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Abstract—Sufficient conditions for controllability of Sobolev-type semilinear integrodifferential
systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point
theorem. (©) 1999 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Controllability of nonlinear systems represented by ordinary differential equations in infinite-
dimensional spaces has been extensively studied by several authors. Naito [1] discussed the
controllability of nonlinear Volterra integrodifferential systems and in [2,3] he has studied the con-
trollability of semilinear systems whereas Yamamoto and Park [4] investigated the same problem
for parabolic equation with uniformly bounded nonlinear term. Chukwu and Lenhart [5] have
studied the controllability of nonlinear systems in abstract spaces. Do [7] and Zhou [8] discussed
the approximate controllability for a class of semilinear abstract equations. Kwun et al. [9] stud-
ied the approximate controllability for delay Volterra systems with bounded linear operators.
Recently Balachandran et al. [9,10] studied the controllability and local null controllability of
Sobolev-type integrodifferential systems and functional differential systems in Banach spaces by
using Schauder’s fixed-point theorem. The purpose of this paper is to study the controllability of
Sobolev-type semilinear integrodifferential systems in Banach spaces by using the Schaefer fixed-
point theorem. The Sobolev-type semilinear integrodifferential equation considered here serves as
an abstract formulation of partial integrodifferential equation which arise in various applications
such as in the flow of fluid through fissured rocks [11], thermodynamics [12], and shear in second
order fluids [13,14].
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Consider the Sobolev-type semilinear integrodifferential system of the form

(Ex(t)) + Az(t) = (Bu)(t) + f (t,z(t),/otg(t,s,x(s))ds) , teJ=[0,b],

I(O) = Iy,

(1)

where the state z(.) takes values in the Banach space X and the control function u(.) is given
in L?(J,U), a Banach space of admissible control functions with U as a Banach space. B is
a bounded linear operator from U into Y, a Banach space, g : J x J x X — X and f :
Jx X xX — Y. The norm of X is denoted by ||.|| and Y by |..

2. PRELIMINARIES

The operators A : D(A) C X - Y and E : D(F) C X — Y satisfy Hypothesis [C;] for
i=1,...,4.

[C1] A and E are closed linear operators.

[C2] D(E) C D(A) and E is bijective.

[C3] E~1:Y — D(E) is continuous.

[C4] For each t € [0,b] and for some A € p(—AE~?), the resolvent set of —AE~!, the resolvent

R()\,—AE™1) is a compact operator.

Hypotheses [C1] and [Cq] and the closed graph theorem imply the boundedness of the linear

operator AE71:Y - Y.

LEMMA. (See [15].) Let S(t) be a uniformly continuous semigroup and let A be its infinitesimal
generator. If the resolvent set R(\ : A) of A is compact for every A € p(A), then S(t) is a compact
semigroup.

From the above fact, —AE~! generates a compact semigroup T(t),t > 0 in Y. Thus, max;cs
|T(t)| is finite and so denote My = maxcs|T(t)|.

DEFINITION 1. A solution x € C([0,b] : X) of the integral equation

z(t) = E7'T(t)Exo + /Ot E~'T(t - s) [(Bu)(s) +f (s,ac(s),/o8 g(s,r,z(r))d'r)] ds, teJ,

is called a mild solution of problem (1).

DEFINITION 2. In system (1), it is said to be controllable on the interval J if for every z¢ €
D(E), =, € X, there exists a control u € L2(J,U) such that the mild solution z(t) of (1) satisfies
z(b) = z;.

[Cs] The linear operator W : L2(J,U) — X, defined by

b
W = / E-T(b - s)Bu(s) ds,
0

has an invertible operator W~ which takes values in L?(J,U) \ ker W and there exist
positive constants My, M3 such that |B|| < My and |W™1|| < Mjs.

[Ce] For each t,s € J x J the function g(t,s,.) : X — X is continuous and for each x € X the
function g(.,.,z) : J x J — X is strongly measurable.

[C7] For each t € J the function f(t,.,.) : X x X — Y is continuous and for each z,y € X the
function f(.,x,y) : J — Y is strongly measurable.

