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In this paper we study the Bresse system with frictional dissipation working only on
the angle displacement. Our main result is to prove that this dissipative mechanism
is enough to stabilize exponentially the whole system provided the velocities of waves
propagations are the same. This result is significative only from the mathematical point
of view since in practice the velocities of waves propagations are always different. In
that direction we show that when the velocities are not the same, the system is not
exponentially stable and we prove that the solution in this case goes to zero polynomially,
with rates that can be improved by taking more regular initial data. Finally, we give some
numerical result to verify our analytical results.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the Bresse system with frictional damping effective only in one equation of the system.
Our main result is to prove that in general the system is not exponentially stable. More precisely, we show the expo-
nential stability if and only if the velocities of waves propagations are equals, which never happens in the practice. This
means that to physical applications we never have exponential stability and when the velocities are different we prove
that the solution decays polynomially to zero, with rates that depends on the initial data and some relationships between
the coefficients.

The Bresse system is also known as the circular arch problem and is given by the following equations:

ρ1ϕtt = Q x + lN + F1, (1.1)

ρ2ψtt = Mx − Q + F2, (1.2)

ρ1 wtt = Nx − lQ + F3, (1.3)

where

N = κ0(wx − lϕ), Q = κ(ϕx + lw + ψ), M = bψx. (1.4)

We use N , Q and M to denote the axial force, the shear force and the bending moment. By w , ϕ and ψ we are denoting
the longitudinal, vertical and shear angle displacements. See Fig. 1. Here ρ1 = ρ A, ρ2 = ρ I , κ0 = E A, κ = k′G A, b = E I and
l = R−1. To material properties, we use ρ for density, E for the modulus of elasticity, G for the shear modulus, k′ for
the shear factor, A for the cross-sectional area, I for the second moment of area of the cross-section and R for the radius
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Fig. 1. The circular arch.

of curvature and we assume that all this quantities are positives. To more details on the system (1.1)–(1.4) see Lagnese et
al. [3].

Finally by Fi we are denoting external forces and therefore the motion equations are given by

ρ1ϕtt − κ(ϕx + ψ + lw)x − κ0l(wx − lϕ) = F1, in ]0,∞[ × ]0, L[, (1.5)

ρ2ψtt − bψxx + κ(ϕx + ψ + lw) = F2, in ]0,∞[ × ]0, L[, (1.6)

ρ1 wtt − κ0(wx − lϕ)x + κl(ϕx + ψ + lw) = F3, in ]0,∞[ × ]0, L[. (1.7)

We consider the following initial conditions

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1, ψ(0, ·) = ψ0, ψt(0, ·) = ψ1, w(0, ·) = w0, wt(0, ·) = w1

and Dirichlet boundary conditions

ϕ(t,0) = ϕ(t, L) = ψ(t,0) = ψ(t, L) = w(t,0) = w(t, L) = 0 in ]0,∞[, (1.8)

or Dirichlet–Neumann boundary conditions

ϕ(t,0) = ϕ(t, L) = ψx(t,0) = ψx(t, L) = wx(t,0) = wx(t, L) = 0 in ]0,∞[. (1.9)

The boundary conditions (1.9) make the calculations easier, because do not introduce pointwise terms when we apply
the multiplicative techniques. Dirichlet boundary conditions (in all the equations) are more complicated because of the
boundary terms, but by using observability result we can estimate them. The final remark about the boundary condition
is that we use Dirichlet–Neumann–Neumann to prove the lack of exponential stability of the corresponding semigroup.
The same result must be true for other boundaries conditions but as well as we know there is no a formal proof to this
fact. In that follows we consider F1 = F3 = 0 and F2 = −γψt with γ > 0. For this case, making l = R−1 → 0 we obtain
that

ρ1ϕtt − κ(ϕx + ψ)x = 0, in ]0,∞[ × ]0, L[, (1.10)

ρ2ψtt − bψxx + κ(ϕx + ψ) + γ ψt = 0, in ]0,∞[ × ]0, L[, (1.11)

ρ1 wtt − κ0 wxx = 0, in ]0,∞[ × ]0, L[ (1.12)

where Eq. (1.12) can be negligible (see [9]) and the lack of exponential decay to Eqs. (1.10)–(1.11) was assured by Muñoz
Rivera and Racke [6] using boundary conditions of type Dirichlet–Neumann.

Concerning the asymptotic behavior of the Bresse system (or circular arch problem) we have only a few results. The most
important is due to Liu and Rao [4], where the authors proved to thermoelastic Bresse system (with two dissipative mech-
anisms) that the solutions decays exponentially to zero if and only if the velocities of waves propagations are the same.
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Otherwise the solution decays polynomially to zero with rates t−4+ε or t−6+ε provided the boundary conditions is Dirichlet–
Neumann–Neumann or Dirichlet–Dirichlet–Dirichlet type respectively.

In this paper we consider only one dissipative mechanism and we get a polynomial decay t−6+ε for any boundary
condition. Additionally we show some numerical results by using the finite difference method that, in particular, is locking
free.

The methods we use to show the lack of exponential stability are based on Gearhart–Herbst–Prüss–Huang theorem to
dissipative systems. See references classical [1,8].

Theorem 1.1. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ: β ∈ R} ≡ iR (1.13)

and

lim|β|→∞
∥∥(iβ I − A)−1

∥∥
L(H)

< ∞ (1.14)

hold, where ρ(A) is the resolvent set of A.

On the other hand our result on the polynomial stability is based on the result of Z. Liu and B. Rao’s theorem on stability.
See [5].

Theorem 1.2. Let S(t) = eAt be a C0-semigroup on a Hilbert space. If

iR ⊂ ρ(A) and sup
|β|�1

1

βl

∥∥(iβ I − A)−1
∥∥

L(H)
< M (1.15)

for some l, then there exist Ck such that

∥∥etA U0
∥∥ � Ck

(
ln t

t

) k
l

ln t‖U0‖D(Ak). (1.16)

The remaining part of this paper is organized as follows. In Section 2 we show the well possedness of the Bresse
system. In Section 3 we show the lack of exponential stability. In Section 4 we show the exponential stability since that the
velocities of waves propagations are equals. In Section 5 we show the polynomial rate of decay for the general case. Finally,
in Section 6 we show some numerical results.

