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a b s t r a c t

Ziv–Lempel and Crochemore factorization are two kinds of factorizations of words related
to text processing. In this paper, we find these factorizations for standard epiesturmian
words. Thus the previously known c-factorization of characteristic Sturmian words is
provided as a special case. Moreover, the two factorizations are compared.
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1. Introduction

Some factorizations of finite words were studied by Ziv and Lempel in a seminal paper [12]. These factorizations are
related to information theory and text processing. Several years later, Crochemore introduced another factorization ofwords
for the design of a linear time algorithm to detect squares in a word [3,4,6] and gave a space-efficient simple algorithm for
computing the Ziv–Lempel factorization [5]. While these factorizations provide useful information about the structure of
repeated factors, they can be computed in a linear time in the length of theword (see for instance [2]). Thismakes themuseful
algorithmic tools for finding repeated factors (See Chapter 8 of [14]). Another application of the Ziv–Lempel factorization to
the approximation of grammar-based compression is discussed in [16].

The Crochemore factorization (or c-factorization in short) of a wordw is defined as follows. Each factor of c(w) is either
a fresh letter, or it is a maximal factor of w, which has already occurred in the prefix of the word. More formally, the c-
factorization c(w) of a wordw is

c(w) = (c1, . . . , cm, cm+1, . . .),

where either cm is the longest prefix of cmcm+1 · · · occurring twice in c1 · · · cm, or cm is a letter a which has not occurred in
c1 · · · cm−1. The Ziv–Lempel factorization (or z-factorization in short) of a wordw is

z(w) = (z1, . . . , zm, zm+1, . . .),

where zm is the shortest prefix of zmzm+1 · · · which occurs only once in the word z1 · · · zm. As an example consider
w = abacabcabacabacacabaa. The c-factorization and z-factorization ofw are as follows:

c(w) = (a, b, a, c, ab, cab, acab, aca, caba, a),
z(w) = (a, b, ac, abc, abacaba, cac, abaa).
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As it is seen c-factorization and z-factorization can be different but there are also some relations between them. In [2], it
is shown that if a Ziv–Lempel factor includes a Crochemore factor, then it ends atmost a letter after, and a Crochemore factor
cannot include a Ziv–Lempel factor. It is concluded that the number of factors of the Crochemore factorization is at most
twice the number of factors of the Ziv–Lempel factorization. Also the authors of [2] gave explicit formulas for Crochemore
factorizations of some of the well-known infinite words, namely characteristic Sturmian words and (generalized) Thue–
Morse words and the period doubling sequence, based on their combinatorial structures.

In this paper, we give explicit formulas for z-factorization and c-factorization of standard episturmian words; thus the
previous c-factorization of characteristic Sturmian words in [2] appears as a special case. Moreover, these results reveal a
very close relation between two factorizations in the case of standard episturmian words. The rest of the paper is organized
as follows. In Section 2, we present some useful definitions and notation. Section 3, is devoted to review the definition
and some properties of episturmian words. In Section 4, we study z-factorization of standard episturmian words. Finally in
Section 5, we present a result about the c-factorization of standard episturmian words.

2. Definitions and notation

We denote the alphabet (which is finite) by A. As usual, we denote by A∗, the set of words over A and by ϵ the empty
word. We use the notation A+

= A∗
\ {ϵ}. If a ∈ A andw = w1w2 . . . wn is a word over A, then the symbols |w| and |w|a

denote respectively the length of w, and the number of occurrences of letter a in w. For an infinite word w we denote by
Alph(w) (resp.Ult(w)) the number of letters which appear (resp. appear infinitelymany times) inw (the first notation is also
used for finite words). A word v is a factor of a wordw, written v ≺ w, if there exists u, u′