[Cg] For every positive integer k there exists hy € L1(0,b) such that for a.e. t €J

f (t,z(t),/otg(t,s,:c(s)) ds)

< hg (t)] -

sup
Izli<k
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[Cq] There exists a continuous function m : J x J — [0, 00) such that
lg(t, s, 2)ll < m(t, )Q(llzl)),  tsed, rekX,

where Q : [0,00) — (0, 00) is a continuous nondecreasing function.
[Ci0) There exists a continuous function p : J — [0, 00) such that

|F @ 2,9)] < p(®)Q(lll + i), teld zyelX,

where Q : [0,00) — (0,00) Is a continuous nondecreasing function.
[C11] ,
o ds
m(s) ds 5/ e
fy o< [ srran
where ¢ = ||E~Y||M1[|Exo| + Nb], /() = max{M[|E~!|p(t), m(¢,t)} and

b s
N = Maby Jlaul + |E7 i Eaol + 04 7] [ pts190 (Yl + [ s el ar) d}
0 0

We need the following fixed-point theorem due to [16].

SCHAEFER THEOREM. Let S be a convex subset of a normed linear space E and 0 € S. Let
F:5 — S be a completely continuous operator and let

((Fy={z € S; x = A\Fz for some 0 < ) < 1}.
Then either ((F) is unbounded or F has a fixed point.
System (1) has a mild solution of the following form [15]

z(t) = ET'T(t)Exq + /Ot E7'T(t - )
2
x [(Bu)(s) +f (s,x(s),/os g(s,r,m(r))dT)] ds, ted, )

In order to study the controllability problem of (1) we introduce a parameter A € (0,1) as in [17]
and consider the following system

(Ex(t)) + MNAz(t) = AM(Bu)(t) + \f <t,m(t),/tg(t,s,x(s))ds) , teJ,
0

.TL'(O) = Ig.

(3)

Then the mild solution of (3) can be written as

() = \E~'T() Ezo+-> /0 CEIT( - s) [(Bu)(s)+ f (s,m(s), /0 sg(s,T,m(T))dTH ds, teld

3. MAIN RESULT

THEOREM. If Hypotheses [C1]-[Cy1] are satisfied, then the system (1) is controllable on J.
Proo¥r. Using Hypothesis [Cs] for an arbitrary function z(.) define the control

b s
uw(t) =Wt |z — E‘lT(b)Emo —/0 E7'T(b - s)f (s,at(s),/o g(S,T,I(T))dT) ds] (t).

We shall now show that when using this control the operator defined by

(Fz)(t) = E7'T(t)Exo + /(: E7'T(t - s) [(Bu)(s) +f (s,x(s), /08 g(s,7,2(7)) dT)] ds,

has a fixed point. This fixed point is then a solution of equation (2).
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Clearly, (Fz)(b) = =1 , which means that the control u steers the system from the initial state
Zo to x; in time b, provided we can obtain a fixed point of the nonlinear operator F.
First, we obtain a priori bounds for the following equation:

t
z(t) =AE'T(t)Exo + A / E-'T(t — n)BW™! [ml — E~'T(b)Exo
0

—/Ob E7'T(b-s)f (s,x(s),/os g(s, 7,z(7)) dr) ds} (n)dn
+ /\/Ot E7'T(t - s)f (s,ac(s),/osg(s, T, 2(T)) d’T) ds.

We have

lz(@®)l| < ||E~Y| Mi|Exo| + /Ot |E~Y|| M1 MM [Hxlll +||E|| My |Exo

b s

+E 0 [ o0 (nm<s)n +f m(s,r)mux(fnndr) ds] dn

=504 [ poo (nx<s>n + sm(sn)ﬂ(nxmn)dr) ds
< |BY| Myl +/t |E-1| My ds

0

+E7 4 [ o0 (nx(sm + s, Tm(nx(r)u)dr) ds
o e e e P (e

+/0 m(s,T)Q(”x(T)H)d'r) ds.

Denoting by v(t) the right-hand side of the above inequality we have ¢ = v(0) = || E~}||M;[|Exo|+
Nb|, ||z(®)]] < v(t), and

V() = M || B p(t)% (uxa)u + [(mEne @ dT)
t
< M ||E_1”p(t)Qo (v(t) +/0 m(t, T)Q(’U(T))dT) .

