilities

of the second.

Figure S3 presents the observed and fitted Q-Q curves for SCZ,

TG, and WHR; these curves are based on the marginal cdfs from

the bivariate-mixture-model fits, indicating very good fit. The

non-null distributions were modeled parametrically with Weibull

distributions for non-null z2 and with chi-square with one degree

of freedom for null z.2 The estimated vector of probabilities p from

these fits can also be used for testing whether the degree of pleiot-

ropy is significantly higher than that expected by chance if both

phenotypes are independent. Independence implies that the joint

pdf of both phenotype Z scores is a product of two two-group

mixtures (Equation 6). It is easy to show that demonstrating excess

pleiotropy from that predicted by independence is equivalent to

showing that p3 > p1p2 / p0 in Equation 7 or that the log odds

ratio (LOR)

LORðphenotype 1;phenotype 2Þ ¼ log

�
p3

1� p3

�

� log

� ðp1p2=p0Þ
ð1� p1p2=p0Þ

�

(Equation 9)

is greater than zero. With a multivariate normal approximation

to the maximum-likelihood estimates with covariance obtained

from the inverse Fisher information matrix, estimates of LOR

with 95% CIs are LOR(SCZ,TG) ¼ 4.0 [3.8, 4.3] and

LOR(SCZ,WHR) ¼ 2.4 [2.1, 2.7], which are both highly signifi-

cantly different from zero. These 95% CIs include an adjustment

that assumes an effective degree of freedom of 500,000 indepen-

dent SNPs to account for the correlation of SNPs (i.e., LD).

Stratified Replication Rate

For each of the 17 substudies contributing to the final meta-anal-

ysis in SCZ, we independently adjusted Z scores by using inter-

genic inflation control. For 1,000 of the possible combinations

of the eight-study discovery sets and nine-study replication sets,

we calculated the eight-study combined discovery Z score and

eight- or nine-study combined replication Z score for each SNP

as the average Z score across the eight or nine studies and

multiplied these by the square root of the number of studies.
7, 2013



Figure 1. Enrichment and Replication
(A and B) Stratified Q-Q plot of nominal versus empirical –log10 p values (corrected for inflation) in SCZ below the standard GWAS
threshold of p < 5 3 10�8 as a function of significance of association with (A) TGs and (B) WHR at the levels of –log10(p) > 0,
–log10(p) > 1, –log10(p) > 2, and –log10(p) > 3, which correspond to p < 1, p < 0.1, p < 0.01, and p < 0.001, respectively. Dashed lines
indicate the null hypothesis.
(C and D) Stratified TDR plots illustrating the TDR increase associated with increased pleiotropic enrichment in (C) SCZ conditioned on
TG (SCZjTG) and (D) SCZ conditioned on WHR (SCZjWHR).
(E and F) Cumulative replication plot showing the average rate of replication (p < 0.05) within SCZ substudies for a given p value
threshold demonstrates that pleiotropic enriched SNP categories replicate at a higher rate in independent SCZ samples for (E) SCZ condi-
tioned on TG (SCZjTG) and (F) SCZ conditioned on WHR (SCZjWHR). The vertical intercept is the overall replication rate per category.

The American Journal of Human Genetics 92, 197–209, February 7, 2013 201



For discovery samples, the Z scores were converted to two-tailed p

values, whereas replication samples were converted to one-tailed p

values, preserving the direction of effect in the discovery sample.

For each of the 1,000 discovery-replication pairs, cumulative rates

of replication were calculated over 1,000 equally spaced bins

spanning the range of negative log10(p values) observed in the

discovery samples. The cumulative replication rate for any bin

was calculated as the proportion of SNPs with a –log10(discovery

p value) greater than the lower bound of the bin with a replication

p value < 0.05. Cumulative replication rates were calculated

independently for each of the four pleiotropic enrichment

categories, as well as for intergenic SNPs and all SNPs. For each

category, the cumulative replication rate for each bin was

averaged across the 1,000 discovery-replication pairs, and the

results are reported in Figure 1. The vertical intercept is the overall

replication rate.

Stratified Replication Effect Sizes

Stratified TDR is directly related to stratified replication effect sizes

and hence replication rates.

As before, for each of the 17 substudies contributing to the

final meta-analysis in SCZ, we independently adjusted Z scores

by using intergenic inflation control. For 1,000 of the possible

combinations of the eight-study discovery sets and nine-study

replication sets, we calculated the eight-study combined discovery

Z score and eight- or nine-study combined replication Z score

for each SNP. The effect sizes were stratified by levels of

log10(p values) from the TG GWAS. As illustrated in Figure S4,

we also calculated the cumulative replication rate without over-

lapping controls (we removed the UK sample that included the

WTCCC controls).

