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SUMMARY

The efficient generation of hematopoietic stem cells
from human pluripotent stem cells is dependent on
the appropriate specification of the definitive hema-
topoietic program during differentiation. In this
study, we used T lymphocyte potential to track the
onset of definitive hematopoiesis from human
embryonic and induced pluripotent stem cells differ-
entiated with specific morphogens in serum- and
stromal-free cultures. We show that this program
develops from a progenitor population with charac-
teristics of hemogenic endothelium, including the
expression of CD34, VE-cadherin, GATA2, LMO2,
and RUNX1. Along with T cells, these progenitors
display the capacity to generate myeloid and ery-
throid cells. Manipulation of Activin/Nodal signaling
during early stages of differentiation revealed that
development of the definitive hematopoietic pro-
genitor population is not dependent on this path-
way, distinguishing it from primitive hematopoiesis.
Collectively, these findings demonstrate that it is
possible to generate T lymphoid progenitors from
pluripotent stem cells and that this lineage develops
from apopulationwhose emergencemarks the onset
of human definitive hematopoiesis.
INTRODUCTION

The ability to generate hematopoietic stem cells (HSCs) from

human pluripotent stem cells (PSCs; embryonic stem cells

[hESCs] and induced pluripotent stem cells [hiPSCs]) would

enable the production of unlimited numbers of patient-matched

stem cells for transplantation and the derivation of novel in vitro

models for studying human hematopoietic development and

disease. Numerous studies have shown that it is possible to

derive hematopoietic lineage cells from hPSCs, either by cocul-

turing themwith stromal cells in serum-basedmedia or by direct-
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ing their differentiation with specific morphogens in defined

serum-free media (Chadwick et al., 2003; Davis et al., 2008;

Kaufman et al., 2001; Kennedy et al., 2007; Ledran et al., 2008;

Ng et al., 2005; Pick et al., 2007; Vodyanik et al., 2006; Yu

et al., 2010; Zambidis et al., 2005). Although these approaches

yield a broad spectrum of hematopoietic progenitors, transplan-

tation of the progeny from such cultures into immunocompro-

mised mice has typically resulted in low levels of engraftment

often restricted to the myeloid lineages (Lu et al., 2009; Tian

et al., 2006; Wang et al., 2005). These findings suggest that the

conditions used for hematopoietic differentiation do not support

the development of HSCs. A major factor contributing to the

failure in generating HSCs from hPSCs is the complexity of the

embryonic hematopoietic system, which consists of at least

two distinct programs, only one of which gives rise to HSCs.

HSCs are generated from the definitive hematopoietic pro-

gram and develop from a specialized population of endothelial

cells, known as hemogenic endothelium (HE; Dzierzak and

Speck, 2008). In the mouse, HE is specified at different sites

within the developing vasculature, of which the best character-

ized is the para-aortic splanchnopleura (P-Sp)/aorta-gonad-

mesonephros (AGM) region found in the caudal portion of the

embryo. Mouse HE is characterized by expression of a panel

of hematopoietic and endothelial markers, including VE-cad-

herin (VE-cad), Sca-1, c-Kit, CD34, Runx1, Scl, Gata2, and

Lmo2 (reviewed in Dzierzak and Speck, 2008). HSCs are first

detectable in the AGM region at E10.5 and are characterized

by the acquisition of low CD45 expression in addition to the

aforementioned set of markers (Bertrand et al., 2005; Taoudi

and Medvinsky, 2007; Yokomizo and Dzierzak, 2010). The

human P-Sp/AGM region is also a site of definitive hematopoi-

esis because it contains progenitors that express markers indic-

ative of HE and hematopoietic development including CD31,

CD34, CD45, C-KIT,SCL,C-MYB,GATA2, andGATA3 (Labastie

et al., 1998; Marshall et al., 1999; Oberlin et al., 2002; Tavian

et al., 2001) and by gestational day 32 has in vivo multilineage

repopulating capacity (Ivanovs et al., 2011).

Definitive hematopoiesis is preceded by an earlier, yolk sac

(YS)-restricted program, known as primitive hematopoiesis,

that is characterized by the production of primitive erythroblasts,

macrophages, and megakaryocytes (reviewed in Palis et al.,
hors
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2010). Although most evidence indicates that primitive hemato-

poiesis is restricted in potential and does not have the capacity

to generate HSCs or lymphoid cells, recent studies have shown

that the YS can generate lymphoid progenitors prior to or in

the absence of circulation (Rhodes et al., 2008; Yoshimoto

et al., 2011, 2012). Further characterization of these YS popu-

lations, however, revealed that the lymphoid cells developed

from a VE-cad+CD41� HE-like progenitor, distinct from the

VE-cad�CD41+ primitive hematopoietic progenitors (Yoshimoto

et al., 2011, 2012). These findings indicate that the YS displays

both primitive and definitive hematopoietic potential and that

the two populations develop from distinct progenitors.

Most studies to date support the interpretation that lineage

development from PSCs recapitulates lineage commitment in

the embryo (Murry and Keller, 2008). Thus, the generation of

HSCs from PSCs will depend on establishing culture conditions

that not only promote HE development but also on methods to

identify these progenitors as they are specified. In an earlier

study, we used T cell potential to map the onset of definitive

hematopoiesis in mouse ESC (mESC) differentiation cultures

and demonstrated that this program initiates from a Flk-1+

Sox17+ progenitor that emerged 48 hr following the onset of

primitive hematopoiesis (Irion et al., 2010). Because several

studies have demonstrated that it is possible to generate T

lymphocytes from hESCs (Galic et al., 2006; Timmermans

et al., 2009), it should be possible to use a similar strategy to

map the emergence of the human definitive hematopoietic pro-

gram in the hPSC differentiation cultures.