∈ A∗, such thatw = uvu′. A word
v is said to be a prefix (resp. suffix) of a wordw, written v ▹w (resp. v ◃w), if there exists u ∈ A∗ such thatw = vu (resp.
w = uv). Ifw = vu (resp.w = uv) we simply write v = wu−1 (resp. v = u−1w). The notations of prefix and factor extend
naturally to infinite words. We say that u is a right special (resp. left special) factor of w if ua, ub (resp. au, bu) are factors of
w for some letters a, b ∈ A with a ≠ b. Two words u and v are conjugate if there exist words p and q such that u = pq
and v = qp. For a word w ∈ A∗, the set F(w) is the set of its factors and Fn(w) is defined as Fn(w) = F(w) ∩ An. These
notations are also used for infinitewords. Ifw is an infiniteword, then its f actor complexity function (or briefly its complexity
function), is pw(n) = |Fn(w)|. It is easily proved that an infinite wordw is aperiodic if and only if pw(n) < pw(n+ 1) for any
positive integer n. The reversal of a wordw = w1w2 . . . wn, withwi ∈ A isw = wnwn−1 . . . w1. Thewordw is a palindrome
ifw = w. A wordw ∈ A+ is called primitive ifm ∈ N+ andw = um impliesm = 1.

3. Episturmian words

Sturmianwords are infinitewordswhich are quite considerable by thenumber of their different characterizations coming
fromdifferentmathematical areas, such as geometry, arithmetics and dynamical systems. A simple possible characterization
is defining Sturmian words as aperiodic binary infinite words with minimal complexity, i.e. as infinite words w with
pw(n) = n+ 1. Hence, a Sturmian word has one right special factor of each length. Also it can be proved that for a Sturmian
wordw the set Fw is closed under reversal. A Sturmian word is called characteristic (standard) if all its left special factors are
prefixes of it. A characteristic Sturmian word w can be computed as the limit of a sequence of words sn defined recursively
by

s−1 = b, s0 = a, sn = sdnn−1sn−2,

where d1 ≥ 0 and di > 0 for i = 2, 3, . . .. The sequence (d1, d2, . . .) is called the directive sequence and the
word 0d11d20d3 · · · is called the directive word associated to w. As in [2], one may assume d1 > 0 based on a simple
observation. The Sturmian word defined by a directive sequence (0, d2, d3, . . .) is obtained from the Sturmian word defined
by (d2, d3, . . .) by exchanging the letters a and b. To see some equivalent definitions and various properties of Sturmian
words, see Chapter 2 of [13].

One limitation of Sturmian words is that they are over a binary alphabet. Different characteristic properties of Sturmian
words lead to natural generalizations on arbitrary finite alphabet, among which the so-called episturmian words appeared
to be the best suited family by the number of properties they share with Sturmian words. This generalization is given and
discussed in [8,10,11] based on a construction of Sturmian words given in [7]. In the rest of this section, we study the
definition and some properties of episturmian words. For more information the reader is referred to [1,9].

An infinite word s is episturmian if F(s) is closed under reversal and for any ℓ ∈ N there exists at most one right special
word in Fℓ(s). Then Sturmian words are just nonperiodic episturmian words on a binary alphabet. An episturmian word
is standard if all its left special factors are prefixes of it. It is well known that if an episturmian word t is not periodic and
Ult(t) = k, then its complexity function is ultimately pt(n) = (k−1)n+ q for some q ∈ N+. Let t be an episturmian word. If
t is nonperiodic then there exists a unique standard episturmian word s satisfying Ft = Fs; if t is periodic then we may find
several standard episturmian words s satisfying Ft = Fs. In any case, there exists at least one standard episturmian word
s with Ft = Fs. If the sequence of palindromic prefixes of a standard episturmian word s is u1 = ϵ, u2, u3, . . ., then there
exists an infinite word∆(s) = x1x2 · · · , xi ∈ A called its directive word such that for all n ∈ N+,

un+1 = (unxn)(+)



5234 N. Ghareghani et al. / Theoretical Computer Science 412 (2011) 5232–5238

wherew(+) is defined as the shortest palindromehavingw as a prefix. The relation betweenun andun+1 can also be explained
usingmorphisms as in [8]. For a ∈ A, they define themorphismψa byψa(a) = a andψa(x) = ax for x ∈ A\{a}. Letµ0 = Id
and µn = ψx1ψx2 · · ·ψxn for n ∈ N+. Moreover, let hn = µn(xn+1). Then

un+1 = hn−1un, n ∈ N+.