For visualization, a cubic smoothing spline was fit for relating

the discovery Z score bin midpoints to the corresponding average

replication Z scores (see Figure S5). The nonlinear pattern of

shrinkage is typical of that observed inmixturemodels, as in Equa-

tion 1. Importantly, the amount of shrinkage is highly dependent

on enrichment stratum: replication effect sizes in more enriched

strata exhibit more fidelity with discovery sample effect sizes.

This directly relates to increased TDR and translates into increased

replication rates for enriched strata.

Conditional Statistics—Test of Association with SCZ

To improve detection of SNPs associated with SCZ, we used a strat-

ified FDR approach in which we leveraged associated phenotypes

by using established stratified FDR methods.34,35 Specifically, we

stratified SNPs on the basis of p values in the pleiotropic pheno-

type (e.g., TGs). On the basis of the combination of p values for

the SNP in SCZ and the pleiotropic trait, we then assigned a condi-

tional FDR value (denoted as FDRSCZ j TG) for SCZ to each SNP by

interpolating into a 2D look-up table (Figure S6). All SNPs with

FDR < 0.01 (–log10(FDR) > 2) in SCZ given the different CVD

risk factors are listed in Table 1 after ‘‘pruning’’ (removing all

SNPs with r2 > 0.2 according to 1KGP LD structure). A significance

threshold of FDR < 0.01 corresponds to 1 false positive per 100

reported associations. We also list all SNPs with FDR < 0.05

(–log10(FDR) > 1.3) in Table S2.

Conditional Manhattan Plots

To illustrate the localization of the genetic markers associated with

SCZ given the CVD-risk-factor effect, we created a ‘‘conditional

Manhattan plot’’ by plotting all SNPs within an LD block in rela-

tion to their chromosomal location. As illustrated in Figure 2,

the large points represent the SNPs with FDR < 0.05, whereas

the small points represent the nonsignificant SNPs. All SNPs

without pruning are shown. The strongest signal in each LD block
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is illustrated with a black line around the circles. We identified

these signals by ranking all SNPs in increasing order on the basis

of the conditional FDR value for SCZ and then by removing

SNPs in LD r2> 0.2 with any higher ranked SNP. Thus, the selected

locus was the most significantly associated with SCZ in each LD

block (Figure 2).

Conjunction Statistics—Test of Association with Both Phenotypes

In order to identify which of the SNPs associated with SCZ given

the CVD risk factor (SCZjCVD, Table 1) were also associated with

CVD risk factors given SCZ (opposite direction), we calculated

the conditional FDR in the other direction (CVDjSCZ). This is

reported in Table 2. The corresponding Z scores are listed in

Table S3. The Z scores were calculated from the p values, and the

direction of effect was determined by the risk allele.

In addition, to make a comprehensive, unselected map of pleio-

tropic signals, we used a conjunction testing procedure, as out-

lined for p value statistics in Nichols et al.,42 and adapted this

method for FDR statistics on the basis of the conditional-FDR

approach.34,35 On the basis of the combination of p values for

the SNP in SCZ and the pleiotropic trait, we defined the conjunc-

tion statistics (denoted as FDRSCZ & TG) as the maximum condi-

tional FDR in both directions, i.e.,

FDRSCZ & TG ¼ max
�
FDRSCZ jTG; FDRTG j SCZ

�
;

by interpolating into a bidirectional 2D look-up table (Figure S7).

The conjunction statistic allows for identification of SNPs that are

associated with both phenotypes, which minimizes the effect of

a single phenotype driving the common association signal. All

SNPs with conjunction FDR < 0.05 (–log10(FDR) > 1.3) with SCZ

and any of the CVD risk factors considered are listed in Table S4

(after pruning).

Conjunction Manhattan Plots

To illustrate the localization of the pleiotropic genetic markers

in association with both SCZ and CVD risk factors, we used a

conjunction Manhattan plot, for which we plotted all SNPs

with a significant conjunction FDR within an LD block in relation

to their chromosomal location. As illustrated in Figure S8, the

large points represent the significant SNPs (FDR < 0.05), whereas

the small points represent the nonsignificant SNPs. All SNPs

without pruning are shown, and the strongest signal in each

LD block is illustrated with a black line around the circles.