In this study, we used T cell potential to monitor definitive

hematopoietic development in hESC and hiPSC serum-free

differentiation cultures.With this approach,we identified a hema-

topoietic progenitor population that emerges between days 6

and 9 of differentiation, expresses markers indicative of HE as

well as early definitive hematopoietic progenitors, and displays

erythroid, myeloid, and T cell potential. This progenitor can be

distinguished from primitive hematopoiesis based on surface

markers and by the fact that its development from mesoderm

is not dependent on Activin/Nodal signaling. The characteristics

of this population suggest that it represents the in vitro equivalent

of the human definitive hematopoietic program and, as such,

progenitors of human HSCs.

RESULTS

Serum-free and Stroma-free Hematopoietic
Differentiation of hESCs
To generate progenitors of the definitive hematopoietic program

under serum- and stroma-free conditions, we induced the differ-

entiation of H1 hESCs as embryoid bodies (EBs) in chemically

defined media with an optimized, stage-specific combination

of BMP-4, Activin A, bFGF, and VEGF together with hematopoi-

etic cytokines (Figure 1A). With this induction scheme, colony-

forming cells were detected as early as day 6 of differentiation.

Their number increased modestly over the next 3 days and

then dramatically by day 11 of differentiation before declining

to low levels by day 15 (Figure 1B). Most of the progenitors de-

tected at these stages were erythroid restricted, although low

numbers of both multipotential erythroid-myeloid and myeloid
Cell Re
colony-forming cells were also present. The predominance of

erythroid progenitors and their transient pattern of development

suggest that this early hematopoietic population may represent

human primitive hematopoiesis.

Because Activin/Nodal signaling is required for primitive

hematopoietic development in mESC cultures (Nostro et al.,

2008; Pearson et al., 2008), we next varied the Activin A con-

centration to determine if this pathway impacts hESC-derived

hematopoiesis (Figure 1C). Increasing concentrations of Activin

A led to a reduction in myeloid progenitors and an increase in

erythroid progenitors detected in day 13 EBs. In contrast, inhibi-

tion of the pathway by addition of the Activin/Nodal inhibitor SB-

431542 (SB; Inman et al., 2002) eliminated almost all erythroid

progenitors (Figure 1C). These observations indicate that the

development of this early erythroid progenitor population is

influenced by the levels of Activin/Nodal signaling between

days 2 and 4 of differentiation. Given that 0.3 ng/ml Activin A

effectively induced both myeloid and erythroid progenitors, we

used this concentration for the subsequent studies, unless

otherwise indicated.

EBs were assayed at defined time points for the expression of

CD34, CD43, CD41, and CD45, cell surface markers previously

shown to be expressed on the earliest hematopoietic cells that

develop in hESC-differentiation cultures (Vodyanik et al., 2006).

A substantial population of CD34+ cells was detected by day 6

of differentiation. This population steadily declined in size over

the following 9 days and was no longer detectable by day 15

(Figure 1D). CD43+ cells emerged by day 9, at which time the

CD34 and CD43 expression pattern was similar to that reported

by others (Timmermans et al., 2009; Vodyanik et al., 2006).

The CD34+CD43+ population declined over time, whereas the

CD34�CD43+ population increased. CD41+ cells were present

by day 9 of differentiation, whereas CD45+ cells were not de-

tected at significant levels until day 13.

Hematopoietic Potential of the CD34/CD43 Populations
Because theprofileobservedatday9ofdifferentiation (Figure2A)

most closely resembled the stage at which Timmermans et al.

(2009) identified T cell progenitors, we next analyzed the different

CD34/CD43 fractions from this stage for hematopoietic potential

by colony assays and surface marker expression. All erythroid,

myeloid, and erythroid/myeloid progenitors segregated to the

CD43+ fractions (Figure 2B), confirming findings from earlier

studies (Timmermans et al., 2009; Vodyanik et al., 2006). Neither

P1 (CD34+CD43�) nor P5 (CD34�CD43�) contained any colony-

forming cells. The majority of the erythroid colonies generated

from the CD43+ progenitors were small with a tight morphology

and contained large nucleated cells that expressed high levels

of ε-globin and very low levels of b-globin (Figures 6D and 6E),

indicating that they are primitive erythroblasts.

Previous studies have shown that the coexpression of CD41a

and CD235a identifies an early-developing population in hESC

cultures that contains primitive erythroid and megakaryocyte

progenitors (Klimchenko et al., 2009; Vodyanik et al., 2006).

Flow cytometric analyses showed that CD41a and CD235a

were broadly expressed on the CD43+ P3 and P4 populations

that also exclusively contained the erythroid progenitors. CD45

expression was restricted to small subsets of the P2 and P3
ports 2, 1722–1735, December 27, 2012 ª2012 The Authors 1723
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Figure 1. Hematopoietic Induction of

hESCs with Activin A and BMP-4

(A) Differentiation scheme used for hematopoietic

induction of human PSCs. EBs were generated

during the first 24 hr of culture in the presence of

BMP-4, subsequently cultured in the presence of

BMP-4 and bFGF for the next 24 hr, and then in the

presence of BMP-4, bFGF, and Activin A for the

following 48 hr (days 2–4). For some experiments,

SB was added in place of Activin A. At day 4,

BMP-4 and Activin A (or SB) were removed and

replaced with VEGF, IL-6, IL-11, IGF-1, SCF, EPO,

TPO, Flt-3, IL-3, and DKK1 as indicated.

(B) Frequency of hematopoietic progenitors de-

tected in EBs over time. Ery, erythroid colonies;

Ery/Myeloid, colonies consisting erythrocytes and

low numbers of myeloid cells; Myeloid, colonies

consisting of either macrophages or mast cells.

