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1. I N T R O D U C T I O N  

Controllability of nonlinear systems represented by ordinary differential equations in infinite- 
dimensional spaces has been extensively studied by several authors. Naito [1] discussed the 
controllability of nonlinear Volterra integrodifferential systems and in [2,3] he has studied the con- 
trollability of semilinear systems whereas Yamamoto and Park [4] investigated the same problem 
for parabolic equation with uniformly bounded nonlinear term. Chukwu and Lenhart  [5] have 
studied the controllability of nonlinear systems in abstract spaces. Do [7] and Zhou [8] discussed 
the approximate controllability for a class of semilinear abstract equations. Kwun et al. [9] stud- 
ied the approximate controllability for delay Volterra systems with bounded linear operators. 
Recently Balachandran et al. [9,10] studied the controllability and local null controllability of 
Sobolev-type integrodifferential systems and functional differential systems in Banach spaces by 
using Schauder's fixed-point theorem. The purpose of this paper is to s tudy the controllability of 
Sobolev-type semilinear integrodifferential systems in Banach spaces by using the Schaefer fixed- 
point theorem. The Sobolev-type semilinear integrodifferential equation considered here serves as 
an abstract  formulation of partial integrodifferential equation which arise in various applications 
such as in the flow of fluid through fissured rocks [11], thermodynamics [12], and shear in second 
order fluids [13,14]. 
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Consider the Sobolev-type semilinear integrodifferential system of the form 

( /o' ) (Ex( t ) ) '  + Ax( t )  = (Bu)( t )  + f t, x(t),  g(t, s, x(s)) ds , 

x(o )  = zo,  

t E  J = [ 0 ,  b], 
(1) 

where the state x(.) takes values in the Banach space X and the control function u(.) is given 
in L2(J, U), a Banach space of admissible control functions with U as a Banach space. B is 
a bounded linear operator from U into Y, a Banach space, g : J x J x X -~ X and f : 
g x X x X --* Y. The norm of X is denoted by ]l.]l and Y by I.I. 

2. P R E L I M I N A R I E S  

The operators A : D(A)  C X --+ Y and E : D(E)  C X --+ Y satisfy Hypothesis [Ci] for 
i = 1 , . . . , 4 .  

[C1] A and E are closed linear operators. 
[C2] D( E)  C D(A)  and E is bijective. 
[C3] E -1 : Y --+ D(E)  is continuous. 
[C4] For each t E [0, b] and for some A e p ( - A E - 1 ) ,  the resolvent set of - A E  -1, the resolvent 

R(A,-AE -1) is a compact operator. 

Hypotheses [C1] and [C2] and the closed graph theorem imply the boundedness of the linear 
operator A E  -1 : Y --+ Y .  

LEMMA. (See [15].) Let  S(t)  be a uniformly continuous semigroup and let A be its infinitesimal 
generator. I f  the resolvent set R(A : A) of  A is compact for every A E p(A), then S(t)  is a compact 

semigroup. 
From the above fact, - A E  -1 generates a compact semigroup T(t) ,  t > 0 in Y .  Thus, maxte j  

IT(t)l is finite and so denote M1 = maxtej lT(t)] .  

DEFINITION 1. A solution x E C([0, b] : X )  of the integral equation 

I' [ ( /0 )] x ( t ) = E - 1 T ( t ) E x o +  E - I T ( t - s )  ( B u ) ( s ) +  f s , z ( s ) ,  g ( s , r , x ( T ) ) d r  ds, t e  g, 

is called a mild solution of problem (1). 

DEFINITION 2. In system (1), it is said to be controllable on the interwal J i f  for every Xo E 
D(E),  xl  E X, there exists a control u e L 2 ( J, U) such that the mild solution x( t ) o f ( l )  satisfies 

x(b) = x l .  

[C5] The linear operator W : L2(J, U) -* X ,  defined by 

W u  = E - 1 T ( b  - s )Bu(s)  ds, 

has an invertible operator W -] which takes values in L2(J, U) \ kerW and there exist 

positive constants M2, M3 such that [[B[I _< M2 and [[W-I[I < M3. 
[C6] For each t, s c J × J the function g(t, s, .) : X --~ X is continuous and for each x E X the 

function g(.,. ,  x) : J x J --+ X is strongly measurable. 
[C7] For each t c J the function f ( t , . ,  .) : X × X --+ Y is continuous and for each x, y E X the 

function f( . ,  x, y) : J --+ Y is strongly measurable. 
[Cs] For every positive integer k there exists hk E LI(0, b) such that for a.e. t EJ  

sup 
H:~ll<k il 
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[C9] There exists a continuous function m : J x J --~ [0, oo) such that 