2. The semigroup setting

We rewrite the initial–boundary value problem (1.5)–(1.8) or (1.5)–(1.9) as a first-order system for U := (ϕ,ϕt ,ψ,

ψt , w, wt)
′ , where the prime is used to denote the transpose. Then U satisfies

Ut = Ai U , U (t = 0) = U0, (2.1)

where U0 := (ϕ0,ϕ1,ψ0,ψ1, w0, w1)
′ and Ai is the (formal) differential operator

Ai :=

⎛⎜⎜⎜⎜⎜⎝
0 Id 0 0 0 0

κ/ρ1∂
2
x − κ0l2 Id/ρ1 0 κ/ρ1∂x 0 (κ + κ0)l∂x 0

0 0 0 Id 0 0
−κ/ρ2∂x 0 b/ρ2∂

2
x − κ/ρ2 Id −γ /ρ2 Id −κl/ρ2 Id 0

0 0 0 0 0 Id
−(κ0 + κ)l/ρ1∂x 0 lκ Id/ρ1 0 κ0/ρ1∂

2
x − l2κ Id 0

⎞⎟⎟⎟⎟⎟⎠ (2.2)

where Id is the identity operator. Let

H1 := H1
0(0, L) × L2(0, L) × H1∗(0, L) × L2∗(0, L) × H1∗(0, L) × L2∗(0, L), (2.3)

H2 := H1
0(0, L) × L2(0, L) × H1

0(0, L) × L2(0, L) × H1
0(0, L) × L2(0, L) (2.4)

be the Hilbert space with norm given by

‖U‖2
H = ∥∥(ϕ, ϕ̃,ψ, ψ̃, w, w̃)′

∥∥2
H

≡
L∫ {

ρ1|ϕ̃|2 + ρ2|ψ̃ |2 + ρ1|w̃|2 + b|ψx|2 + κ |ϕx + ψ + lw|2 + κ0|wx − lϕ|2}dx. (2.5)
0
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Here we consider,

L2∗(0, L) =
{

f ∈ L2(0, L);
L∫

0

f (x)dx = 0

}
, H1∗(0, L) = H1(0, L) ∩ L2∗(0, L). (2.6)

The domain of Ai for i = 1,2 is given by:

D(A1) = {
V ∈ H1

∣∣ ϕ,ψ, w ∈ H2, ϕ̃ ∈ H1
0, ψ̃, w̃ ∈ H1∗, ψx, wx ∈ H1

0

}
, (2.7)

D(A2) = {
V ∈ H2

∣∣ ϕ,ψ, w ∈ H2 ∩ H1
0, ϕ̃, ψ̃, w̃ ∈ H1

0

}
. (2.8)

It is not difficult to see that Ai is a dissipative operator in the space Hi for which 0 ∈ 
(Ai). More precisely we have

(Ai U , U )Hi = −γ

L∫
0

|ψ̃ |2 dx � 0, i = 1,2. (2.9)

Therefore from Lummer Phillips theorem we have that A is the infinitesimal generator of a contraction C0 semi-
group.

In that follows we omit the index i of the operator Ai , and we consider only Dirichlet boundary condition. The exception
is for Section 3, where the proof is valid only for A = A1. For the operator A2, the lack of exponential stability must be
true also, but our method cannot be applied. Finally, we remark that to prove the exponential and polynomial decay to A1
is simpler and we omit here.

3. The lack of exponential stability

Our starting point is to show that the semigroup associated to the Bresse system is not exponential stable. To show this
we will consider Dirichlet–Neumann–Neumann boundary condition given by (1.9). We use Theorem 1.1 to prove the lack of
exponential stability, that is we show that there exists a sequence of values λν such that∥∥(λμ I − A)−1

∥∥
L(H)

→ ∞. (3.1)

It is equivalent to prove that there exist a sequence of data Fμ ∈ H and a sequence of complex numbers λμ ∈ iR, with
‖Fμ‖H � 1 such that∥∥(λμ I − A)−1 Fμ︸ ︷︷ ︸

Uμ

∥∥
H → ∞ (3.2)

where

λμUμ − AUμ = Fμ (3.3)

with Uμ not bounded. Rewriting the spectral equation in term of its components we have

λϕ − ϕ̃ = f1 ∈ H1
0, (3.4)

ρ1λϕ̃ − κ(ϕx + ψ + lw)x − κ0l(wx − lϕ) = f2 ∈ L2, (3.5)

λψ − ψ̃ = f3 ∈ H1∗, (3.6)

ρ2λψ̃ − bψxx + κ(ϕx + ψ + lw) + γ ψ̃ = f4 ∈ L2∗, (3.7)

λw − w̃ = f5 ∈ H1∗, (3.8)

ρ1λw̃ − κ0(wx − lϕ)x + κl(ϕx + ψ + lw) = f6 ∈ L2∗. (3.9)

Under the above notations we established the main result of this section.

Theorem 3.1. Let us suppose that

ρ1

ρ2
�= κ

b
, or κ �= κ0, (3.10)

then the semigroup associated to system (1.5)–(1.7) with boundary condition (1.9) is not exponentially stable.
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Proof. We will prove that there exists a sequence of imaginary number λμ and functions Fμ ∈ H, with ‖Fμ‖H � 1 verify-
ing (3.2). To do this, we take f1 = f3 = f5 = 0. Using the equation to eliminate the terms ϕ̃ , ψ̃ and w̃ we get

ρ1λ
2ϕ − κ(ϕx + ψ + lw)x − κ0l(wx − lϕ) = f2 ∈ L2, (3.11)

ρ2λ
2ψ − bψxx + κ(ϕx + ψ + lw) + γ λψ = f4 ∈ L2∗, (3.12)

ρ1λ
2 w − κ0(wx − lϕ)x + κl(ϕx + ψ + lw) = f6 ∈ L2∗. (3.13)

Taking f2, f4, f6 as

f2(x) = sin

(
μπ

L
x

)
, f4(x) = α cos

(
μπ

L
x

)
, f6(x) = 0. (3.14)

Because of the boundary conditions given in (1.9) we can suppose that

ϕ = A sin

(
μπ

L
x

)
, ψ = B cos

(
μπ

L
x

)
, w = C cos

(
μπ

L
x

)
. (3.15)

Therefore, to find a solution of system (3.11)–(3.13) is equivalent to find the solution of the following system,[
ρ1λ

2 + κ

(
μπ

L

)2

+ κ0l2
]

A + κ
μπ

L
B + l

μπ

L
C(κ + κ0) = 1, (3.16)

κ
μπ

L
A +

[
ρ2λ

2 + b

(
μπ

L

)2

+ γ λ + κ

]
B + κlC = α, (3.17)

l(κ + κ0)
μπ

L
A + lκ B +

[
ρ1λ

2 + κ0

(
μπ

L

)2

+ κl2
]

C = 0. (3.18)

First, let us assume that

ρ1

ρ2
�= κ

b
, κ = κ0.