(C) Effect of Activin A stimulation or inhibition on

hematopoietic progenitor development in day

13 EBs.

(D) Flow cytometric analyses of CD34, CD43,

CD41, and CD45 expression on the indicated days

in EBs treated with 0.3 ng/ml Activin A plus the

cytokines shown in (A).
fractions and was never coexpressed with CD235a (Figure 2C;

data not shown). Cells in the P1 and P5 fractions did not express

any of these markers. Taken together, these observations are

consistent with those described previously and support the

interpretation that the early expression of CD41a and CD235a

marks the emergence of human primitive hematopoiesis.

The CD43+CD41a+CD235a+ Populations Develop from
CD34+ Progenitors
We were next interested in determining if the primitive erythroid

population generated under defined conditions is derived from

a CD34+ intermediate because a previous study has shown

that the earliest hESC-derived hematopoietic cells generated in
1724 Cell Reports 2, 1722–1735, December 27, 2012 ª2012 The Authors
serum-induced cultures develop from

a CD34+ progenitor (Vodyanik et al.,

2006). To address this question, we

analyzed progenitors at day 6 of differen-

tiation, a stage prior to the expansion

of the CD43+CD41a+CD235a+ primitive

population. Both the CD34+CD43� and

the smaller CD34+CD43+ populations de-

tected at this stage (Figure 2D) were

sorted, reaggregated, cultured for an

additional 3 days (9 days total), and then

analyzed. The entire CD34+CD43+-

derived population expressed CD43,

and the majority of these cells coex-

pressed CD41a and CD235a (Figure 2D,

lower panel). In contrast, only 50% of

the CD34+CD43�-derived population ex-

pressed CD43, and of these, approxi-

mately 60% coexpressed CD41a and

CD235a (Figure 2D, middle panel).
Consistent with these differences, the CD34+CD43+ population

generated 13-fold more progenitors than the CD34+CD43� pop-

ulation (Figure 2E), the majority of which were primitive erythroid.

The CD34+CD43� population gave rise to predominantly mye-

loid progenitors. Taken together, these data clearly demonstrate

that human primitive hematopoiesis develops from a CD34+

progenitor that emerges as early as day 6 in the differentiation

cultures and can be identified by coexpression of CD43.

Definitive Hematopoietic Potential of the CD34/CD43
Fractions
Quantitative RT-PCR (qRT-PCR) analyses revealed that SOX17,

which defines the emergence of definitive hematopoiesis in the



mESC differentiation model (Irion et al., 2010), was expressed at

highest levels in the P1 cells, to a lesser extent in the P2 cells, and

not at all in the P3 and P4 primitive populations (Figure 2F). LMO2

and GATA2 were expressed in all populations, whereas GATA1

expression was highest in the P4-derived population that con-

tained the highest frequency of erythroid progenitors.

To further assess the definitive potential of the day 9 CD34+/

CD43+ populations, each was assayed for T cell potential by co-

culturing them on OP9-DL4 (Schmitt et al., 2004). T cell progen-

itors were only detected in P1 (Figure 3A), consistent with the

observation that these cells express the highest levels of

SOX17. The P3 and P4 fractions failed to generate any CD45+

cells following 2 weeks of culture on OP9-DL4 stroma, whereas

the P2 cells gave rise to a transient CD45+ population that was

detectable at 2 weeks but failed to undergo T lymphopoiesis

(Figure 3A). The P1 cells generated CD5+CD7+ T cell progenitors

as early as day 14 of culture, CD4+CD8+ T cells by day 28 and

CD3+ T cells expressing either T cell receptor ab (TCRab) or

TCRgd at day 42 (Figures 3B and 3C). To further characterize

the extent of T cell development, we analyzed genomic DNA

from the cocultured cells for the presence of TCR Db2-Jb2 rear-

rangements. As shown in Figure S1, the hESC-derived T cells

contained multiple PCR products, indicative of polyclonal Db2-

Jb2 rearrangements. The expression patterns of early and late

T lineage differentiation markers from hESC-derived CD34+/

OP9-DL4 cultures described here are similar to what is typically

observed from cord blood-derived HSCs (Awong et al., 2009).

Temporal analyses of EB development revealed that the

CD34+ population at day 6 of differentiation also contained

progenitors with T cell potential (Figure 3D), as did both the

CD34+CD43� and CD34+CD43lo populations at day 11 (Fig-

ure 3E). The CD34+CD43lo population identified at this stage

may be similar to the T progenitor population described previ-

ously by Timmermans et al. (2009). In contrast, the day 3 KDR+

hemangioblast population did not give rise to T cells, indicating

that progenitors with lymphoid potential develop sometime

between days 3 and 6 of differentiation (data not shown).

Together, the findings from these analyses demonstrate that at

day 9 of differentiation, definitive hematopoietic progenitors, as

defined by T cell potential, are restricted to a CD34+CD43� pop-

ulation and distinct from the CD43+ primitive hematopoietic

population.