The above definitions are clarified in the following example.
Example 1. Let A = {a, b, c} and∆(s) = x1x2 · · · = (abc)ω be directive word of a standard episturmian word s. By the first
representation of episturmian words

u1 = ϵ,

u2 = (a)+ = a,

u3 = (ab)+ = aba,

u4 = (abac)+ = abacaba,

u5 = (abacabaa)+ = abacabaabacaba,

u6 = (abacabaabacabab)+ = abacabaabacababacabaabacaba,
· · ·

and so on. Now, to compute ui by the morphism representation of episturmian words, one should first compute hi−1 =

µi−1(xi) and then use ui = hi−2ui−1.

h0 = µ0(a) = a,
h1 = µ1(b) = ψa(b) = ab,
h2 = µ2(c) = ψaψb(c) = abac,
h3 = µ3(a) = ψaψbψc(a) = abacaba,
h4 = µ4(b) = ψaψbψcψa(b) = abacabaabacab,

· · · .

Hence, we have

u1 = ϵ,

u2 = h0u1 = a,
u3 = h1u2 = aba,
u4 = h2u3 = abacaba,
u5 = h3u4 = abacabaabacaba,
u5 = h4u5 = abacabaabacababacabaabacaba,

· · · .

The words hi appeared in this example are finite Tribonacci words and their limit, ξ = limn→∞ un, given by

ξ = abacabaabacababacabaabacabacabaabacababacaba...,

is known as infinite Tribonacci word or the Tribonacci sequence (to knowmore about this word and some of its properties,
see[15,17]).

From equations un+1 = hn−1un, u1 = ϵ and un+1 = un+1, it is concluded that

un+1 = hn−1 · · · h1h0 = h0 h1 · · · hn−1 (1)

It is known that for any integer n, hn is primitive (See Proposition 2.8 of [11]) and so is hn. For any integer n define P(n)
as the maximum value of i satisfying i < n and xi = xn; if there is no such i then P(n) is undefined. We have the following
lemma.
Lemma 1. (i)

hn−1 =


unxn if P(n) is undefined,
unu−1

P(n) otherwise.

(ii) If P(n) is defined then

hn−1 = hn−2hn−3 · · · hP(n)−1.

Proof. (i) See the end of Section 2.1 of [11].
(ii) This is proved by using part (i) and (1). �
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It is obvious that hn−1 ▹ hn. In addition, by Proposition 2.11 of [11] we have the following lemma.

Lemma 2. (i) hn = hn−1 if and only if xn+1 = xn.
(ii) If xn+1 ≠ xn then un is a proper prefix of hn.

Lemma 3. Let∆(s) = x1 . . . xn . . . , xi ∈ A. Suppose that xn = α and the letter α has at least one appearance before xn in∆(s).
Then we have the following.

(i) hn−1 ▹ un and hn−1 ◃ un.
(ii) The word vn−1 = un(hn−1)

−1 is palindrome.
(iii) vn−1 ◃ un−1 and vn−1 ▹ un−1.
(iv) un ◃ un−1hn−1.
(v) If moreover xn ≠ xn−1, then un ◃ (hn−1)

2 and un+1 ◃ (hn−1)
3.

Proof. (i) By Lemma 1(i), hn−1 = unu−1
P(n). So hn−1 ▹ un, which concludes hn−1 ◃ un = un.

(ii) By part (i), there exists aword vn−1 satisfying un = vn−1hn−1. Hence by un+1 = hn−1un, we obtain un+1 = hn−1vn−1hn−1.
But since un+1 is palindromic, from the last equation we conclude that so is vn−1.

(iii) From un = vn−1hn−1 = un−1hn−2 and |hn−1| ≥ |hn−2|we conclude that vn−1 ▹un−1, which yields vn−1 = vn−1 ◃un−1 =

un−1.
(iv) This is concluded from un = vn−1hn−1 using part (iii).
(v) Using part (iii) and Lemma 2(ii), we get un◃(hn−1)

2. Combining this with un+1 = unhn−1, we provide un+1◃(hn−1)
3. �

The following representation of directive word is useful for next sections. Let

∆(s) = x1x2 · · · = yd11 yd22 · · · ,

where xi, yi ∈ A, yi ≠ yi+1 and di > 0 for i > 0. Define the function g : N → N by

g(m) = d1 + · · · + dm−1 + 1.

Lemma 4. With the above definitions, the following statements hold.

(i) ug(m+1) = (hg(m)−1)
dmug(m) = ug(m)(hg(m)−1)

dm .