Let .
w(t) = v(t) + /0 m(t, 7)o (r)) dr
Then w(0) = v(0) = ¢, v(t) < w(t), and

w'(t) = v'(t) + m(t, t)Qv(t))
< My [|E7Y| p(6)S20(w(t)) + m(t, 6)Q(w(t))
< m(t) [Qo(w(t)) + Qw(?))] -

This implies

w(t)
/ww) Qo<s)+sz(s>—/m3)ds</ QO(S)+Q() ted
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This inequality implies that there is a constant K such that w(t) < K, t € J, and hence,
lz(®)|| < K, t € J, where K depends only on b and on the functions 7, Qg and 2.
Second, we must prove that the operator F : C = C(J, X) — C defined by

(Fz)(t) = ET'T(t)Exo + / t E'T(t -n)BW™! |z, — ET'T(b)Ex
0

_ /Ob E7'T(b-s)f (s,x(s'), ‘/08 g(s,7,z(7)) d’T‘) ds} (n)dn
I /Ot E7IT(t - 5)f (s,x(s),/os g(S,T,:z(T))dT) ds

is a completely continuous operator.
Let By = {z € C : |lz|| < k} for some k > 1. We first show that F' maps By into an
equicontinuous family. Let x € By, and t,t; € J. Then if 0 < t; <ty < b,

I(Fz)(t1) — (F2)(t2)]| < [T(t1) ~ T(ta)| |E~*|| | ol

21 — E-MT(b)Exo

/ —T(ty —n) ET'BW™!

(n)dn

/ Vf(s,x(s), /Os g(s,m,z(7))dr)ds

/ (ta—n)E~'BW™!
/ (s x(s), /Os g(s, 7, :L'(T))dT) ds] (n)dn

T(ty —8) —T(ta—s)| E~Lf (s,x(s), /OS g(s, 7,2(7)) dT) ds
)

— E7'T(b)Exg

dr)ds

+‘ t T(ty — s)E 1f (s,x(s),/osg(s,r,z T
< |T(ty) — T(t2)|[E7Y|| |1 Ezol

t1
o [ - T - [nxln 4 |[B My B
b
e oy a
0

+ / TG — )| | BV MaMs |zl + || B My | Eol

+|E [|M1/0 i )ds} dn
+/ Tt — 8) = T(ta — )| | B~ hu(s) ds
0

+ / Tt — )| | E7| ha(s) ds.

The right-hand side tends to zero as ¢t — t; — 0, since the compactness of T' () for t > 0 implies
the continuity in the uniform operator topology.
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Thus, F maps Bj, into an equicontinuous family of functions. It is easy to see that the family
F By is uniformly bounded.

Next we show F By, is compact. Since we have shown FBy is an equicontinuous collection, it
suffices by the Arzela-Ascoli Theorem to show {(Fz)(t) : x € By} is precompact in X for any
t € [0,b]. Let 0 <t < b be fixed and € a real number satisfying 0 < € < t. For z € By, we define

(F.x)(t) = E7'T(t)Exo + o E~T(t —n)BW™!
0

Iy — E_IT(b)El'()

- "B - 5)f (s.at6) [ storatryar) as| (myan

t—e

+ E-'T(t —s)f (s, z(s), /03 g(s, 7, z(7)) dT) ds

0

Since T'(t) is a compact operator, the set Y(t) = {(Fez)(t) : € By} is precompact in X for
every €, 0 < € < t. Moreover, for every z € By we have

t

1(Fz)(t) — (F.x)(®)|| < / E-'T(t — n)BW! [xl ~ E"T(b)Exo

t—e

- "B - 5)f (s.0t6). [ ats.matrar) dsJ ()

t
.
t—e

t
< / |E~|| MyMaM; [nxln +||EY|| My | Exo
t—e

dn

E~IT(t - s)f (s,x(s), /Os g(s,1,2(7)) dr) ds

b t
+M, ”E‘1H/0 hk(s)ds:| dn+/t_€”E-1|[M1hk(s)ds.

Therefore, there are precompact sets arbitrarily close to the set {{(Fz)(t) : z € B}. Hence, the
set {(Fz)(t): x € By} is precompact in X.