The Requirement for Activin/Nodal Signaling
Distinguishes Primitive and Definitive Hematopoiesis
Because Activin/Nodal signaling is known to play a role in

primitive hematopoiesis in mESC differentiation cultures (Nostro

et al., 2008; Pearson et al., 2008) and our earlier findings here

showed that it is required for the early wave of erythroid progen-

itors (Figure 1C), we were next interested in determining if we

could selectively block the development of the entire CD43+/

CD41a+/CD235a+ population through appropriately staged inhi-

bition of the pathway. When added within the first 24 hr of dif-

ferentiation, the Activin/Nodal inhibitor SB completely blocked

the induction of the KDR+CD34+ hematopoietic mesoderm pop-

ulation detected at day 5 of differentiation (Figure 4A), consistent

with the known requirement of this pathway for primitive streak/

mesoderm formation (Conlon et al., 1994). However, if addition
Cell Re
of SB was delayed and added between days 2 and 4 of differen-

tiation, KDR+ and CD34+ populations developed normally and

were similar in size to those in the Activin A-induced population

(Figure 4C). Western blot analyses showed the presence of

phospho-SMAD2 in the day 2 EBs, indicating that endogenous

Activin/Nodal signaling is active at this stage (Figure 4B). Densi-

tometry confirmed that the levels of phospho-SMAD2 were

significantly reduced following SB treatment, indicating that SB

blocked Activin/Nodal signaling. Analyses of day 9 EBs revealed

that inhibition of the pathway between days 2 and 4 completely

blocked the development of the CD43+ population but did not

appear to impact the CD34+ cells (Figure 4C). Complete inhibi-

tion of the CD43+ population at day 9 was dependent on the

addition of SB at day 2 of differentiation because delay until

day 3 resulted in the development of some CD43+ cells (Fig-

ure S2). A large CD43+ population developed from the SB-

treated EBs by day 12 of culture. However, in contrast to those

derived from Activin A-induced EBs, these cells did not express

CD41a or CD235a but did express CD45 (Figure 4C). The marker

profile of the SB-treated CD43+ population did not change

between days 12 and 16 of culture. As expected, at day 9, the

majority of the Activin A-induced population coexpressed

CD41a and CD235a.

Consistent with the absence of the CD43+CD41a+CD235+

population and with our earlier observations, erythroid progeni-

tors were not detected in the SB-treated EBs at any of the time

points assayed here (Figure 4D). qRT-PCR analyses revealed

that the CD34+ population isolated from the SB-treated EBs

expressed higher levels of SOX17 and AML1C than the CD34+

CD43� population generated in the Activin A-induced EBs (Fig-

ure 4E). Levels of expression of LMO2, GATA1, GATA2, and

HOXB4 were comparable in the two populations.

Similar to Activin A-induced CD34+ cells, the SB-treated day 9

CD34+ progenitors generated T cells when cultured on OP9-DL4

cells (Figure 5A). Interestingly, limiting dilution analyses revealed

that the frequency of T cell progenitors in the SB-treated CD34+

population was more than 3-fold higher than in the Activin

A-induced CD34+CD43� population (Table 1), indicating that

inhibition of the primitive hematopoietic program early in the

differentiation cultures coincides with an enrichment of T cell

progenitors in the day 9 CD34+ population. As observed with

the T cells generated from the Activin A-induced progenitors,

T cells derived from the SB-treated CD34+ cells also displayed

polyclonal Db2-Jb2 rearrangements (Figure S1). By days 36–43

of coculture, the majority of cells exhibited TCRb rearrange-

ments as shown by the loss of the germline band.

To determine if these T cells were functional, cells cultured for

35–40 days were stimulated for 4 days with soluble a-CD3 and

a-CD28 antibodies. As shown in Figure 5B, the stimulated

CD3+ T cells showed an increase in forward scatter compared

to the control cells, reflecting an increase in size indicative of

the early stages of activation (June et al., 1990). The a-CD3/

a-CD28-induced cells also expressed significantly higher levels

of CD25 and CD38, two markers classically upregulated on acti-

vated human T cells (p% 0.01) (Funaro et al., 1990; Schuh et al.,

1998). Also, consistent with normal human T cell activation, an

increase in the CD45RO isoform was observed on stimulated

hESC-derived T cells (Figure 5B). These changes in the
ports 2, 1722–1735, December 27, 2012 ª2012 The Authors 1725
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Figure 2. Primitive Hematopoietic Potential of Day 9 CD34/CD43 Populations

(A) Flow cytometric analyses showing the CD34 and CD43 fractions isolated from day 9 EBs. P1, 10% ± 3%; P2, 1.5% ± 0.7%; P3, 12.5% ± 4%; P4, 21% ± 8%;

P5, 35% ± 9% (±SD, n = 5).

(B) Erythroid and myeloid progenitor potential of the CD34/CD43 fractions.

(C) Flow cytometric analyses showing expression of CD41a, CD235a, and CD45 on the fractions indicated in (A).

(legend continued on next page)
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expression of activation markers show that hESC-derived T cells

bear a functional TCR capable of sensing and responding to

stimuli. Together with the demonstration of extensive TCR rear-

rangements, the presence of functional TCRs suggests that

hESC-derived T cells are undergoing normal maturation.

Collectively, the findings from these studies demonstrate that

early-stage inhibition of the Activin/Nodal pathway blocks prim-

itive hematopoiesis while enhancing the T cell potential of the

definitive CD34+ population. They also show that the CD43+

population that develops in the SB-treated EBs differs from the

day 9 Activin A-induced population with respect to CD41a and

CD235a expression and, as such, allow us to define distinct

primitive and definitive stages of CD43 development.