First, we ranked all SNPs on the basis of the conjunction FDR

and removed SNPs in LD r2 > 0.2 with any higher ranked SNP

(Figure S8).
Results

Q-Q Plots of SCZ SNPs Stratified by Association with

Pleiotropic CVD Risk Factors

Stratified Q-Q plots for SCZ conditioned on nominal

p values of association with TGs showed enrichment across

different levels of significance for TGs (Figure 1A). The

earlier departure from the null line (leftward shift) suggests

a greater proportion of true associations for a given

nominal SCZ p value. Successive leftward shifts for

decreasing nominal TG p values indicate that the propor-

tion of non-null effects varies considerably across

different levels of association with CVD risk factors. For

example, in the –log10(pTG) R 3 category, the proportion
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Table 1. Conditional FDR: SCZ Loci Given CVD Risk Factors

Locus SNP Gene Region MIM Chr SCZ p Value SCZ FDR
Minimum
Conditional FDR

CVD Risk
Factor

4 rs1625579 AK094607a 614304 1p21.3 5.52 3 10�6 0.02105 0.00420 TG

9 rs2272417 IFT172 607386 2p23.3 4.47 3 10�5 0.07516 0.00193 TG

17 rs17180327 CWC22 - 2q31.3 6.37 3 10�6 0.02332 0.00780 HDL

20 rs13025591 AGAP1 608651 2q37 9.26 3 10�6 0.02953 0.00131 TG

22 rs2239547 ITIH4a 600564 3p21.1 1.73 3 10�5 0.03920 0.00400 HDL

23 rs11715438 PTPRG 176886 3p21-p14 2.47 3 10�6 0.01601 0.00222 HDL

26 rs9838229 DKFZp434A128 - 3q27.2 1.11 3 10�5 0.02953 0.00825 HDL

37b rs2021722 TRIM26a 600830 6p21.3 2.08 3 10�9 0.00046 0.00001 TG

38 rs7383287 HLA-DOB 600629 6p21.3 3.44 3 10�5 0.06382 0.00748 HDL

39 rs1480380 HLA-DMA 142855 6p21.3 3.05 3 10�6 0.01746 0.00028 TG

40 rs9462875 CUL9 607489 6p21.1 1.20 3 10�5 0.03383 0.00739 WHR

42 rs1107592 MAD1L1 602686 7p22 7.63 3 10�7 0.00919 0.00493 HDL

48 rs10503253 CSMD1a 608397 8p23.2 3.96 3 10�6 0.01912 0.00432 TG

51 rs12234997 AK055863 - 8p23.1 2.23 3 10�5 0.04590 0.00347 TG

55 rs755223 BC037345 - 8q12.3 6.91 3 10�5 0.10338 0.00895 HDL

56 rs7004633 MMP16a 602262 8q21.3 2.60 3 10�7 0.00504 0.00141 HDL

65 rs11191580 NT5C2a 600417 10q24.32 3.73 3 10�7 0.00625 0.00013 SBP

rs7914558 CNNM2a 607803 10q24.32 1.90 3 10�6 0.01464 0.00101 HDL

rs2296569 CNNM2 607803 10q24.32 3.78 3 10�6 0.01912 0.00127 TG

rs10748835 AS3MT 611806 10q24.32 2.21 3 10�6 0.01464 0.00274 HDL

67 rs11191732 NEURL 603804 10q25.1 2.55 3 10�6 0.01601 0.00160 HDL

71 rs2172225 METT5D1 - 11p14.1 4.88 3 10�5 0.08828 0.00238 TG

rs7938219 CR618717 - 11p14.1 3.75 3 10�5 0.07516 0.00331 TG

78 rs548181 STT3A 601134 11q23.3 4.65 3 10�7 0.00707 0.00044 WHR

rs11220082 FEZ1 604825 11q24.2 2.84 3 10�6 0.01746 0.00279 TG

rs671789 PKNOX2 613066 11q24.2 1.46 3 10�5 0.03920 0.00695 WHR

80 rs7972947 CACNA1Ca 114205 12p13.2 7.12 3 10�6 0.02609 0.00415 TG

81 rs4765905 CACNA1Ca 114205 12p13.3 7.99 3 10�6 0.02609 0.00758 TG

84 rs8003074 KIAA0391 609947 14q13.2 7.23 3 10�6 0.02609 0.00484 HDL

rs10135277 KIAA0391 609947 14q13.1 5.02 3 10�6 0.02105 0.00491 TG

87 rs1869901 PLCB2 604114 15q15 3.66 3 10�6 0.01912 0.00203 TG

101 rs17597926 TCF4a 602272 18q21.1 6.49 3 10�7 0.00805 0.00216 TG

Independent complex or single-gene loci (r2 < 0.2) with SNP(s) with a conditional FDR < 0.01 in SCZ given the association in CVD risk factors. We defined the
most significant SCZ SNP in each LD block on the basis of the minimum conditional FDR for each phenotype. Listed are the most significant SNPs in each gene of
the LD block, as well as the CVD risk factor that provided the signal. All loci with SNPs with conditional FDR < 0.05 were used for defining the number of the loci
(Table S2). This and the respective FDR values in each phenotype are listed in Table S2. SCZ FDR values < 0.01 are in bold. The following abbreviations are used:
chr, chromosomal region; SCZ, schizophrenia; FDR, false-discovery rate; CVD, cardiovascular disease; TG, triglyceride; HDL, high-density lipoprotein; WHR, waist-
to-hip ratio; and SBP, systolic blood pressure.