Ilg(t,s,x)ll < m(t ,s)a(l lxl l ) ,  t , s  ~ J, x ~ X, 

where :2 : [0, oo) --* (0, oo) is a continuous nondecreasing function. 
IC10] There exists a continuous function p : J ---* [(), oo) such that 

If ( t ,x ,y) [  ¢ p(t)Uo(llxLI + Ilyll), t e J, x ,u  e x ,  

where f~0 : [0, oo) ---* (0, oo) is a continuous nondecreasing function. 
[c:,] 

~ ( s )  ds _< a0(s) + a(~) '  

where c = l iE-:  IIM1 [[Exo[ q- Nb], rh(t) = maX{MlllE-1llp(t), re(t, t)} and 

f ( ' ).] i ¥ = M 2 M 3  Ix ,[ I+IIE-I[IMllEXo]+MI[]E-111 p(s)~o I]xH+~o m(S,T)Q(]]X[I)dT d Q 

We need the following fixed-point theorem due to [16]. 

SCHAEFER THEOREM. Let S be a convex subset of a normed linear space E and 0 E S. Let 
F : S --~ S be a completely continuous operator and let 

¢ ( F ) = { x E S ;  x = A F x f o r s o m e 0 < A < l } .  

Then either ( ( F )  is unbound'ed or F has a fixed point. 
Sys tem (1) has a mild solution of the following form [15] 

/o' x(t) = E - 1 T ( t ) E x o  + E - 1 T ( t  - s) 

(2) 

[ ( /0 )] x (Bu)(s)  + f s, x(s), g(s, T, X(r)) dT ds, t ~- J, 

In order to s tudy the controllability problem of (1) we introduce a parameter A E (0, 1) as in [i 7] 
and consider the following system 

( /o' ) (Ex(t)) '  + )~Ax(t) = A(Bu)( t)  + )~f t, x(t) ,  g(t, s, x(s))  ds , t ~ J, (3) 

x(O)  = xo .  

Then the mild solution of (3) can be written as 

/0' [ ( /0 )1 x ( t ) = A E - 1 T ( t ) E x o + A  E - I T ( t - s )  ( B u ) ( s ) + f  s ,x (s ) ,  g(s,~-,x(T))dT ds, t ~ ,I. 

3.  M A I N  R E S U L T  

THEOREM. I f  Hypotheses [C1]-[Cll] are satisfied, then the system (1) is controllable on J. 

PROOF. Using Hypothesis [C5] for an arbitrary function x(.) define the control 

7%(t) : W'-I [2171 - f-lf(b)Exo- lobE-iT(b- s)f (8~X(8),~Osg(S,T,X(T))dT) dsl (t). 

We shall now show that when using this control the operator defined by 

(Fx)( t )  = E - 1 T ( t ) E x o  + fot E - I T ( t - s ) [ ( B u ) ( s ) + f  ( s , x ( s ) ,  foo s g(S,T,X(7"))dT-)] d8, 
has a fixed point. This fixed point is then a solution of equation (2). 
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Clearly, (Fx)(b) = Xl , which means tha t  the control u steers the system from the initial s ta te  
x0 to xl  in t ime b, provided we can obtain a fixed point of the nonlinear operator  F.  

First, we obtain a priori bounds for the following equation: 

We have 

/: [ x(t) =AE-1T(t)Exo + £ E-1T( t  - r])BW -1 X 1 -- E-1T(b)Exo 

/o [ [[x(t)[[ _< [[E-11I M1]Exot + IIE-I[I M1M2M3 I[xl[[ + [lE-l[[ Ml[Exol 

+ HE-l][ M1 fobP(S)rio (llx(s)ll + fo~m(s,r)~(llx(r)ll)dr)ds] d~ 

"~ [[E-111 i I ~otp(8)riO (HX(S) N-~ ~Sm(S,T)~'~(HX(T)'DdT) d$ 

// <_ IIE-111MllEXol + [[E-I[]M1Nds 

2f- HE-1]I i l  ~otp(s)rio (][x(s)H .l t_ j~oSm(s,T)ri(,]X(T)H)dr) d8 

<_ IIE-111M, IE~oI+I[E-~IfMINb+IIE-~flMI p(s)ao [Iz(s)ll 

+ fo~ re(s. r)ri(,,x(r),,)~r)ds. 
Denoting by v(t) the right-hand side of the above inequality we have c = v(0) = II E - 1  H M1 []Exo[-l- 
Nb], IIx(t)ll < v(t), and 

v'(t) = M1 IIE-1llp(t)rio [[x(t)[I + rn(t ,r)ri( l lx(r)  H) dr 

Let 

f0 t w(t) = v(t) + m(t,~)ri(v(r)) dr 

Then w(O) = v(O) = c, v(t) < w(t), and 

w'(t) = v'(t) + rn(t, t)ri(v(t)) 

<_ M1 lIE -1 II p(t)rio(w(t)) + re(t, t)ri(w(t)) 
< ~(t)[r io(~(t))  + ~(~(t))] .  