Hematopoietic Potential of the CD34+ Population
The Activin A-induced (data not shown) and SB-treated defini-

tive CD34+ population coexpresses CD31, KDR, and VE-CAD,

markers found on HE (reviewed in Tavian et al., 2010), and

CD90 and CD117, markers found on CD34+ cord blood-derived

HSCs (Figure 6A; Doulatov et al., 2010; Notta et al., 2011). These

populations did not, however, express CD45. To determine

whether the CD34+ populations display myeloid and erythroid

potential in addition to T cell potential, the cells were cultured

onOP9-DL1 stromal cells in the presence of hematopoietic cyto-

kines. OP9-DL1 cells were used rather than the wild-type OP9

cells that are normally used for expansion of hematopoietic cells

(Feugier et al., 2005) because we found that they supported the

development of higher numbers of erythroid progenitors (data

not shown). Following 7 days of coculture, the Activin A-induced

CD34+ cells generated a CD43+CD45+ population, as well as

a small CD41a+ population. Coexpression of CD42b on some

of these CD41a+ cells suggests that they represent developing

megakaryocytes. The SB-treated CD34+ cells gave rise to

a CD43+CD45+ population (Figure 6B) that did not express

significant levels of CD41a or CD235a.

The CD34+CD43� populations also acquired erythroid and

myeloid progenitor potential following 7 days of coculture (Fig-

ure 6C). Interestingly, the SB-treated cells generated signifi-

cantly higher numbers of erythroid and erythroid-myeloid pro-

genitors than the Activin A-induced progenitors, suggesting

that, in addition to T cell progenitors, this population is also

enriched in erythroid/myeloid potential. The erythroid progeni-

tors generated from the coculture gave rise to colonies (Fig-

ure 6D) that were substantially larger than the day 9 CD43+-

derived primitive erythroid colonies. Although both colony types

contained nucleated red cells (Figure 6D, lower panels),

the CD34+-OP9-DL1 coculture-derived colonies expressed

significantly higher amounts of b-globin than the CD43-derived

primitive colonies (Figure 6E). The reverse pattern was observed
(D) Hematopoietic potential of day 6 CD34+CD43� and CD34+CD43+ populatio

isolated for hematopoietic studies. Cells were isolated, cultured for 3 days as aggr

analyses showing expression of CD34, CD43, CD41a, CD235a, and CD45 on pop

(E) Primitive erythroid/myeloid potential of the day 9 aggregate populations gener

total colonies generated from the entire CD34+ population that were derived from

colonies generated from the two different fractions.

(F) qRT-PCR expression analyses of the different CD34/CD43 fractions for the in

three independent experiments. Asterisks indicate statistical significance as det

Cell Re
for ε-globin expression, although the large colonies still express

considerable levels of this globin. The CD34+-derived myeloid

population consisted of progenitors of the macrophage, mast

cell, and neutrophil lineages (Figure S3). Collectively, the findings

from these coculture studies clearly demonstrate that the CD34+

definitive population displays erythroid and myeloid in addition

to T cell potential.

Definitive Hematopoietic Development from iPSCs
To determine if the directed differentiation approach described

above can be applied to other human PSC lines, we differenti-

ated the iPSC line MSC-iPS1 (Park et al., 2008) as in Figure 1A.

As shown in Figures 7A and 7B, differentiation led to the devel-

opment of expected CD34+/CD43+ and CD34+/CD41+ popula-

tions, as well as the spectrum of erythroid, erythroid/myeloid,

and myeloid progenitors. The addition of SB between days 2

and 4 inhibited the development of the CD41+/CD43+ popula-

tions and the erythroid and erythroid-myeloid progenitors, as

observed with the hESC line. Furthermore, the CD34+ cells

produced by either Activin A or SB differentiation conditions

generated CD4+CD8+ T cells that coexpressed CD3 (Figure 7C)

and displayed Db2-Jb2 TCR rearrangement (Figure S1). Taken

together, these observations demonstrate that the combination

of T cell development and staged manipulation of Activin/Nodal

signaling can be used to identify and enrich for definitive hema-

topoietic progenitors in hiPSC cultures and distinguish them

from primitive hematopoietic progenitors.

DISCUSSION

The derivation of HSCs from hPSCs will require strategies that

establish the developmental program that gives rise to this pop-

ulation in the early embryo. Insights from studies using different

model organisms outline a developmental progression leading to

the generation of HSCs that includes the induction of a definitive

hematopoietic progenitor population known as HE and the

subsequent specification of this population to a hematopoietic

fate, giving rise to multipotent progenitors and engraftable cells.

A major challenge in recapitulating embryonic hematopoiesis

in PSC differentiation cultures is that the two hematopoietic

programs are not spatially separate, and as a consequence,

the predominance of primitive hematopoiesis at early stages

makes it difficult to identify the definitive hematopoietic progen-

itors as they develop. In this study, we used T cell potential to

track the onset of definitive hematopoiesis from hPSCs and, in

doing so, identified a definitive hematopoietic program that

can be distinguished from the primitive hematopoietic program

based on developmental potential, cell surface markers, and

dependency on Activin/Nodal signaling.
ns. Day 6 Sort (upper panels), flow cytometric analyses showing populations

egates, and analyzed. Day 9 Reagg. (middle and lower panels), flow cytometric

ulations generated from indicated sorted fractions following 3 days of culture.

ated from the P1 and P2 day 6 fractions. Left graph indicates the proportion of

the P1 and P2 fractions. Right graph shows the proportion of different types of

dicated genes. Error bars represent mean ± SD of the mean of samples from

ermined by t test: *p % 0.05 and **p % 0.01.
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Figure 3. T Cell Potential of the CD34/CD43 Populations

(A) Flow cytometric analyses showing the proportion of CD45+ cells generated from fractions P1–P4 following 14 days of coculture onOP9-DL4 and of CD7+CD5+

T lymphoid progenitors generated from fraction P1 at day 28 (d28) of coculture.

(B) Kinetics of T cell development from the CD34+CD43� fraction. Cultures were harvested as indicated and analyzed by flow cytometry.

(C) Development of TCRab and TCRgd T cells from CD34+CD43� progenitors at day 42 of coculture.

(D) T cell potential of day 6 CD34+CD43� progenitors. Cultures were harvested and analyzed for CD4 and CD8 expression on day 28.