aSame locus identified in previous SCZ GWASs. All data were first corrected for genomic inflation.
bThere are additional independent SNPs in the HLA region on chromosome 6 (locus 37). The complete SNP list is shown in Table S6.
of SNPs reaching a given significance level (e.g.,

–log10(pSCZ) > 6) is roughly 100 times greater than that

for the –log10(pTG) R 0 category (all SNPs), indicating

a very high level of enrichment. Similarly, a clear pleio-
The Americ
tropic enrichment was also seen for HDL and LDL choles-

terol. A less clear pleiotropic enrichment was seen forWHR

(Figure 1B), BMI, and SBP, but there was no evidence for

enrichment in T2D (data not shown).
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Figure 2. Conditional Manhattan Plot
Conditional Manhattan plot of conditional –log10 (FDR) values for SCZ alone (black) and SCZ given the following CVD risk factors: TGs
(SCZjTG, red), LDL (SCZjLDL, orange), HDL (SCZjHDL, cyan), SBP (SCZjSBP, green), BMI (SCZjBMI, purple), WHR (SCZjWHR, blue),
and T2D (SCZjT2D, chartreuse). SNPs with conditional –log10 FDR > 1.3 (i.e., FDR < 0.05) are shown with large points. A black line
around the large points indicates the most significant SNP in each LD block, and this SNP was annotated with the closest gene, which
is listed above the symbols in each locus (except for the HLA region on chromosome 6) and in Table S2. The figure shows the local-
ization of 106 loci on a total of 21 chromosomes (1–19, 21, and 22). Details for the loci with –log10 FDR > 2 (i.e., FDR < 0.01) are shown
in Table 1.
Conditional TDR in SCZ Is Increased by CVD Risk

Factors

Because categories of SNPs with stronger pleiotropic en-

richment are more likely to be associated with SCZ, all

tag SNPs should not be treated exchangeably so that

power for discovery can be maximized. Specifically, varia-

tion in enrichment across pleiotropic categories is ex-

pected to be associated with corresponding variation in

the TDR (equivalent to 1 – FDR)40 for association of SNPs

with SCZ. A conservative estimate of the TDR for each

nominal p value is equivalent to 1 – (p / q), easily obtained

from the stratified Q-Q plots. This relationship is shown

for SCZ conditioned on TG (Figure 1C) and WHR (Fig-

ure 1D). For a given conditional TDR, the corresponding

estimated nominal p value threshold varies by a factor of

100 from the most to the least enriched SNP category

(strata) for SCZ conditioned on TG (SCZjTG) and approxi-

mately by a factor of 40 for SCZ conditioned on WHR

(SCZjWHR). Phenotypes with weaker pleiotropy with

SCZ showed smaller increases in conditional TDR (data

not shown). Because TDR is strongly related to predicted

replication rate, it is expected that the replication rate

will increase for a given nominal p value for SNPs in cate-

gories with higher conditional TDR.
204 The American Journal of Human Genetics 92, 197–209, February
Replication Rate in SCZ Is Increased by Pleiotropic

CVD Risk Factors

To demonstrate that the observed pattern of differential

enrichment does not result from spurious (i.e., nongenera-

lizable) associations due to category-specific stratification

or errors in statistical modeling, we also studied the

empirical replication rate across independent substudies

of SCZ. Figures 1E and 1F show the empirical cumulative

replication-rate plots as a function of nominal p value

for the same categories as for the conditional stratified

TDR plots in Figures 1C and 1D. Consistent with the

conditional TDR pattern, we found that the nominal

p value corresponding to a wide range of replication rates

was 100 times higher for the –log10(pTG) R 3 category

than for the –log10(pTG) R 0 category (Figure 1E). Simi-

larly, SNPs from pleiotropic SNP categories showing the

greatest enrichments (–log10(pTG) R 3) replicated at the

highest rates—up to five times higher than all SNPs

(–log10(pTG) R 0)—for a wide range of p value thresholds.