(ii) ug(m+1) = (hg(m)−1)
dm(hg(m−1)−1)

dm−1 · · · (h0)
d1 = (h0)

d1(hg(2)−1)
d2 · · · (hg(m)−1)

dm .
(iii) ug(m)−1 is a proper prefix of hg(m)−1.
(iv) ug(m) ◃ (hg(m)−1)

2 and ug(m+1) ◃ (hg(m)−1)
dm+2.

Proof. (i) For any integer n with g(m) ≤ n < g(m + 1) we have xn = ym and by Lemma 2(i), hn−1 = hg(m)−1. Thus for
any integer j with 0 ≤ j ≤ dm, we have

ug(m)+j = (hg(m)−1)
jug(m) = ug(m)(hg(m)−1)

j.

Particularly for j = dm the result is provided.
(ii) This is concluded from (1).
(iii) This is obtained from Lemma 2(ii).
(iv) By Lemma 3(v) we obtain ug(m) ◃ (hg(m)−1)

2; Using this and ug(m)+1 = ug(m)(hg(m)−1)
dm , we provide ug(m+1) ◃

(hg(m)−1)
dm+2. �

4. z-factorization

Recall that the Ziv–Lempel factorization (z-factorization) of a word w is z(w) = (z1, . . . , zm, zm+1, . . .),where zm is the
shortest prefix of zmzm+1 · · · which occurs only once in the word z1 · · · zm.

Theorem 5. Let s be an episturmian word with directive word∆(s) = x1x2x3 . . . = yd11 yd22 . . ., where xi, yi ∈ A and yi ≠ yi+1,
for all i ≥ 1. The z-factorization of s is of the form z(s) = (z1, z2, . . .), where z1 = x1 and zk = y−1

k−1(hg(k−1)−1)
dk−1yk for k ≥ 2.

Proof. We prove the result by induction on k. It is easily seen that z1 = x1 = y1. Now suppose that the result is true for any
j < k. Thus we have

z1z2z3 · · · zk−1 = y1 y−1
1 (hg(1)−1)

d1y2 y−1
2 (hg(2)−1)

d2y3 . . . y−1
k−2(hg(k−2)−1)

dk−2yk−1

= (hg(1)−1)
d1(hg(2)−1)

d2 · · · hg(k−2)−1)
dk−2yk−1

= ug(k−1)yk−1.

We should conclude that zk = y−1
k−1(hg(k−1)−1)

dk−1yk. For this purpose, the two following facts should be proved.
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Fact 1. y−1
k−1(hg(k−1)−1)

dk−1 ≺ ug(k)x−1
1 .

Fact 2. y−1
k−1(hg(k−1)−1)

dk−1yk ⊀ ug(k).

We prove these facts in two cases.

Case (i). Suppose that yk−1 = α has already appeared in∆(s). By Lemma 3 (i), hg(k−1)−1 ◃ ug(k−1) hence

y−1
k−1(hg(k−1)−1)

dk−1 ◃ ug(k−1)(hg(k−1)−1)
dk−1−1.

But the right side, is a prefix of ug(k) = ug(k−1)(hg(k−1)−1)
dk−1 . This proves Fact 1.

To prove Fact 2, by contrary, suppose that

y−1
k−1(hg(k−1)−1)

dk−1yk ≺ ug(k). (2)

By Lemma 4(iv), ug(k−1) ◃ (hg(k−1)−1)
2 so

ug(k) = ug(k−1)(hg(k−1)−1)
dk−1 ◃ (hg(k−1)−1)

dk−1+2. (3)

From (2) and (3) we conclude

y−1
k−1(hg(k−1)−1)

dk−1yk ≺ (hg(k−1)−1)
dk−1+2,

which implies that y−1
k−1(hg(k−1)−1)

dk−1yk = wdk−1 for some w ∼ hg(k−1)−1, but this is possible only if yk−1 = yk which is a
contradiction. Hence, Fact 2 is proved in this case.

Case (ii). Suppose that yk−1 = α has not appeared before in∆(s), hence,

hg(k−1)−1 = yk−1ug(k−1). (4)

Thus Fact 1 is proved as follows

y−1
k−1(hg(k−1)−1)

dk−1 = ug(k−1)(yk−1ug(k−1))
dk−1−1 ▹ ug(k−1)(hg(k−1)−1)

dk−1x−1
1 = ug(k)x−1

1 .