Now we take λ = λμ such that

ρ1λ
2 + κ

(
μπ

L

)2

+ κl2 = 2κl
μπ

L

therefore the above system can be written as

2κl
μπ

L
A + κ

μπ

L
B + 2κl

μπ

L
C = 1, (3.19)

κ
μπ

L
A +

[
ρ2λ

2 + b

(
μπ

L

)2

+ γ λ + κ

]
B + κlC = 0, (3.20)

2κl
μπ

L
A + lκ B + 2κl

μπ

L
C = 0 (3.21)

where we consider α = 0. Subtracting Eq. (3.19) to Eq. (3.21) we get[
κ

μπ

L
− lκ

]
B = 1 ⇒ B = 1

κ(
μπ

L − l)
.

From (3.21) we get that

A = −C − l

2κl μπ
L (

μπ
L − l)

.

Substitution into (3.20) yields

κ

[
μπ

L
− l

]
C = − l

2l(μπ
L − l)

+
[
ρ2λ

2 + b

(
μπ

L

)2

+ γ λ + κ

]
1

κ(
μπ

L − l)
.

Recalling the definition of λμ we get

κ

[
μπ

L
− l

]
C = − l

2l(μπ − l)
+

[(
b − ρ2

ρ

)(
μπ

L

)2

+ ρ2

ρ
2κl

μπ

L
+ γ λ + κ − ρ2

ρ
κl2

]
1

κ(
μπ − l)

.

L 1 1 1 L
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Therefore as μ → ∞ we get

C → 1

κ2

(
b − ρ2

ρ1

)
and also

A → − 1

κ2

(
b − ρ2

ρ1

)
,

as μ → ∞, which means that

‖Uμ‖2
H � κ

L∫
0

|wx − lϕ|2 dx

� κ

L∫
0

∣∣∣∣[C
μπ

L
− l A

]
sin

(
μπ

L
x

)∣∣∣∣2

dx

� κ

∣∣∣∣C μπ

L
− l A

∣∣∣∣2 L

2
→ ∞

as μ → ∞. Therefore there is not exponential stability. Now let us assume that the coefficients satisfy

ρ1

ρ2
= κ

b
, κ �= κ0.

Here we will assume that α = 1. Multiplying Eq. (3.18) by κ/l(κ + κ0) we get

κ
μπ

L
A + κ2

κ + κ0
B + κ

l(κ + κ0)

[
ρ1λ

2 + κ0

(
μπ

L

)2

+ κl2
]

C = 0.

Now we will choose λ such that

κ

l(κ + κ0)

[
ρ1λ

2 + κ0

(
μπ

L

)2

+ κl2
]

= κl

that is to say, λ is such that

ρ1λ
2 + κ0

(
μπ

L

)2

+ κl2 = l2(κ + κ0) ⇒ ρ1λ
2 + κ0

(
μπ

L

)2

− κ0l2 = 0.

Therefore, system (3.16)–(3.18) can be rewriting as[
(κ − κ0)

(
μπ

L

)2

+ 2κ0l2
]

A + k
μπ

L
B + l

μπ

L
C(κ + κ0) = 1, (3.22)

κ
μπ

L
A +

[
b

(
1 − κ0

κ

)(
μπ

L

)2

+ γ λ − ρ2

ρ1
κ0l2 + κ

]
B + κlC = 0, (3.23)

κ
μπ

L
A + κ2

κ + κ0
B + κlC = 1. (3.24)

Subtracting Eq. (3.24) to (3.23) we conclude that[
b

(
1 − κ0

κ

)(
μπ

L

)2

+ γ λ − ρ2

ρ1
κ0l2 + κκ0

κ + κ0

]
B = −1

which implies that

b

(
1 − κ0

κ

)(
μπ

L

)2

B → −1

as μ → ∞. Substituting this expression into (3.22)–(3.23) we get
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[
(κ − κ0)

(
μπ

L

)2

+ 2κ0l2
]

A + l
μπ

L
C(κ + κ0) = 1 − o

(
1

μ

)
, (3.25)

κ
μπ

L
A + κlC = 1 + o

(
1

μ2

)
. (3.26)

So we have

−2κ0

[(
μπ

L

)2

− l2
]

A = −κ + κ0

κ

μπ

L
+ 1 − o

(
1

μ

)
. (3.27)

From where it follows that

μπ

L
A → κ + κ0

2κκ0
. (3.28)

From (3.24) we conclude that

C → 1

κl
− κ + κ0

2κ0
.

Using the same argument as above we conclude that

‖Uμ‖H → ∞.

So we have not exponential stability. �
4. Exponential stability

In this section we will prove the semigroup associates to system (1.5)–(1.7) with boundary conditions (1.8) is exponential
stable provided

ρ1

ρ2
= κ

b
, and κ = κ0. (4.1)

To simplify notation we will put

χ0 =
∣∣∣∣ρ2 − ρ1κ

b

∣∣∣∣, ν0 =
∣∣∣∣1 − κ

κ0

∣∣∣∣. (4.2)

Our starting point will be the resolvent equation

λϕ − ϕ̃ = f1 ∈ H1
0, (4.3)

ρ1λϕ̃ − κ(ϕx + ψ + lw)x − κ0l(wx − lϕ) = f2 ∈ L2, (4.4)

λψ − ψ̃ = f3 ∈ H1, (4.5)

ρ2λψ̃ − bψxx + κ(ϕx + ψ + lw) + γ ψ̃ = f4 ∈ L2, (4.6)

λw − w̃ = f5 ∈ H1, (4.7)