This suggests that adjusting p value thresholds according

to the estimated category-specific conditional TDR could

improve the discovery of replicating SNP associations.

The same relationship between conditional TDR and repli-

cation rate was shown for SCZjWHR (Figure 1F), but here,
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Table 2. Conditional FDR: CVD-Risk-Factor Loci Given SCZ

Locus SNP Gene MIM Chr TGjSCZ LDLjSCZ HDLjSCZ SBPjSCZ BMIjSCZ WHRjSCZ T2DjSCZ

9 rs780110 IFT172 607386 2p23.3 0.00000 0.73578 0.66350 0.88851 0.57686 0.01079 1.00000

rs2272417 IFT172 607386 2p23.3 0.00000 0.86268 0.55896 0.83749 0.70039 0.06244 1.00000

20 rs6759206 AGAP1 608651 2q37 0.01764 0.89696 0.25333 1.00000 1.00000 0.95347 1.00000

22 rs3617 ITIH3 146650 3p21.1 0.69128 0.84071 0.37022 0.97795 0.45287 0.00942 1.00000

rs2276817 ITIH4 600564 3p21.1 0.28255 0.04717 0.25333 0.61208 0.45287 1.00000 1.00000

37 rs2328893 SLC17A4 604216 6p22.2 0.03788 0.34581 0.00396 0.83749 0.65586 1.00000 1.00000

rs1324082 SLC17A1 182308 6p22.2 0.03113 0.63999 0.00465 0.65717 0.78940 0.95347 1.00000

rs13198474 SLC17A3 611034 6p22.2 0.69128 0.73578 0.00289 0.80634 1.00000 0.93285 1.00000

rs16891235 HIST1H1A 142709 6p22.2 0.95191 0.02569 0.00213 0.70268 1.00000 0.93285 1.00000

rs13194781 HIST1H2BN 602801 6p22.2 0.00239 0.97314 0.14244 0.88851 1.00000 0.93285 1.00000

rs1235162 GABBR1 603540 6p22.1 0.00117 0.73578 0.10885 0.70268 0.82974 1.00000 1.00000

rs2844762 HLA-B 142830 6p22.1 0.00491 0.53895 0.78537 0.61208 NA 0.93285 1.00000

rs3130380 HCG18 - 6p22.1 0.00708 0.73578 0.01852 0.77857 0.70039 0.81643 1.00000

rs2524222 GNL1 143024 6p22.1 0.28255 0.02945 0.41447 0.80634 1.00000 0.93285 1.00000

rs9262143 KIAA1949 610990 6p22.1 0.00004 0.26238 0.05759 0.77857 0.92201 0.52829 1.00000

rs3095326 IER3 602996 6p22.1 0.00003 0.04717 0.04502 0.74450 0.92201 0.42354 1.00000

rs3099840 HCP5 604676 6p21.3 0.00000 0.39032 0.02988 0.28698 1.00000 0.37454 1.00000

rs2284178 HCP5 604676 6p21.3 0.01764 0.48709 0.25333 0.18351 0.74603 0.87368 1.00000

rs805294 LY6G6C 610435 6p21.33 1.00000 0.97314 0.12393 0.00248 0.61339 0.75370 1.00000

rs3117577 MSH5 603382 6p21.3 0.00000 0.02164 0.41447 0.61208 0.87106 0.42354 1.00000

rs3130679 C6orf48 605447 6p21.33 0.00000 0.07243 0.14244 0.41364 0.70039 0.13758 1.00000

rs412657 AK123889 - 6p21.33 0.69128 0.97314 0.03447 0.65717 0.65586 0.37454 1.00000

rs9268219 C6orf10 606766 6p21.33 0.00000 0.04220 0.12393 0.38400 0.65586 0.03366 1.00000

rs3129963 BTNL2 606000 6p21.33 0.59071 0.77938 0.00548 0.52604 0.92201 0.04119 1.00000

rs9268853 HLA-DRA 142860 6p21.3 0.69128 0.81421 0.03447 0.41364 0.61339 0.02983 1.00000

rs9275524 HLA-DQA2 613503 6p21.32 0.00409 0.03128 0.00548 0.33310 0.27214 0.05832 1.00000

39 rs1480380 HLA-DMA 142855 6p21.3 0.00708 0.86268 0.41447 0.18351 0.78940 0.10401 NA