It remains to show that F : C — C is continuous. Let {z,}§° C C with z,, — z in C. Then
there is an integer r such that ||z,(¢)]| < r for all n and t € J, so z, € B, and z € B,. By [Cr],

f <t, Zn(t), /(;tg(t,s,a:n(s))ds) - f <t,x(t), /Otg(t, 8, z(s)) ds) for each t € J,

and since

\ f (t,xn(t), /0 t g(t,s,mn(s))ds) _ f(t,a;(t), /0 ot s,x(s))ds)

we have by dominated convergence theorem,

< 2h. (1),

/0 t E~T(t - n)BW_; [ / —0°T(b — s)

|7 (san . [ smanmar) -1 (5.2, [(atsme) ar)]| e

+/OtE‘1T (t—s) [f (S,xn (s),/osg(s,r,xn () dT)

|Fz, — Fz| = sup
teJ
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—f (S,:r(s),/osg(s,'r,a:(r)) dT)] ds

b 14 s
S/O HE“1HM1M2M3 [Ml/ f(s,a:n (s),/O g (s, 7,1, (7)) d’T)
(s,
s,

el
(

+/0 1B 1) £ (8120 (), | g (57 (7)) dT)

1 (52, [ ot ar )

Thus, F is continuou5' This completes the proof that F is completely continuous.

Finally the set ((F) = {x € C: x = AFz, A € (0,1)} is bounded, as we proved in the first step.
Consequently, by Schaefer s Theorem the operator F has a fixed point in C. This means that
any fixed point of F' is a mild solution of (1) on J satisfying (Fx)(¢t) = z(t). Thus, the system (1)
is controliable on J.

ds — 0.

4. EXAMPLE

Consider the following partial integrodifferential equation of the form

—g—t(z (t,2) = 225 (8, 7)) — 22z (£, ) = Bu(t) + 1y (t, z(t, ) ’/0 uz (t, s,z (s,x)) ds>

with z(t,0) = z(¢,1) =0, 2(0,z) = 29(z), 0 < x < 1, t € J. Assume that the following condition
hold with X =Y = L%(0,1).

[A1] The operator B: U — Y, with U C J, is a bounded linear operator.
[As] The linear operator W : L2(J,U) — X, defined by

W = /bE‘lT(b— s)Bu(s) ds
0

has an bounded invertible operator W~! which takes values in L?(J,U) \ ker W.
[A3] Further the functions
po i IXJTx X — X

gr:JxXxX->Y

are all continuous, bounded and strongly measurable.
[A4] Let g(t,s,w)(z) = po(t,s,w(z)) and f(t,w,0)(x) = ui(t,w(z),o(z)). Define the opera-
tors A: D(A)c X =Y, E:DE)C X —Y by

Aw = ~v", Ew=w-w",
respectively, where each domain D(A), D(E) is given by

{w € X, w,w are absolutely continuous, w” € X, w(0) = w(1) = 0}.

Then A and E can be written, respectively, as (see [8])

Aw = ZnQ(w,wn)wn, w e D(A),

n=1
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o0
Ew = Z (1 4+ n?) (w, wn)wn, w € D(E),
n=1
where wy(z) = V2sinnz, n = 1,2,3,..., is the orthogonal set of eigenvectors of A.
Furthermore for w € X we have

tw = f: e(—"2/1+"2)t(w,wn)wn.

n=1

It is easy to see that —AE~! generates a strongly continuous semigroup 7T'(t) on Y and
T(t) is compact such that || T'(t)|| < e™* for each t > 0.

[As] The functions p1, and pg satisfy the following conditions.

(i) There exists a continuous function ¢ : J x J — [0, c0) such that

lua(t, s, w)l < q(t, $)Q2(|wl),

where Q3 : [0,00) — (0, 00) is continuous and nondecreasing.
(ii) There exists a continuous function ! : Jx — [0, c0) such that

l1(t,w, pa)| < 1(t)Qs(|w]),

where 3 : [0,00) — (0, 00) is continuous and nondecreasing.

Also we have

b A 'S ds
/o Als) ds S/c Qa(s) + Q3(s)’

where ¢ = ||[E~Y|le"t[|Ez| + Nb], and A(t) = max{e t|E~1||l(t),q(t,t)}. Here N depends on

E,

A, B, uj, and pe. Further all the conditions stated in the above theorem are satisfied.

Hence, the system (4) is controllable on J.

REMARK. Examples in which the operator W in Hypothesis [C;] has an invertible operator are
discussed by Carmichel and Quinn [18].
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