ρ1λw̃ − κ0(wx − lϕ)x + κl(ϕx + ψ + lw) = f6 ∈ L2. (4.8)

Multiplying (4.3), (4.5), (4.7) by −κ(ϕx + ψ + lw)x , −bψxx and −κ0(wx − lϕ)x respectively and Eqs. (4.4), (4.6), (4.8) by
�̃ϕ , ψ̃ and �̃w respectively adding the product resulting and taking the real part we get

Reλ‖U‖2
H + γ ‖ψ̃‖2

L2 = Re(F , U )H. (4.9)

Taking λ = iβ we get

γ ‖ψ̃‖2
L2 = Re(F , U )H. (4.10)

Remark 4.1. Note that iR ⊂ 
(A). In fact, if λ = iβ ∈ σ(A), from identity (4.10) we have that ψ̃ = 0. Therefore we have that
ψ = 0. From Eq. (4.6) we get that ϕx + lw = 0. Substituting this identity into (4.4) and (4.8) we conclude that

ρ1λϕ̃ = κ0l(wx − lϕ), ρ1λw̃ = κ0(wx − lϕ)x.

The above relation implies that ϕx − lw = 0. Since ϕx + lw = 0 we have that ϕ = 0 and w = 0. Therefore there is not
imaginary eigenvalues.
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Lemma 4.2. Under the above notations we have

ρ1

2

L∫
0

|ϕ̃|2 dx + κl2
L∫

0

|w|2 dx � C‖ϕx + ψ + lw‖2
L2 + C‖ψ‖2

L2 + C

β2
‖F‖2

H, (4.11)

L∫
0

|ψx|2 dx � c‖ψ‖L2‖ϕx + ψ + lw‖L2 + c‖F‖H‖U‖H. (4.12)

Proof. Multiplying Eq. (4.4) by ϕ we get that

ρ1

L∫
0

|ϕ̃|2 dx = −κ Re

L∫
0

(ϕx + ψ + lw)xϕ dx − κ0l Re

L∫
0

(wx − lϕ)ϕ dx + Re

L∫
0

f2ϕ dx

� κ Re

L∫
0

(ϕx + ψ + lw)ϕx dx + κ0l Re

L∫
0

(
wϕx + l|ϕ|2)dx + Re

L∫
0

f2ϕ dx

� κ

L∫
0

|ϕx + ψ + lw|2 dx − κ Re

L∫
0

(ϕx + ψ + lw)(ψ + lw)dx + κ0l Re

L∫
0

w(ϕx + ψ + lw)dx

− κ0l Re

L∫
0

w(ψ + lw)dx + κ0l2 Re

L∫
0

|ϕ|2 dx + Re

L∫
0

f2ϕ dx

� κ Re

L∫
0

|ϕx + ψ + lw|2 dx − κ Re

L∫
0

(ϕx + ψ + lw)(ψ + lw)dx + κ0l Re

L∫
0

w(ϕx + ψ + lw)dx

− κ0l Re

L∫
0

wψ dx + κ0l2 Re

L∫
0

|ϕ|2 dx + Re

L∫
0

f2ϕ dx,

which implies that

ρ1

L∫
0

|ϕ̃|2 dx + κl2
L∫

0

|w|2 dx � κ

L∫
0

|ϕx + ψ + lw|2 dx − κ Re

L∫
0

(ϕx + ψ + lw)ψ dx

+ κ0l Re

L∫
0

w(ϕx + ψ + lw)dx − κ0l Re

L∫
0

wψ dx

+ κ0l2
L∫

0

|ϕ|2 dx + Re

L∫
0

f2ϕ dx.

From where it follows that

ρ1

2

L∫
0

|ϕ̃|2 dx + κl2
L∫

0

|w|2 dx � C‖ϕx + ψ + lw‖2
L2 + C‖ψ‖2

L2 + C

β2
‖F‖2

H

for λ = iβ large enough and C constant positive. So the first part of Lemma 4.2 follows. Now, multiplying (4.6) by ψ we get

ρ2λ

L∫
ψ̃ψ dx + b

L∫
|ψx|2 dx + κ

L∫
(ϕx + ψ + lw)ψ dx + γ

L∫
ψ̃ψ dx =

L∫
f4ψ dx
0 0 0 0 0
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therefore,

b

2

L∫
0

|ψx|2 dx � ρ2

L∫
0

|ψ̃ |2 dx + κ Re

L∫
0

(ϕx + ψ + lw)ψ dx + c‖F‖H‖U‖H.

Using (4.10) and Eq. (4.5) to ψ for |λ| � 1 we get

L∫
0

|ψx|2 dx � c‖ψ‖L2‖ϕx + ψ + lw‖L2 + c‖F‖H‖U‖H (4.13)

from where the second part of the lemma follows. �
Let us denote by

Iψ := ∣∣ψx(L)
∣∣2 + ∣∣ψx(0)

∣∣2
, (4.14)

I w := ∣∣wx(L)
∣∣2 + ∣∣wx(0)

∣∣2
, (4.15)

Iϕ := ∣∣ϕx(L)
∣∣2 + ∣∣ϕx(0)

∣∣2
. (4.16)

Lemma 4.3. Under the above notations there exists a positive constant C such that

Iψ � C‖ϕx + ψ + lw‖L2‖ψ̃‖L2 + C‖U‖‖ψ‖L2 + C‖U‖H‖F‖H, (4.17)

I w � C‖U‖2
H + C‖F‖2

H, (4.18)

Iϕ � C‖U‖2
H + C‖F‖2

H. (4.19)

Additionally we have

Iϕ � C N (4.20)

where

N := ‖ϕx + ψ + lw‖2
L2 + ‖ϕx + ψ + lw‖L2‖U‖H + ‖ψ‖L2‖U‖H + ‖U‖H‖F‖H + 1

β2
‖F‖2

H.

Proof. Using Eqs. (4.5) and (4.6) we get

−ρ2β
2ψ − bψxx + κ(ϕx + ψ + lw) + γ ψ̃ = ρ2iβ f3 + f4. (4.21)

Multiplying the above expression by qψx where q = x − L/2. Then

Re

L∫
0

qψxκ(ϕx + ψ + lw)dx = −Reκ

L∫
0

qψ(ϕx + ψ + lw)x dx

= −Reκ

L∫
0

qψ
[
ρ1λϕ̃ − κ0l(wx − lϕ) − f2

]
dx

� C

L∫
0

|ψ̃ �̃ϕ|dx + ‖U‖H‖F‖H + C‖U‖H‖ψ‖L2 .