This implies 

~( t ) ds fo b f ~  ds 
(o) rio(s) + ri(s) <- ~(s) ds < rio(s) + ri(s) '  t E J .  
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This inequality implies that  there is a constant K such that  w(t) < K,  t E J, and hence, 
IIx(t)ll <_ K,  t c J, where K depends only on b and on the functions rh,~0 and ~. 

Second, we must prove that  the operator F : C -- C(J, X)  ~ C defined by 

(Fx)(t)  = E - 1 T ( t ) E x o  + E - 1 T ( t  - r])BW -1 Xl - E-1T(b)Exo  

is a completely continuous operator. 
Let Bk = {x e C : Ilxll < k} for some k > 1. We first show that  F maps Bk into an 

equicontinuous family. Let x E Bk and t l , t2  E J.  Then if 0 < tl  < t2 _< b, 

II(Fx)(tl) - (Fx)(t2)[I <_ IT(t1) - T ( t 2 ) [  l iE-il l  IExol 

+ [T(tl - ~) - T(t2 - r])] E - 1 B W  -1 xl  - E -1T(b)Exo  

- f o b E - 1 T ( b - s ) f ( s , x ( s ) ,  foSg(s ,T,X(T))dT)ds]  (~)d~ 

+ T(t2 - r ] )E-1BW -1 xl  - E-1T(b)Exo  

<_ IT(t1) - T(t2)L lIE-Ill IExol 

s: [ + I T ( t l - v ) - T ( t 2 - ~ ? ) ] [ I E - : t l l M 2 M 3  IlXlll+l[E-111MllEXol 

+ HE-1ll M1 hk(s)ds  dv 

+ LT(t2 - IIE- ll IIx~l[ + ILE-111 M~LExol 
1 

+ IIE-IIIMI hk(s) ds dv 

+ [T(tl - s) - T(t2 - s)l I[E-1II hk(s) ds 

-t- f t ~  I T ( t 2 -  s)l HE-ill hk(s)ds.  
J t l  

The right-hand side tends to zero as t2 - tl  -~ 0, since the compactness of T(t)  for t > 0 implies 
the continuity in the uniform operator topology. 
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Thus, F maps  Bk into an equicontinuous family of functions. I t  is easy to see tha t  the family 
FBk is uniformly bounded. 

Next we show FBk is compact.  Since we have shown FBk is an equicontinuous collection, it 
suffices by the Arzela-Ascoli Theorem to show {(Fx)(t) : x E Bk} is precompact  in X for any 

t E [0, b]. Let 0 < t < b be fixed and e a real number satisfying 0 < c < t. For x E Bk we define 

~0 t-¢ [ (F~x)(t) = E-1T(t)Exo + E-1T( t  - y )BW -1 Xl - E-1T(b)Exo 

-- ~obE-1T(b-s)f (8, X(S),~oS~(s,T,X(T))dT) ds] (l])d?~ 

/o ( /o ) + E - 1 T ( t - s ) f  s,z(s),  g(s,T,z(r))dT" ds 

Since T(t) is a compact  operator,  the set Y~(t) = {(F~x)(t) : x E Bk} is precompact  in X for 
every e, 0 < c < t. Moreover, for every x E Bk we have 

f, t E-1T( t  - rl)BW -1 Ix H(Fx)(t) - (Fex)(t)ll <_ 1 -- E-1T(b)Exo 

_< [IE- ' [ [  M1M2M3 [[Xll[+lJE-1lJMllExo[ 

+MIllE-11[ hk(s)ds dr]+ t_ l[E-111Mlhk(s)ds. 

Therefore, there are precompact  sets arbitrari ly close to the set {(Fx)(t) : x E Bk}. Hence, the 
set {(Fx)(t) : x ~ Bk} is precompact  in X.  