40 rs7832 C6orf108 - 6p21.1 0.03399 0.97057 0.10762 NA NA NA NA

51 rs983309 AK055863 - 8p23.1 0.48760 0.00000 0.00000 0.80634 0.78940 0.47533 1.00000

rs17660635 AK055863 - 8p23.1 0.69128 0.00080 0.00010 0.74450 0.92201 0.81643 1.00000

65 rs4919666 SUFU 607035 10q24.32 0.85168 0.86268 0.78537 0.04405 0.40025 0.87368 1.00000

rs2296569 CNNM2 607803 10q24.32 0.15574 0.59079 0.03950 1.00000 1.00000 1.00000 1.00000

rs11191560 NT5C2 600417 10q24.32 0.69128 0.97314 0.72193 0.00000 0.02776 0.47533 1.00000

rs11191580 NT5C2 600417 10q24.32 0.78905 1.00000 0.61021 0.00000 0.02897 0.52829 1.00000

71 rs2958625 METT5D1 - 11p14.1 0.00491 0.89696 0.02569 0.88851 0.52128 0.52829 1.00000

rs10835491 METT5D1 - 11p14.1 0.00409 0.89696 0.03950 0.88851 0.52128 0.52829 1.00000

78 rs10790734 PKNOX2 613066 11q24.2 0.37774 0.89696 1.00000 0.80634 0.65586 0.04476 1.00000

For the independent complex or single-gene loci (r2 < 0.2) with SNP(s) with a conditional FDR < 0.01 in SCZ given associated CVD risk factors (Table 1), the
conditional FDR in the other direction is provided, i.e., FDR CVD risk factors given association in SCZ. All independent loci are listed consecutively, and the
same locus numbering is used as in Table 1. All data were first corrected for genomic inflation. FDR values < 0.05 are in bold. The following abbreviations are
used: chr, chromosomal region; TG, triglyceride; SCZ, schizophrenia; LDL, low-density lipoprotein; HDL, high-density lipoprotein; SBP, systolic blood pressure;
BMI, body mass index; WHR, waist-to-hip ratio; T2D, type 2 diabetes; and NA, not available.
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the increase in enrichment, and thus the increase in repli-

cation rate, was weaker than that for SCZjTG.

SCZ Gene Loci Identified with Conditional FDR

To identify SNPs associated with SCZ, we constructed

a conditional Manhattan plot showing the FDR condi-

tional on each of the CVD risk factors (Figure 2). We iden-

tified significant loci located on a total of 21 chromosomes

(1–19, 21, and 22) associated with SCZ, leveraging the

reduced FDR obtained by the associated CVD risk factor.

To estimate the number of independent loci, we pruned

the associated SNPs (i.e., removed SNPs with LD > 0.2)

and identified a total of 106 independent loci with a signif-

icance threshold of conditional FDR < 0.05 (Table S2).

With the more conservative conditional-FDR threshold

of 0.01, there remained 25 significant independent loci,

of which 4 were complex and 21 were single genes (Table 1

and black line around large circles in Figure 2). The largest

locus was on chromosome 6 in the human-leukocyte-

antigen (HLA) region. This is the only locus that would

have been discovered by standard methods based on

p values (Bonferroni correction), and the 6p21.3 region

(close to TRIM26 [MIM 600830]) was significantly associ-

ated with SCZ in the primary analysis of the current

sample.13 With the FDR method in SCZ alone, six loci

were identified. Of these, the regions close to TRIM26

(6p21.3), MMP16 (8q21.3 [MIM 602262]), CNNM2/

NT5C2 (10q24.32 [MIM 607803 and 600417]), and TCF4

(18q21.1 [MIM 602272]) were identified in earlier GWASs

only after large replication samples were included,13,15

except for 6p21.3. The remaining 19 loci would not

have been identified in the current sample without the

use of the pleiotropy-informed stratified FDR method.

Of interest, the AK094607/MIR137 region (1p21.3 [MIM

614304]) and the CSMD1 region (8p23.2 [MIM 608397])