Therefore we have that

Iψ � C

L∫
0

|ψ̃ �̃ϕ|dx + C‖U‖H‖F‖H + C‖U‖H‖ψ‖L2 + c‖ψx‖2
L2 .

Using Lemma 4.2 and Cauchy–Schwartz inequality the first inequality follows. To get the other inequality let us multiply
Eq. (4.4) by q(ϕx + ψ + lw) and taking real part we get
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κ

2

L∫
0

q
d

dx
|ϕx + ψ + lw|2 dx = ρ1 Reλ

L∫
0

ϕ̃q(ϕx + ψ + lw)dx − κ0l Re

L∫
0

(wx − lϕ)(ϕx + ψ + lw)dx

− Re

L∫
0

f2(ϕx + ψ + lw)dx.

Note that

ρ1 Reλ

L∫
0

ϕ̃q(ϕx + ψ + lw)dx = −ρ1 Re β2

L∫
0

ϕq(ϕx + ψ + lw)dx − ρ1 Re iβ

L∫
0

qf1(ϕx + ψ + lw)dx

� c‖ϕ̃‖2
L2 + c‖ϕ̃‖L2‖U‖H + c‖F‖H‖U‖H.

Using Lemma 4.2, identity (4.20) follows. Finally, multiplying Eq. (4.8) by q(wx − lϕ), and using the same above argument
our conclusion follows. �
Lemma 4.4. For any ε > 0 there exists cε > 0, such that the solution of Bresse system satisfies

|ψxϕx|x=L
x=0| � ε2‖ϕx + ψ + lw‖2

L2 + ε2(1 + ν0/β
2)‖U‖2

H + c2
ε

(
1 + ν0β

10)‖F‖2
H.

Proof. From Lemma 4.3 we have that

Iψ � c‖ϕx + ψ + lw‖L2‖ψ̃‖L2 + cR

where

R := ‖ψ‖L2‖U‖H + ‖U‖H‖F‖H.

Therefore from (4.20) and the above inequality we get

|ψxϕx|x=L
x=0| � cI1/2

ψ

(‖U‖H + ‖F‖H
)

� c
[‖ϕx + ψ + lw‖1/2

L2 ‖ψ̃‖1/2
L2 + R1/2](‖U‖H + ‖F‖H

)
� c‖ϕx + ψ + lw‖1/2

L2 ‖U‖H‖ψ̃‖1/2
L2︸ ︷︷ ︸

:= J0

+ cR1/2‖U‖H + ‖ϕx + ψ + lw‖1/2
L2 ‖ψ̃‖1/2

L2 ‖F‖H︸ ︷︷ ︸
�c‖U‖H‖F‖H

+ cR1/2‖F‖H︸ ︷︷ ︸
c‖U‖H‖F‖H+c‖F‖2

H

.

Using inequality (4.10) we get

J0 � ε‖ϕx + ψ + lw‖2
L2 +

(
c

|β|4/3
‖U‖4/3

H

)(|β|4/3‖ψ̃‖2/3
L2

)
� ε‖ϕx + ψ + lw‖2

L2 + ε2

2|β|2 ‖U‖2
H + cε |β|4‖F‖H‖U‖H

� ε‖ϕx + ψ + lw‖2
L2 + ε2

|β|2 ‖U‖2
H + cε |β|10‖F‖2

H,

cR1/2‖U‖H � c‖ψ‖1/2
L2 ‖U‖3/2

H + c‖U‖3/2
H ‖F‖1/2

H

� c

|β| ‖ψ̃‖1/2
L2 ‖U‖3/2

H + c

|β| ‖F‖1/2
H ‖U‖3/2

H + c‖U‖3/2
H ‖F‖1/2

H

� c
(|β|1/2‖ψ̃‖1/2

L2

)( 1

|β|3/2
‖U‖3/2

H

)
+ |β|1/2‖F‖1/2

H
1

|β|3/2
‖U‖3/2

H + c
1

|β|3/2
‖U‖3/2

H |β|3/2‖F‖1/2
H

� ε2

2
‖U‖2

H + cεβ
2‖ψ̃‖2

L2 + cεβ
6‖F‖2

H.
|β|
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From where we get that

|ψxϕx|x=L
x=0| � ε‖ϕx + ψ + lw‖2

L2 + ε2

|β|2 ‖U‖2
H + cε |β|10‖F‖2

H. (4.22)

On the other hand, using similar arguments it is not difficult to see that

|ψxϕx|x=L
x=0| � ε‖ϕx + ψ + lw‖2

L2 + ε2‖U‖2
H + cε‖F‖2

H. (4.23)

Multiplying Eq. (4.22) by ν0 and summing up with (4.23) our conclusion follows. �
Lemma 4.5. Under the above notations we have that the solution of the resolvent system satisfies

‖ϕx + ψ + lw‖2
L2 � ε2

(
1 + ν0 + χ

β2

)
‖U‖2

H + c2
ε

(
1 + χβ6 + ν0β

10)‖F‖2
H.

Proof. Multiplying Eq. (4.6) by ϕx + ψ + lw we get

κ‖ϕx + ψ + lw‖2
L2 = −ρ2λ

L∫
0

ψ̃(ϕx + ψ + lw)dx − b

L∫
0

ψx(ϕx + ψ + lw)x dx

− γ

L∫
0

ψ̃(ϕx + ψ + lw)dx +
L∫

0

f4(ϕx + ψ + lw)dx + b Reψxϕx|x=L
x=0.