(E) T cell potential of CD34+CD43� and CD43+CD43lo progenitors isolated from day 11 EBs. Cultures were harvested and the cells analyzed on day 31.

Related to Figure S1.
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Figure 4. Potential of CD34+ Progenitors Isolated from SB-Treated EBs

(A) Flow cytometric analysis showing development of CD34+KDR+ populations at day 5 of differentiation, following addition of SB or Activin A (Act) during the

indicated times.

(B) Immunoblot analysis for the expression of Smad2 and phospho-Smad2 from cell lysates of EBs treated for 30 min at day 2 of differentiation with DMSO,

Activin-A, and/or SB; densitometry was performed and depicted as a graph of phospho-SMAD2 levels as percentage (%) of control expression (DMSO).

(C) Flow cytometric analyses showing coexpression of CD41a, CD235a, and CD45 on CD43+ populations in Activin A-induced and SB-treated EBs on days 9, 12,

and 16 of differentiation.

(D) Progenitor potential of Activin A-induced and SB-treated EBs at the indicated days of differentiation.

(E) qRT-PCR-based expression analyses of CD34+ fractions isolated from day 9 Activin A-induced and SB-treated EBs. Error bars represent mean ± SD of the

mean of samples from three independent experiments. Asterisks indicate statistical significance as determined by t test: *p % 0.05.

Related to Figure S2.
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Figure 5. Lymphoid Potential of the SB-

Treated CD34+ Population

(A) Flow cytometric analyses of SB-treated EBs

showing development of CD7+CD5+, CD4+CD8+,

andCD3+TCRab+ populations at days 28 and 42 of

coculture.

(B) Functional analyses of hESC-derived T cells.

Flow cytometric analyses showing forward (FSC)

and side (SSC) scatter parameters and expression

of CD25, CD38, and CD45RO on hESC-derived

T cells following 4 days of stimulation (Stim, black

lines) with a-CD3 and a-CD28 antibodies. Control

cells were treated with cytokines alone (Non-Stim,

shaded histogram).

Related to Figure S1.

Table 1. Progenitor Frequency Analysis of Activin A- or SB-

Treated CD34+ Cells

Treatmenta Progenitor Frequency�1 (95% Confidence Limits)b

Activin A 2,594 (2,045–3,289)

SB 739 (603–905)
aSorted CD34+ CD43� cells obtained from EB cultures treated with either

Activin A or SB-431542 (SB) were placed in limiting numbers in wells of

a 96-well plate containing OP9-DL4 cells and cultured for 16 days before

harvesting for flow cytometric analysis.
bIndividual wells were scored for the presence of T cells based on

CD45+CD43+CD7+CD5+ staining. Statistical analysis was performed via

the method of maximum likelihood applied to the Poisson model.
The expression profile of the definitive CD34+ population,

which includes the transcription factors GATA2, LMO2,

AML1C, as well as endothelial (KDR, CD31, VE-CAD), but not

hematopoietic (CD45 or CD43), surface markers, suggests that

it represents the equivalent of human HE. The generation of

a population with these characteristics that possesses T cell

potential is unique and represents a critical first step in gener-

ating HSCs. Several other studies have described hESC-derived

endothelial progenitor populations that display hematopoietic

potential (Choi et al., 2012; Hong et al., 2011; Wang et al.,

2004; Zambidis et al., 2005). In the most recent of these reports,

Choi et al. (2012) identified a hemogenic endothelial progenitor

(HEP) that appears to be distinct from the BL-CFC (hemangio-

blast), the progenitor of the primitive hematopoietic program.

However, because lymphoid potential was not evaluated in this

or any of the other studies, it is unclear if these populations repre-

sent progenitors of the definitive hematopoietic program.

Following coculture for 7 days on OP9-DL1, the CD34+ popu-

lation upregulates expression of CD43 and CD45 and acquires

erythroid and myeloid progenitor potential, a transition that

may represent the equivalent of the specification of HE to a

hematopoietic fate. Our preliminary studies have shown that

OP9-DL1 stroma is more efficient at promoting erythroid pro-

genitor development than OP9 stroma, suggesting that Notch

signaling may be required for this specification step. Current

studies are aimed at defining the role of the Notch pathway at

this stage. The CD34+-derived erythroid progenitors generate

large erythroid colonies that are morphologically distinct from

and express significantly higher levels of b-globin than the

Activin-induced CD43+-derived primitive erythroid colonies.

These observations combined with the fact that they develop

from phenotypically and temporally different populations clearly

demonstrate that these erythroid progenitors are not the same.

Previous studies have described the emergence of different

erythroid progenitors in serum-induced EBs over time and

suggested that they represented progeny of both primitive

and definitive hematopoiesis (Chadwick et al., 2003; Zambidis

et al., 2005). Although the CD34+-derived erythroid progenitors
1730 Cell Reports 2, 1722–1735, December 27, 2012 ª2012 The Authors
described here are distinct from the

CD43+-derived primitive progenitors, it

is not clear what stage of development

they represent because the cells they

generate still express high levels of
ε-globin. Because little is known about the different stages of

human erythropoiesis in the early embryo, it is possible that

the CD34+-derived progenitors represent one step beyond the

primitive program, a transition between primitive and definitive

erythropoiesis.