I t  remains to show tha t  F : C -~ C is continuous. Let {x~}~ C_ C with xn ~ x in C. Then 

there is an integer r such tha t  ]Ixn(t)]l < r for all n and t E J ,  so Xn E B~ and x E B~. By [C7], 

f (t ,  xn(t), ~otg(t,s, xn(s))ds)  - ~ f  ( t ,x( t) ,  footg(t,s,x(s))ds)for each t E J, 

and since 

we have by dominated convergence theorem, 

/o' [/ ][Fxn - Fx]l = sup E-1T( t  - 7])BW_I -ObT(b - s) tEJ 
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<2--foblIE-1IlM1M2M3 [MI~o b f (S, Zn(S),~oSg(s,T, Xn(T)) tiT) 

( /0 ) - f  s , x ( s ) ,  g ( s , r , x ( 7 ) )  dr ds ~ O. 
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Thus, F is continuous. This completes the proof that F is completely continuous. 
Finally the set ( (F )  = {x ~ C : x = ~Fz,  ,~ ~ (0, 1)} is bounded, as we proved in the first step. 

Consequently, by Schaefer's Theorem the operator F has a fixed point in C. This means that  
any fixed point of F is a mild solution of (1) on J satisfying (Fx)( t )  = z(t) .  Thus, the system (1) 
is controllable on J. 

4 .  E X A M P L E  

Consider the following partial integrodifferential equation of the form 

( // ) O.z.t,x.( ( ) z~x( t ,x ) )  z x ~ ( t , x ) = B u ( t ) + p l  t , z ( t , x )  # 2 ( t , s , z ( s , x ) ) d s  
Ot 

with z(t, O) = z(t,  1) = 0, z(0, x) = Zo(X), 0 < x < 1, t ¢ J. Assume that  the following condition 
hold with X = Y = L2(0, 1). 

[A1] The operator B : U ~ Y, with U C J,  is a bounded linear operator. 
[A2] The linear operator W : L2(J, U) ~ X, defined by 

/0 W u  = E - 1 T ( b  - s )Bu(s )  ds 

has an bounded invertible operator W -1 which takes values in L2(J, U) \ ker H r. 
[A3] Further the functions 

# 2 : J x J x X - - - ~ X  

#I : J x X x X - - - ~ Y  

are all continuous, bounded and strongly measurable. 
[A4] Let g ( t , s ,w ) ( x )  = #2( t , s ,w(x ) )  and f ( t , w ,  cQ(x) = # l ( t ,w(x ) , ( r (x ) ) .  Define the opera- 

t o r s A : D ( A )  c X ~ Y ,  E : D(E)  C X - -  Y by 

Aw = - w " ,  E w  = w - w", 

respectively, where each domain D(A) ,  D(E)  is given by 

{w E X, w, w' are absolutely continuous, w" E X, w(O) = w(1) = 0}. 

Then A and E can be written, respectively, as (see [8]) 

o o  

A w  = E n 2 ( W ' W n ) W n '  w E D(A) ,  
r t = l  
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E w  = ~ (1 + n 2) (w, w,~)wn, w E D(E),  
n = l  

where wn(x) = x/2sinnx, n = 1 ,2 ,3 , . . . ,  is the orthogonal set of eigenvectors of A. 
Furthermore for w E X we have 

E - l w  = 1 + n 2 (w, Wn)Wn, 
n = l  

- n  2 
- A E - l w  = ~ ( w , w , ~ ) w n ,  

= Wn)Wn. 
n=1 

It is easy to see that  - A E  -1 generates a strongly continuous semigroup T(t)  on Y and 
T(t)  is compact such that  IIT(t)ll < e - t  for each t > 0. 

[As] The functions #1, and #2 satisfy the following conditions. 
(i) There exists a continuous function q : J × J --~ [0, co) such that  

H~t2(t, s, w)[] < q(t, s)~2(]wl), 

where f12 : [0, co) ~ (0, co) is continuous and nondecreasing. 
(ii) There exists a continuous function I : J ×  ~ [0, co) such that  

ful(t, w, P2)I -< l(t)~3(lwl), 

where ~3 ! [0, co) --* (0, o0) is continuous and nondecreasing. 

Also we have 

h(s) ds < ~2(s) + ~3(s) '  

where c = IIE-111e-~[IEzol + Nb], and ~(t) = max{e-~llE-111g(t),q(t,t)}. Here N depends on 
E, A, B, #1, and #2. Further all the conditions stated in the above theorem are satisfied. 
Hence, the system (4) is controllable on J. 

REMARK. Examples in which the operator W in Hypothesis [C0] has an invertible operator are 
discussed by Carmichel and Quinn [18]. 
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