In order to prove Fact 2, suppose by contrary that

y−1
k−1(hg(k−1)−1)

dk−1yk ≺ ug(k) (5)

On the other hand, by (4) and ug(k) = ug(k−1)(hg(k−1)−1)
dk−1 , we obtain

ug(k) = ug(k−1)(yk−1ug(k−1))
dk−1 ≺ (yk−1ug(k−1))

dk−1+1
= (hg(k−1)−1)

dk−1+1 (6)

From (5) and (6) we provide

y−1
k−1(hg(k−1)−1)

dk−1yk ≺ (hg(k−1)−1)
dk−1+1

which implies that y−1
k−1(hg(k−1)−1)

dk−1yk = wdk−1 for some w ∼ hg(k−1)−1, but this is possible only if yk−1 = yk, which is a
contradiction. This ends the proof. �

Example 2. Using the definition, the z-factorization of the Tribonacci word, ξ , mentioned in Example 1, is obtained as
follows

z(ξ) = (a, b, ac, abaa, bacabab, acabaabacabac, abaabacababacabaabacabaa, . . .).

To obtain this result using Theorem 5, note that for the Tribonacci word, we have dn = 1, yn = xn, and g(n) = n for any
positive integer n. Moreover, we have y3n−2 = a, y3n−1 = b and y3n = c for any positive integer n. Thus we obtain

z1 = x1 = a,

z2 = a−1h0b = b,

z3 = b−1h1c = ac,

z4 = c−1h2a = abaa,

z5 = a−1h3b = bacabab,

z6 = b−1h4c = acabaabacabac,
· · · .
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5. c-factorization

Recall that the Crochemore factorization (c-factorization) c(w) of a word w is c(w) = (c1, · · · , cm, cm+1, . . .) where cm
is the longest prefix of cmcm + 1 · · · occurring twice in c1 · · · cm, or cm is a letter a which has not occurred in c1 · · · cm−1.

Theorem 6. Let s be an episturmian word with directive word ∆(s) = x1x2x3 . . . = y1d1y2d2y3d3 . . ., where xi, yi ∈ A and
yi ≠ yi+1, for all i ≥ 1. If c(s) = (c1, c2, . . .), then there exist integers i and j such that c1 · · · ck = ug(k−j+i+1) for any k ≥ j.
Consequently, we obtain ck = (hg(k−j+i)−1)

dk−j+i , for all k > j.

Proof. Let i = min{t : {y1, y2, . . . , yt} = {1, 2, . . . , k}} and yi = α. Since yi = α has no occurrence in ug(i), we have
ug(i)+1 = ug(i)αug(i), hence there exists an integer j ≥ 3 satisfying c1 · · · cj−2 = ug(i) and cj−1 = yi. Moreover, by Lemma 1(i),
we have

hg(i)−1 = yiug(i) (7)

ug(i+1) = ug(i)(yiug(i))
di (8)

Now we are going to prove that cj = y−1
i (hg(i)−1)

di . Denote the right side byw and note that

c1 · · · cj−1w = ug(i) yi y−1
i (hg(i)−1)

di = ug(i+1).

It is clear that w = ug(i)(yiug(i))
di−1 has at least two occurrences in c1 · · · cj−1w = ug(i)(yiug(i))

di . Thus it is enough to prove
thatwyi+1 ⊀ ug(i+1). By contrary, suppose thatwyi+1 ≺ ug(i+1) so

ug(i)(yiug(i))
di−1yi+1 ≺ ug(i)(yiug(i))

di (9)

Since yi /∈ Alph(ug(i)), (9) can happen only if yi+1 = yi which is a contradiction. Thus cj = w as required.
Now we claim that the following equation

c1c2 · · · ck = ug(k−j+i+1) (10)

holds for any integer k ≥ j. The statement is true for ℓ = j by the above arguments. We proceed by induction on k. Suppose
that k > j and that c1c2 · · · cℓ = ug(ℓ−j+i+1) holds for any integer ℓwith j ≤ ℓ < k. By Lemma 4 (i), it is enough to show that
ck = (hg(k−j+i)−1)

dk−j+i . For this, the two following facts should be proved
Fact 1. (hg(k−j+i)−1)

dk−j+i ≺ ug(k−j+i+1)x−1
1

Fact 2. (hg(k−j+i)−1)
dk−j+iyk−j+i+1 ⊀ ug(k−j+i+1)