With the identification of the CD34+ definitive progenitors in

day 9 EBs, we were able to define distinct human definitive

and primitive hematopoietic populations (model; Figure 7D)

that display the following characteristics. First, the primitive

hematopoietic population that emerges at day 9 expresses

CD43 together with CD41a and CD235a, whereas the definitive

population that develops after day 9 expresses CD43 together

with CD45, but not CD41a or CD235a. CD41a and CD235a are

expressed at later stages in the definitive program where they

are restricted to the megakaryocyte and erythroid lineages, re-

spectively (Andersson et al., 1981; Phillips et al., 1988). Second,

development of the human primitive hematopoietic program is

dependent on Activin/Nodal signaling beyond day 2 of differen-

tiation. Definitive hematopoiesis, in contrast, does not require

this pathway between days 2 and 4 of differentiation. Third,

both primitive hematopoiesis and definitive hematopoiesis

develop from a CD34+ progenitor. Coexpression of CD43+ with

CD34 at day 6 appears to define the onset of the primitive pro-

gram because the majority of the primitive erythroid progenitors



Figure 6. Hematopoietic Potential of CD34+

Progenitors

(A) Flow cytometric analyses of the CD34+ pop-

ulation from day 8 SB-treated EBs.

(B) Flow cytometric analyses of SB-treated and

Activin A-induced CD34+ populations following

7 days of coculture on OP9-DL1 stromal cells.

Cultures were initiated with 20,000 cells of each

population in a well of a 24-well plate.

(C) Progenitor potential of the two CD34+ pop-

ulations following 7 days of coculture. Colony

numbers are calculated per well. Error bars

represent SD of the mean of culture of a single

experiment, representative of five independent

experiments. Asterisks indicate statistical signifi-

cance as determined by t test: *p % 0.05 and

**p % 0.001.

(D) Photographs showing morphology and relative

size of the colonies (and the cells from them)

generated from SB-treated CD34+ progenitors

following 7 days of coculture and from CD43+

primitive progenitors (CD43+) plated directly

following sorting from day 9 EB populations.

Arrows indicate small, primitive erythroid-like

colonies. Original magnification: colonies, 3100;

cells, 31,000.

(E) qRT-PCR analyses of b- and ε-globin expres-

sion in pools of CD34+- and CD34�CD43+-derived
erythroid colonies (CB: cord blood-derived HSC).

Error bars represent SD of the mean of samples

from seven or more individually isolated colonies.

Asterisks indicate statistical significance as

determined by t test: *p % 0.05 and **p % 0.01.

Related to Figure S3.
are derived from this population. The fact that both programs

develop from a CD34+ progenitor clearly indicates that this

marker is not sufficient for monitoring the development of

hematopoiesis in the PSC differentiation cultures and highlights

the need for identifying new surface markers that distinguish

primitive and definitive progenitors at the earliest stages of

development.

Manipulation of the Activin/Nodal signaling pathway with the

small molecule SB in this study has provided insights into its

role in the establishment of the hematopoietic system in hESC

cultures, as well as into the origin of human definitive hematopoi-

esis. SB has been identified as a highly potent and selective

inhibitor of the Activin/Nodal pathway, with no observed inhibi-

tion of other pathways or kinases, including BMP-4, ERK, JNK,

or p38 MAPK (Inman et al., 2002). Our demonstration that SB

reduces phospho-SMAD2 levels in day 2 EBs (Figure 4B) and

that it has opposing effects to that of Activin A on erythroid
Cell Reports 2, 1722–1735, De
colony formation (Figure 1B) provide

strong evidence that its effect on the

primitive erythroid lineage is mediated

through inhibition of the Activin/Nodal

pathway and not an unknown target.

Previous studies have demonstrated

that the Activin/Nodal in addition to

BMP-4 and Wnt pathways all play a role
in the early induction steps in hPSC cultures, including primitive

streak formation, mesoderm induction, and hematopoietic spec-

ification (Davis et al., 2008; Jackson et al., 2010; Kennedy et al.,

2007; Kroon et al., 2008; Sumi et al., 2008; Vijayaragavan et al.,

2009). The staged addition of the Activin/Nodal pathway inhibitor

in this report reinforces a role for this pathway in the early stages

of development because addition between days 1 and 2 of differ-

entiation prevented the development of any KDR+ cells, indi-

cating a lack of mesoderm formation. Additionally, our study

documents a previously unidentified requirement for Activin/

Nodal signaling at the earliest stages of human primitive hemato-

poietic development. In this regard, mouse and human primitive

hematopoiesis appear to be regulated similarly because pre-

vious studies have indicated that this pathway is also required

for mouse primitive hematopoietic development (Nostro et al.,

2008; Pearson et al., 2008). Although our western analyses

demonstrate the presence of phospho-SMAD 2 indicative of
cember 27, 2012 ª2012 The Authors 1731
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Figure 7. Hematopoietic Potential of hiPSC-Derived CD34/CD43 Populations

(A) Flow cytometric analyses of hiPSC-derived SB-treated and Activin A-induced CD34+ populations.

(B) Progenitor potential of the two hiPSC CD34+ populations at days 9 and 11 of differentiation.

(C) Flow cytometric analyses of SB-treated and Activin A-induced populations showing emergence of CD4+ and CD8+ cells at indicated times. At day 28, the

CD8+CD4+ populations coexpressed CD3.

(D) Model showing emergence of primitive and definitive hematopoiesis in hESC differentiation cultures. Primitive hematopoiesis is dependent on Activin/Nodal

signaling between days 2 and 4 of differentiation and develops from a CD34+CD43+ progenitor at day 6 of differentiation. The primitive hematopoietic program

(legend continued on next page)
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Activin/Nodal signaling in the day 2 EBs, the interacting and/

or downstream pathways mediating this effect are currently

unknown. Addition of agonists and/or antagonists of other path-

ways including Wnt, Notch, and SHH together with SB between

days 2 and 4 of differentiation had little impact on the inhibition,

suggesting that they are not directly involved in mediating this

effect (data not shown).