were identified in the primary analysis of the current SCZ

sample after the inclusion of a large replication sample,13

and the ITIH4 (3p21.1 [MIM 600564]) and CACNA1C

(12p13.3, locus 81 [MIM 114205]) regions were identified

in the primary analysis after combination with a large

bipolar-disorder sample.12,13 Thus, the current pleiot-

ropy-informed FDR method validated nine loci discovered

in considerably larger samples and discovered 16 addi-

tional loci. Furthermore, several of these additional loci

are located in regions with borderline significance associa-

tion with SCZ in previous studies: AGAP1 (2q37; CENTG2

[MIM 608651]),13 PTPRG (3p21 [MIM 176886]),13

MAD1L1 (7p22 [MIM 602686]),43 STT3A (11q23.3 [MIM

601134]),13 and PLCB2 (15q15 [MIM 604114]).13

Pleiotropic Gene Loci in SCZ and CVD Risk Factors

Identified with Conjunction FDR

As a secondary analysis, we investigated whether any

of the SNPs associated with SCZ conditioned on CVD

(SCZjCVD) were also significantly associated with CVD

risk factors conditioned on SCZ (CVDjSCZ), i.e., the condi-
tional FDR in the opposite direction. We identified ten
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independent loci (pruned on the basis of LD > 0.2) with

a significant association also with the CVD risk factor

(conditional FDR < 0.05); these included three complex

loci and seven single-gene loci (Table 2). Of these, the

ITIH4 region (3p21.1) and the CNNM2/NT5C2 region

(10q24.32), in addition to the HLA region on chromosome

6, have been identified in previous SCZ studies after the

inclusion of large replication samples.13 The significant

loci were found in the analyses of TGjSCZ (six loci),

LDLjSCZ (three loci), HDLjSCZ (four loci), SBPjSCZ (two

loci), BMIjSCZ (one locus), and WHRjSCZ (four loci), and

six loci were jointly associated with SCZ and more than

one CVD risk factor (Table 2). This suggests that overlap-

ping genetic pathways are involved in SCZ and CVD risk

factors. The direction of the different SNP associations

(Z scores) is shown in Table S3. There was no clear evidence

for systematic directions across any of the SNPs in the

different phenotypes, probably as a result of complex LD

structures, especially on chromosome 6.

Further, to provide a comprehensive, unselected map of

pleiotropic loci between SCZ and CVD risk factors, in addi-

tion to those primarily associated with SCZ, we performed

a conjunction-FDR analysis and constructed a conjunction

Manhattan plot (Figure S8). We detected 26 independent

pleiotropic loci (pruned on the basis of LD > 0.2; black

line around large circles) with a significance threshold of

conjunction FDR < 0.05 on a total of 14 chromosomes.

See Table S4 for more details.
Discussion

Here, leveraging the power of GWAS data from over

250,000 individuals, we demonstrate that GWASs from

associated CVD risk factors can improve discovery of SCZ

susceptibility loci. By using the stratified conditional-FDR

approach34,35 in the combined analyses of the SCZ and

CVD-risk-factor GWASs, we identified a total of 25 signifi-

cant loci. By analyzing the SCZ GWAS alone, we identified

five loci. In contrast, with standard GWAS methods, one

locus was significant in the SCZ sample after genomic-

control correction.13 The identified pleiotropic loci are

associated with overlapping biological processes, and

nine of them have been identified in previous SCZ GWASs

after the inclusion of large additional samples. This shows

the feasibility of using a pleiotropy-informed stratified FDR

approach in SCZ in combination with associated pheno-

types; it is much more cost efficient than increasing the

sample size of SCZ individuals.44

To date, it has been difficult to use GWASs to discover

a significant proportion of the missing heritability of com-

plex human traits and disorders. Our statistical frame-

work is based on the fact that SNPs are not exchangeable.

Rather, SNPs with effects in pleiotropic phenotypes have

a higher probability of being true non-nulls and hence

also a higher probability of being replicated in indepen-

dent studies. We therefore developed a conditional-FDR
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approach for GWAS summary statistics by adapting strati-

fication methods originally used for linkage analysis and

microarray expression data.34,35 Decreased conditional

FDR (equivalently, increased conditional TDR) for a given

nominal p value increases power to detect true non-null

effects. Increased conditional TDR is directly related to

increased replication effect sizes and replication rates in

de novo samples. Importantly, we validated the condi-

tional-FDR approach by demonstrating increased replica-

tion rates in independent SCZ substudies for given

nominal p value cutoffs. Equivalently, conditional FDR

can be used for controlling FDR at a given level while

increasing power to discover non-null SNPs over the

usual unconditional approaches that treat all SNPs as

exchangeable.45

We also developed a conjunction-FDR approach to

identify SNPs that are highly pleiotropic with SCZ and

one or more CVD risk factors. The conjunction FDR is

the minimum of the conditional FDR for SCZ given

a CVD risk factor and vice versa. SNPs that exceed a strin-

gent conjunction-FDR threshold are highly probable to

be non-null in two phenotypes simultaneously. Of note,

conjunction FDR is different from the Fisher combined

probability test, for which the alternative hypothesis is

that the SNP has a significant effect on at least one (but not

necessarily both) phenotypes. We validated our approach

by applying a bivariate model to estimate the covariation

between SCZ and the CVD risk factors. This showed that

for the pleiotropic phenotypes, the degree of pleiotropy

is highly significantly different from zero (Figure S3).