By Lemma 3 (i), hg(k−j+i)−1 ◃ ug(k−j+i), we provide

(hg(k−j+i)−1)
dk−j+i ◃ ug(k−j+i)(hg(k−j+i)−1)

dk−j+i−1,

which together with ug(k−j+i)(hg(k−j+i)−1)
dk−j+i−1

≺ ug(k−j+i+1)x−1
1 proves Fact 1.

To prove Fact 2, suppose by contrary that (hg(k−j+i)−1)
dk−j+iyk−j+i+1 ≺ ug(k−j+i+1). By using Lemma 4 (iv), this concludes

that

(hg(k−j+i)−1)
dk−j+iyk−j+i+1 ≺ (hg(k−j+i)−1)

dk−j+i+2.

Since ht is primitive, it has just dk−j+i + 2 occurrences in the right side; Thus the last relation implies that yk−j+i+1 equals
the first letter of hg(k−j+i)−1, i.e. yk−j+i+1 = yk−j+i which is a contradiction. �

Example 3. Using the definition, the c-factorization of the Tribonacci word, ξ , mentioned in Example 1, is obtained as
follows

c(ξ) = (a, b, a, c, aba, abacaba, bacabaabacaba, cabaabacababacabaabacaba, . . .).

Now, to recompute these cis using Theorem 6, note that dn = 1, g(n) = n and yn = xn for each n ≥ 1. By the
proof of the Theorem 6, i = min{t : {y1, y2, . . . , yt} = {1, 2, . . . , k}} so in this example i = 3. It is easy to see that
c1 = a, c2 = b, c3 = a, c4 = c = x3 and c5 = aba, therefore by the definition of j in the proof of the Theorem 6, j = 5.
Hence, we have ck = (hg(k−2)−1)

dk−2 = hk−3, for k > 5. Therefore,

c6 = h3 = abacaba,

c7 = h4 = bacabaabacaba,
· · · .
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Remark 1. By slight modification of the argument used in the proof of Theorem 6, we find that c-factorization of a standard
episturmian word is as follows: c1 = y1 and

c2 =


y2 if d1 = 1,
yd1−1
1 otherwise.

For any integerm ≥ 2, there exists an integer n such that c1c2 · · · cm = ug(n)αn, where either αn = ϵ or αn = yn. In addition,
the next factor, cm+1, is given by

cm+1 =


yn if αn = ϵ and yn ∉ {y1, . . . , yn−1},
(hg(n)−1)

dn if αn = ϵ and yn ∈ {y1, . . . , yn−1},
y−1
n (hg(n)−1)

dn otherwise, i.e. if αn = yn.

It is concluded that if αn = ϵ and yn ∉ {y1, . . . , yn−1}, then c1 · · · cm+1 = ug(n)yn; otherwise c1 · · · cm+1 = ug(n+1).
Moreover, setting k0 = |Alph(s)|, it is provided that the values i and j in Theorem 6, satisfy the following equation.

j − i =


k0 − 1 if d1 = 1,
k0 otherwise.

Remark 2. Considering Theorems 5 and 6 and Remark 1, we conclude that from a point on, the formula zk = y−1
k−1

ck+k0−1−myk holds, where k0 = |Alph(s)| and

m =


1 if d1 = 1,
0 otherwise.

Remark 3. From Theorem 6, by using Remark 1, we obtain that from a point on, ck = (hg(k−k0+m)−1)
dk−k0+m , where k0 andm

are defined as above. Now if s is characteristic Sturmian, by using definition and notation of Chapter 2 of [13] about standard
words and Sturmian words, it is easily proved that hg(p)−1 = sp−1, for any integer p ≥ 1. So in this case, by replacing k0 = 2,
we conclude that from a point on, ck = (sk+m−3)

dk+m−2 . Thus in the case d1 > 1 (resp. d1 = 1) by calculating the first four
factors (resp. first three factors), we conclude Theorem 1 of [2] about c-factorization of characteristic Sturmian words.
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