Using (4.4) we get

κ

2
‖ϕx + ψ + lw‖2

L2 � −Reρ2λ

L∫
0

ψ̃ϕx dx + Re
b

κ

L∫
0

ψx
[
ρ1λϕ̃ − κ0l(wx − lϕ) − f2

]

+ l Re

L∫
0

ψ̃ �̃w dx + C‖F‖H‖U‖H + b Reψxϕx|x=L
x=0

� −ρ2 Reλ

L∫
0

ψ̃ϕx dx − ρ1
b

κ
Re

L∫
0

λψ̃ϕx dx + C‖U‖H‖ψ̃‖L2

− κ0l
b

κ
Re

L∫
0

ψx(wx − lϕ)dx

︸ ︷︷ ︸
:= J1

+ C‖F‖H‖U‖H + b Reψxϕx|x=L
x=0

� −
(
ρ2 − ρ1

b

κ

)
Reλ

L∫
0

ψ̃ϕx dx + J1 + C‖F‖H‖U‖H + C‖U‖H‖ψ̃‖L2 + b Reψxϕx|x=L
x=0.

(4.24)

Note that

Reλ

L∫
0

ψ̃ϕx dx = Reλ

L∫
0

ψ̃(ϕx + ψ + lw)dx − Re λ

L∫
0

ψ̃(ψ + lw)dx

� κ

4
‖ϕx + ψ + lw‖2

L2 + cχ0β
2‖ψ̃‖2

L2 + C‖U‖H‖ψ̃‖L2 + C‖U‖H‖F‖L2 .
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On the other hand, using Eq. (4.8) we get

Re J1 = l
b

κ
Re

L∫
0

ψ
[
ρ1λw̃ + κl(ϕx + ψ + lw) − f6

]
dx

� c

L∫
0

|ψ̃ ||w̃|dx + c

L∫
0

|ψ ||ϕx + ψ + lw|dx + C‖F‖H‖U‖H

� C‖U‖H‖ψ̃‖L2 + C‖U‖H‖F‖L2 .

Inserting this inequality into Eq. (4.24) using (4.5) and Lemma 4.4 for ε < k/4 and |β| � 1, our conclusion follows. �
Remark 4.6. The above lemma in particular implies that

N � δ‖U‖2
H + cδ‖ϕx + ψ + lw‖2

L2 + cδ‖F‖2
H.

Therefore Lemma 4.3 we get that

Iϕ � δc‖U‖2
H + cδ‖ϕx + ψ + lw‖2

L2 + cδ‖F‖2
H.

Lemma 4.7. There exists a positive constant c such that

L∫
0

(
ρ1|ϕ̃|2 + ρ2|ψ̃ |2 + ρ1|w̃|2)dx + κ0l

L∫
0

|wx − lϕ|2 dx + ρ1l

L∫
0

|w̃|2 dx

� c1ε
2‖U‖2

H + c2
ε

(
1 + χβ6 + ν0β

10)‖F‖2
H,

for |β| > 1, large enough.

Proof. Multiplying Eq. (4.4) by (wx − lϕ) we have

κ0l

L∫
0

|wx − lϕ|2 dx =
L∫

0

[
ρ1λϕ̃ − κ(ϕx + ψ + lw)x − f2

]
(wx − lϕ)dx

=
L∫

0

ρ1λϕ̃(wx − lϕ)dx + κ

L∫
0

(ϕx + ψ + lw)(wx − lϕ)x dx

−
L∫

0

f2(wx − lϕ)dx − Reκϕx wx|x=L
x=0

� Re

L∫
0

ρ1λϕ̃wx dx + lρ1

L∫
0

|ϕ̃|2 dx + C‖U‖H‖F‖H

+ κ

κ0
Re

L∫
0

(ϕx + ψ + lw)
[
ρ1λw̃ + κl(ϕx + ψ + lw) − f6

]
dx − Reκϕx wx|x=L

x=0

� ρ1

(
1 − κ

κ0

)
Re

L∫
0

λϕ̃wx dx + lρ1

L∫
0

|ϕ̃|2 dx + C‖U‖H‖F‖H

+ κ2

κ0
l

L∫
|ϕx + ψ + lw|2 dx − κ

κ0
ρ1 Re

L∫
ψ̃ �̃w dx − κ

κ0
ρ1l

L∫
|w̃|2 dx − Reκϕx wx|x=L

x=0.
0 0 0
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From where we get

κ0l

L∫
0

|wx − lϕ|2 dx + κ

κ0
ρ1l

L∫
0

|w̃|2 dx � c
(
ν0β

2 + 1
) L∫

0

|ϕ̃|2 dx + C‖U‖H‖F‖H + κ2

κ0
l

L∫
0

|ϕx + ψ + lw|2 dx

− κ

κ0
ρ1

L∫
0

ψ̃ w̃ dx − Reκϕx wx|x=L
x=0.

Using Lemma 4.5 we conclude that there exists a positive constant c such that

L∫
0

|wx − lϕ|2 dx +
L∫

0

|w̃|2 dx � c
(
ν0β

2 + 1
) L∫

0

|ϕ̃|2 dx + ε2
(

1 + ν0 + χ

β2

)
‖U‖2

H

+ c2
ε

(
1 + χβ6 + ν0β

10)‖F‖2
H − Re kϕx wx|x=L

x=0 (4.25)

for |β| > 1 large enough. Using Lemma 4.2 and Lemma 4.5 we get

ρ1

L∫
0

|ϕ̃|2 dx + κl2
L∫

0

|w|2 dx � ε2
(

1 + ν0 + χ

β2

)
‖U‖2

H + c2
ε

(
1 + χβ6 + ν0β

10)‖F‖2
H.

Inserting this inequality into (4.25) we get

κ0l

L∫
0

|wx − lϕ|2 dx + ρ1l

L∫
0

|w̃|2 dx � c0ε
2‖U‖2

H + c2
ε

(
1 + χβ6 + ν2

0β12)‖F‖2
H − Reκϕx wx|x=L

x=0. (4.26)

From Remark 4.6 we conclude that

Reκϕx wx|x=L
x=0 � I1/2

ϕ I1/2
w

�
(
c0ε

2‖U‖2
H + c2

ε

(
1 + χβ6 + ν0β

10)‖F‖2
H

)1/2(‖U‖H + ‖F‖H
)

� c1ε
2‖U‖2

H + c2
ε

(
1 + χβ6 + ν2

0β12)‖F‖2
H.

Multiplying Eqs. (4.4), (4.6), (4.8) by ϕ , ψ and w respectively adding the product result and taking the real part we get

L∫
0

(
ρ1|ϕ̃|2 + ρ2|ψ̃ |2 + ρ1|w̃|2)dx � b

L∫
0

|ψx|2 dx + κ

L∫
0

|ϕx + ψ + lw|2 dx + κ0

L∫
0

|wx − lϕ|2 dx

+ γ

∫
ψ̃ψ dx + c‖F‖H‖U‖H.