Further confidence in the significance of the current

findings comes from the CI Q-Q plots (Figure S2), which

show significant pleiotropic enrichment. Given that the

current analyses are based on GWAS summary statistics,

the findings depend on correctly computed p values in

the original studies.

The current findings of difference in magnitude of

enrichment and variation in the pleiotropic loci across

the three lipid phenotypes show that the results are not

driven by genetic stratification, given that the lipid

phenotypes were all obtained from the same individ-

uals30 and each had approximately the same sample size.

Moreover, the improved replication rate with increasing

pleiotropic enrichment further argues against nonspecific

genetic stratification. As such, polygenic pleiotropy could

potentially be a nonspecific phenomenon related to heri-

table human phenotypes, but the lack of polygenic

enrichment and of significant loci between SCZ and T2D

(an example of a successful GWAS31) suggests that the

current results are phenotype specific. It is unlikely that

nongenetic correlations explain the observed pleiotropy

given that only a fraction of control participants in the

CVD-risk-factor GWAS samples overlapped with the SCZ

GWAS samples (WTCCC controls). The replication rate

based on substudies was not driven by the UK sample

(which included the overlapping WTCCC controls), as

shown in Figure S4. The current threshold for significant
The Americ
association of SCZjCVD was set at FDR < 0.01 as a result

of the seven CVD risk factors tested. However, the CVD

risk factors are highly correlated, and thus the 0.01 level

is conservative despite the number of CVD phenotypes

tested and is comparable to the standard FDR threshold

of 0.05, which translates to 5 false positives per 100

findings.

In the current study, we defined pleiotropy as the associ-

ation between a single gene or variant and more than one

distinct phenotype (diseases or traits).9 It is possible that

some of the loci identified in the current study might not

be pleiotropic but rather underlie common aspects of the

SCZ and CVD-risk-factor phenotypes.9 This can be investi-

gated in samples with more detailed phenotypes. In the

present study, we focused on SNPs, but gene-based pleiot-

ropy is also interesting;8 however, this requires raw data

from individual participants.

Our results implicate potential shared pathological

mechanisms between SCZ and CVD risk factors. The ten

pleiotropic loci were associated with multiple CVD pheno-

types, supporting the hypothesis that the pathobiology

of SCZ is heterogeneous and has numerous underlying

mechanisms. The majority of the pleiotropic signal was

found with lipid levels, suggesting that lipid biology

might be involved in SCZ pathophysiology. As such, genet-

ically determined dyslipidemia in SCZ is in line with

evidence for white-matter abnormalities and myelin

dysfunction46,47 and supports the neurodevelopmental

hypothesis.48 However, the lack of consistent direction-

ality suggests the need for further experimental studies

for determining the mechanistic relationship between dys-

lipidemia and SCZ.

Our results show that a ‘‘model-free,’’ empirical, FDR

framework that uses unthresholded summary-statistics

data from independent GWASs can provide insights into

relationships between risk factors and diseases. This

approach can be used for examining the shared genetic

basis between a number of diseases and traits. With the

recent discovery of many common genetic variants influ-

encing diseases and traits, there is increasing interest in

pleiotropy. One recent review suggests that pleiotropy is

common and associated with ~17% of genes and ~5%

of SNPs associated with complex humans diseases and

traits.9 In addition to identifying potential targets for

drug development, gaining insight into the degree of

genetic ‘‘connectivity’’ between diseases and traits pro-

vides an opportunity to ascertain whether current diag-

noses and classifications are consistent with genetic

architecture or whether genetic similarities traverse clinical

conditions. Examining overlap in common variants can

elucidate important pathobiology and might identify

potential therapeutic targets for common diseases.

In conclusion, the current findings demonstrate that in

SCZ, the pleiotropy-informed stratified FDR method can

improve the statistical power for detecting ‘‘polygenic’’

effects and can offer insights into mechanistic relation-

ships between lipid biology and SCZ pathogenesis.
an Journal of Human Genetics 92, 197–209, February 7, 2013 207



Supplemental Data

Supplemental Data include eight figures, six tables, and a list of

Schizophrenia Psychiatric GWAS Consortium members and can

be found with this article online at http://www.cell.com/AJHG.
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