In addition to blocking primitive hematopoiesis, the addition of

SB at early stages of differentiation also appeared to impact the

potential of the CD34+ population. The SB-treated CD34+ popu-

lation expressed higher levels of SOX17 and AML1C and con-

tained a higher frequency of erythroid and T cell progenitors

than the corresponding Activin A-induced population. These

observations clearly demonstrate that manipulation of signaling

pathways at early stages of differentiation can impact the poten-

tial of later-stage cells and, as such, highlight the importance of

using defined induction conditions and precise stage-specific

protocols for such studies.

In summary, the findings reported here have identified a

definitive hematopoietic progenitor population that displays T

lymphoid, myeloid, and erythroid potential as well as surface

markers and gene expression patterns indicative of a pre-HSC

population. We hypothesize that the definitive progenitors iden-

tified here represent the first step in the generation of HSCs from

hPSCs and, as such, provide a readily accessible target popula-

tion for defining the regulatory pathways that control its specifi-

cation to the earliest hematopoietic progenitors and maturation

to transplantable stem cells. In addition to providing a marker

for definitive hematopoiesis, the ability to generate T cells from

hPSCs under defined induction conditions offers unique oppor-

tunities to investigate the developmental origins of this lineage,

as well as the functional potential of the cells in in vitro and in vivo

models.

EXPERIMENTAL PROCEDURES

Maintenance and Differentiation of hESCs and hiPSCs

The hESC line H1 (Thomson et al., 1998) and the reprogrammed hiPSC line

(MSC-iPS1; Park et al., 2008) were used in this study. They were maintained

on irradiated mouse embryonic fibroblasts in hESC media as described previ-

ously (Kennedy et al., 2007). Prior to differentiation, the cells were feeder

depleted by culturing on Matrigel (BD Biosciences, Bedford, MA, USA) in

hESC media for 24–48 hr. To generate EBs, hPSCs were treated with collage-

nase B (1 mg/ml; Roche, Indianapolis, IN, USA) for 20 min followed by a short

trypsin-EDTA (0.05%) step. Cells were gently scraped with a cell scraper to

form small aggregates (10–20 cells). Aggregates were resuspended in Stem-

Pro-34 (Invitrogen), supplemented with penicillin/streptomycin (10 ng/ml),

L-glutamine (2 mM), ascorbic acid (1 mM), monothioglycerol (MTG, 4 3 10�4

M; Sigma-Aldrich), and transferrin (150 mg/ml). BMP-4 (10 ng/ml), bFGF

(5 ng/ml), Activin A, 6 mM SB, VEGF (15 ng/ml), Dkk (150 ng/ml), IL-6

(10 ng/ml), IGF-1 (25 ng/ml), IL-11 (5 ng/ml), SCF (50 ng/ml), EPO (2 U/ml final),

TPO (30 ng/ml), IL-3 (30 ng/ml), and Flt-3L (10 ng/ml) were added as indicated.

Cultures weremaintained in a 5%CO2/5%O2/90%N2 environment for the first

8 days and then transferred to a 5% CO2/air environment. All recombinant

factors are human and were purchased from R&D Systems (Minneapolis).
develops as a CD43+CD41a+CD235a+ population that can be detected by day 9

signaling between days 2 and 4 of differentiation, is specified as early as day 6 bu

population that does not express CD41a and CD235a. CFU-M, myeloid progenito

Related to Figure S1.

Cell Re
OP9-DL4 Coculture for T Lineage Differentiation

OP9 cells retrovirally transduced to express Delta-like 4 (OP9-DL4) were

generated and maintained in a-MEM supplemented with penicillin/strepto-

mycin and 20% FBS (OP9 media) as previously described (La Motte-Mohs

et al., 2005; Schmitt et al., 2004). A total of 5–10 3 104 sorted human EB-

derived subsets was added to individual wells of a 6-well plate containing

OP9-DL4 cells and cultured in OP9 media supplemented with rhFlt-3L

(5 ng/ml) and rhIL-7 (5 ng/ml) (PeproTech, Rocky Hill, NJ, USA). rhSCF

(100 ng/ml) was added for the first 8 days only. Every 5 days, cocultures

were transferred onto fresh OP9-DL4 cells by vigorous pipetting and pas-

saging through a 40 mm cell strainer to remove stromal cells.

OP9-DL1 Coculture for Erythroid/Myeloid Differentiation

Sorted cells were cultured at a concentration of 2 3 104 cells per well on

irradiated OP9-DL1 monolayers in OP9 media with VEGF (5 ng/ml), TPO

(30 ng/ml), SCF (50 ng/ml), Flt3 (10 ng/ml), IL-11 (5 ng/ml), and BMP-4

(10 ng/ml) in 24-well plates for 7 days. Cells were harvested as above.

Reaggregation Assay

Sorted populations were resuspended in day 6 media (Figure 1A) at 25 3 104

cells/ml, and 50 ml was added to a well in a low-cluster 96-well plate. The

following day, two wells/condition were pooled and transferred into a low-

cluster 24-well plate with the addition of 1ml of media. Twenty-four hours later,

day 8 media were added to the wells and moved to normoxic conditions.

T Cell Activation

SB-treated CD34+CD43� cells were cocultured on OP9-DL4 cells for 37–

40 days. At the time of stimulation, cocultures were seeded onto fresh OP9-

DL4 cells in individual wells of a 12-well plate. All wells received OP9 media

supplemented with 2 ng/ml rhIL-7 and rhIL-2, and stimulated wells received

the addition of 5 mg/ml a-CD3 (clone HIT3a) and 1 mg/ml a-CD28 (clone

28.2) mAbs. After 4 days, flow cytometry was performed.
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