Using (4.26), Lemma 4.5 and Lemma 4.2 we get

L∫
0

(
ρ1|ϕ̃|2 + ρ2|ψ̃ |2 + ρ1|w̃|2)dx � c1ε

2‖U‖2
H + c2

ε

(
1 + χβ6 + ν2

0β12)‖F‖2
H,

from where our conclusion follows. �
Now we are in conditions to show the main result of this paper.

Theorem 4.8. The semigroup associates to system (1.5)–(1.7) more boundary conditions (1.8) is exponentially stable if and only if

ρ1

ρ2
= k

b
and k = k0.

Proof. Summing up the inequalities of Lemma 4.5 and Lemma 4.7 and since ν0 = 0 and χ0 = 0 we get that

‖U‖2 � εc2‖U‖2 + cε‖F‖2

H H H
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and for ε small we get

‖U‖2
H � cε‖F‖2

H. �
Therefore the system is exponentially stable.

5. Polynomial rate of decay

Here we will prove that the solution decays polynomially with rates that depends on the regularity of the initial data
and some relationships between the coefficients.

Theorem 5.1. The semigroup associates to system (1.5)–(1.7) with boundary conditions (1.8) satisfies the following polynomial decay∥∥eAt U0
∥∥

H � C

t1/6−ε
‖U‖D(A).

Moreover, if

ρ1

ρ2
�= κ

b
and κ = κ0,

then we have that∥∥eAt U0
∥∥

H � C

t1/3−ε
‖U‖D(A).

Proof. Summing up the inequalities of Lemma 4.5 and Lemma 4.7 we get that

‖U‖2
H � c1ε

2‖U‖2
H + c2

ε

(
1 + χβ6 + ν2

0β12)‖F‖2
H.

For ε small we get

‖U‖2
H � cβ12‖F‖2

H.

Using Liu’s result we conclude that

‖U (t)‖H � C

t1/6−ε
‖U‖D(A).

In the case of ν0 = 0, we have that

‖U‖2
H � cβ6‖F‖2

H.

From where our conclusion follows. �
6. The numerical schemes and results

To numerical certification of the ours analytical results we use the explicit time integration method in finite difference
applied to system (1.5)–(1.8). Firstly, we point out a numerical anomaly know as shear locking. This numerical problem is
common in finite element method by using the linear shape functions when applied to structures mechanics like plates and
beams. For more details of this numerical problem see [2,7]. In our case the numerical scheme in finite difference is locking
free.

Our numerical approach applied to system (1.5)–(1.8) is make on two discretizations in finite difference: the approach
spatial semi-discrete and the totally discrete. In both cases we have a numerical energy and, by using of the totally discrete
scheme in finite difference we proved numerically the issues concerning to lack of exponential stability of the sections
earlier. We believe that this approach numerical to prove the lack of exponential decay is new for dynamic system of
beams.

6.1. The semi-discrete scheme in finite difference

To our purposes, let us denote by J a positive integer number, by h = L
J+1 we denote the spatial step size and a uniform

partition given by

0 = x0 < x1 < · · · < x J < x J+1 = L, (6.1)

with x j = jh. The numerical equations applied to Eqs. (1.5)–(1.7) with F1 = F3 = 0 and F2 = −γψt , is given by
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ρ1ϕ
′′
j = κ

ϕ j+1 − 2ϕ j + ϕ j−1

h2
+ κ

ψ j+1 − ψ j−1

2h
+ κ

w j+1 − w j−1

2h
− κ0l2

ϕ j+1 + 2ϕ j + ϕ j−1

4
, (6.2)

ρ2ψ
′′
j = b

ψ j+1 − 2ψ j + ψ j−1

h2
− κ

ϕ j+1 − ϕ j−1

2h
− κ

ψ j+1 + 2ψ j + ψ j−1

4

− κl
w j+1 + 2w j + w j−1

4
− γ ψ ′

j, (6.3)

ρ1 w ′′
j = κ0

w j+1 − 2w j + w j−1

h2
− κ

ϕ j+1 − ϕ j−1

2h
− κl

ψ j+1 + 2ψ j + ψ j−1

4
− κl2

w j+1 + 2w j + w j−1

4
. (6.4)

Here κ = l(κ + κ0), for j = 1,2, . . . , J . We denote ϕ( jh, t) = ϕ j(t), ψ( jh, t) = ψ j(t) and w( jh, t) = w j(t). For ′ we
denote the derivative with respect to the time and the discretizations with respect to space variable are all of second order
in h.

Numerical approaches like (6.2)–(6.4) was used by Wright [10,11] to treat the issues related to numerical stability for
Timoshenko beam problem in one-dimensional. In fact, making γ = 0 and l → 0 we get

ρ1ϕ
′′
j = κ

ϕ j+1 − 2ϕ j + ϕ j−1

h2
+ κ

ψ j+1 − ψ j−1

2h
, (6.5)

ρ2ψ
′′
j = b

ψ j+1 − 2ψ j + ψ j−1

h2
− κ

ϕ j+1 − ϕ j−1

2h
− κ

ψ j+1 + 2ψ j + ψ j−1

4
, (6.6)

ρ1 w ′′
j = κ0

w j+1 − 2w j + w j−1

h2
. (6.7)

We point out that Eq. (6.7) to displacement longitudinal can be negligible for plane beams. See [9]. Thus, the numerical
equations (6.5)–(6.6) are the same discretizations assumed by Wright in [10,11] to analyze the questions about numerical
stability of the respective explicit time integration method and this numerical equations are locking free. The shear locking
problem to some numerical methods is characterized by the following over-estimation about the coefficient b,

b∗
h = b

(
1 + κ

12b
h2

)
.

It is clear that numerical alternatives to this problem was performed in the literature and to more details we indicate
the classical references by Hughes et al. [2] and Prathap and Bhashyam [7]. In our case, the semi-discrete scheme (6.2)–(6.4)
is locking free, because the respective energy is given by

Eh(t) := h

2

J∑
j=0

[
ρ1

∣∣ϕ′
j(t)

∣∣2 + ρ2
∣∣ψ ′

j(t)
∣∣2 + ρ1

∣∣w ′
j(t)

∣∣2 + b

∣∣∣∣ψ j+1(t) − ψ j(t)

h

∣∣∣∣2

+ κ0

∣∣∣∣ w j+1(t) − w j(t)

h
− l

ϕ j+1(t) + ϕ j(t)

2

∣∣∣∣2

+ κ

∣∣∣∣ϕ j+1(t) − ϕ j(t)

h
+ ψ j+1(t) + ψ j(t)

2
+ l

w j+1(t) + w j(t)

2

∣∣∣∣2]
.

In the energy Eh(t) the coefficients b, κ and κ0 are exactly those of the continuous case (1.5)–(1.7) for Fi = 0, i = 1,2,3.
In fact, there exists a compatibility of Eh(t) with the continuous energy given by

E(t) := ρ1

2

L∫
0

|ϕt |2 dx + ρ2

2

L∫
0

|ψt |2 dx + ρ1

2

L∫
0

|wt |2 dx + b

2

L∫
0

|ψx|2 dx + κ

2

L∫
0

|ϕx + ψ + lw|2 dx

+ κ0

2

L∫
0

|wx − lϕ|2 dx. (6.8)

Moreover, we have the following dissipation law in the numerical context analogous to continuous case:

d

dt
Eh(t) = −hγ

J∑∣∣ψ ′
j(t)

∣∣2 � 0, ∀t � 0. (6.9)

j=1
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Therefore

Eh(t) � Eh(0), ∀t � 0. (6.10)

As in the continuous case, the technical procedure for obtaining the energy Eh(t) is analogous to the continuous case for
discretizations appropriate of the boundary conditions and the proof we omitted in this work.

6.2. The Discrete scheme in finite difference

To numerical experiments we applied the temporal discretization in finite difference to numerical equations in
(6.2)–(6.4). For the aim, we consider the discretization with respect to the time t given by

t0 = 0 < t1 = �t < · · · < tn < · · · < tN = N�t < tN+1 = T , (6.11)

where tn = n�t for n = 0,1,2, . . . , N + 1 and we make

h = �x = L

J + 1
, �t = T

N + 1
, J , N ∈ N (6.12)

with x j = j�x, j = 0,1,2, . . . , J + 1 and tn = n�t . The fully discrete system is then given by

ρ1∂t∂tϕ
n
j = κ∂x∂xϕ

n
j + κ

∂x + ∂x

2
ψn

j + κ
∂x + ∂x

2
wn

j − κ0l2

2

(
ϕn

j−1/2 + ϕn
j+1/2

)
,

ρ2∂t∂tψ
n
j = b∂x∂xψ

n
j − κ

∂x + ∂x

2
ϕn

j − κ

2

(
ψn

j−1/2 + ψn
j+1/2

) − κl

2

(
wn

j−1/2 + wn
j+1/2

) − γ
∂t + ∂t

2
ψn

j ,

ρ1∂t∂t wn
j = κ0∂x∂x wn

j − κ
∂x + ∂x

2
ϕn

j − κl

2

(
ψn

j−1/2 + ψn
j+1/2

) − κl2

2

(
wn

j−1/2 + wn
j+1/2

)
where we assumed the following operators:

∂x + ∂x

2
un

j = un
j+1 − un

j−1

2�x
,

∂t + ∂t

2
un

j = un+1
j − un−1

j

2�t
, (6.13)

∂x∂xun
j = un

j+1 − 2un
j + un

j−1

�x2
, ∂t∂t un

j = un+1
j − 2un

j + un−1
j

�t2
. (6.14)

The approximations of the type un
j−1/2 and un

j+1/2 denote the average of u on the points (x j−1, tn), (x j, tn) and
(x j+1, tn), (x j, tn), respectively. The discrete energy for this case is given by

En := �x

2

J∑
j=0

[
ρ1

(
ϕn+1

j − ϕn
j

�t

)2

+ ρ2

(
ψn+1

j − ψn
j

�t

)2

+ ρ1

( wn+1
j − wn

j

�t

)2

+ b

(
ψn+1

j+1 − ψn+1
j

�x

)(
ψn

j+1 − ψn
j

�x

)
+ κ0

( wn+1
j+1 − wn+1

j

�x
− l

ϕn+1
j+1 + ϕn+1

j

2

)( wn
j+1 − wn

j

�x
− l

ϕn
j+1 + ϕn

j

2

)
+ κ

(
ϕn

j+1 − ϕn
j

�x
+ ψn

j+1 + ψn
j

2
+ l

wn
j+1 + wn

j

2

)]
(6.15)

for n � 1 and it is locking free. The totally discrete equations are all consistent and of order O(�x2,�t2). Besides, they
converge with �x,�t → 0 if and only if they are stable. For issues concerning to numerical stability we need to make an
analysis more elaborate with base in the references by Wright [10,11].

For numerical example, we consider L = 3.14 m, thickness ε = 0.015 m, width 0.0048 m, E = 21 × 104 N/m2, ρ =
7850 kg/m3, k′ = 5/6, r = 0.29 (Poisson ratio) and the following initial conditions:

ϕ(x j,0) = ψ(x j,0) = w(x j,0) = 0,

ϕt(x j,0) = sin

(
μ

πx j

L

)
, ψt(x j,0) = wt(x j,0) = 0, μ ∈ N.

In respect to our mathematical analysis we established that the exponential stability holds if and only if G = E/k′ . To
consider the realistic case G �= E/k′ we take the real value given by G = E/(2 + 2r). We also use the following parameters:
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�x = 0.0982 and �t = 0.0017. Firstly, we reproduce the conservative case to assure the accuracy of the method (see Fig. 2).

Fig. 2. G = E/(2 + 2r).

Figs. 3–8 show the lack of exponential decay.

Fig. 3. G = E/k′ . Fig. 4. G = E/(2 + 2r).

Fig. 5. G = E/k′ . Fig. 6. G = E/(2 + 2r).
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Fig. 7. G = E/k′ . Fig. 8. G = E/(2 + 2r).

In the numerical experiments we can to note the slow decay of the numerical energy En in the case of different velocities
of waves propagations.
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