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Abstract

Some automatic methods have been proposed to identify keratoconus from corneal maps; among these methods, neural net-

works have proved to be useful. However, the identification of the early cases of this ocular disease remains a problem from both a

diagnostic and a screening point of view. Another problem is whether a keratoconus screening must be performed taking into

account both eyes of the same subject or each eye separately; hitherto, neural networks have only been used in the second alter-

native. In order to examine the differences of the two screening alternatives in terms of discriminative capability, several combi-

nations of the number of input, hidden and output nodes and of learning rates have been examined in this study. The best results

have been achieved by using as input the parameters of both eyes of the same subject and as output the three categories of clinical

classification (normal, keratoconus, other alterations) for each subject, a low number of neurons in the hidden layer (lower than 10)

and a learning rate of 0.1. In this case a global sensitivity of 94.1% (with a keratoconus sensitivity of 100%) in the test set as well as a

global specificity of 97.6% (98.6% for keratoconus alone) have been reached.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Keratoconus (KC) is a frequent non-inflammatory

corneal ectasia characterised by a localised conical

protrusion with stromal thinning. This thinning appears

to result from the loss of structural components in the

cornea, probably of collagen fibrils [5,16]. KC becomes

manifest at puberty and can progress either slowly,

stabilising over the course of approximately 10 years, or
relatively rapidly, requiring keratoplasty in 10–25% of

cases [23]. It is a bilateral corneal pathology, but it is

asymmetrical, presenting a different severity in the two

eyes. A monolateral KC is present in 4% of patients.

Diagnosis of KC is usually performed when some

pathognomonic signs are visible in the cornea using a

slit-lamp. They are: vertical stress lines deep in the af-

fected stroma (Vogt�s striae); distorted lower lid in

down-gaze (Munson�s sign); sub-epithelial scarring of
the cone; increased visibility of the corneal nerves;

Fleischer�s iron ring at the base of the cone [6]. In the

early cases (early KC), however, these clinical signs are

not present, if we exclude a slight inconstant astigma-

tism or a slight distortion of keratometry mires.

Keratometry is conventionally used as an indicator of

disease severity, distinguishing among mild (<45 diop-

ters, D), moderate (45–52D) and advanced (>52D)
keratoconi [6]. The CLEK Survey [23] indicated that a

majority of keratoconic eyes do not show individual

pathognomonic signs of KC (they are early cases) and

that higher keratometric readings are associated with a

higher prevalence of one or more of the slit-lamp signs.

In fact many ophthalmologists consider sufficient for

diagnosis the presence of other factors, the most im-

portant of which is a documented increase in corneal
curvature over time [6,9,16].

Given the spread of refractive surgery especially

among young people (where KC could be present in the
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early stage and only in one eye), it is necessary to have

methodologies capable of identifying or screening early

KC, which has hitherto been the main contraindication

to the execution of this type of surgery.
Computer-assisted videokeratoscopes, which gener-

ate colour-coded maps and topographic indices, are

currently the most sensitive and sophisticated devices for

confirming the diagnosis of KC and for following in

time its evolution [16]. Ultrasonic pachymetry may be

useful to confirm corneal thinning in patients with sus-

pected KC, but it is less used because of the large range

of central and paracentral variation of pachymetry
readings in the normal population [16].

Corneal topography is therefore indispensable to

detect early KC, but, in some cases, doubts remain

about the correct diagnosis, so much so that some au-

thors [9,17,20,22] define Keratoconus Suspects (KCS) as

the presence of an abnormal map without clinical signs.

In fact, topographic maps of eyes with KC display a

variety of different patterns [22] that may be confused
with other corneal irregularities, defined as corneal

warpage [17,20]. The term KCS should be used if only

one map for each eye is available. In fact, by following

up these suspect cases it is often possible to identify the

true keratoconi, if a corneal power progression is veri-

fied [23]. Because of similar topographic patterns have

been noticed in clinically normal family members of

keratoconus patients and in the clinically normal fellow
eye of patients with clinically unilateral KC [12,13], in

addition to the corneal power progression, other criteria

(family history and presence of a KC in the other eye)

can be considered to produce, with a good probability, a

correct diagnosis of KC in absence of slit-lamp findings.

In order to help the clinician in cases of difficult map

interpretation and for a screening purpose, numerical

methods have been developed to distinguish the kera-
toconus cornea from the normal cornea [2,6], in particular

the Rabinowitz–McDonnell test [11] is the most widely

used. It employs the following indices obtained from a

sagittal topography: the central corneal power (CCP), the

I–S values (inferior–superior dioptric asymmetry), and

the difference between right and left CCP (DCCP). Later
on,Rabinowitz [15] added the SRAX(skewed radial axes)

index that quantifies the skewing of the steepest radial
axes above and below the horizontal meridian.

Many other quantitative parameters, calculated from

corneal maps, have been proposed to better characterise

corneal patterns [7,21]: simulated keratometry readings

(SimK1 and SimK2), surface asymmetry index (SAI),

surface regularity index (SRI), differential sector index

(DSI), opposite sector index (OSI), centre/surround in-

dex (CSI), analysed area (AA).
More recently, Maeda and colleagues [7,8] have

proposed the use of expert systems. At first, they used

the discriminant analysis [7], then a neural network [8].

Afterwards, Smolek and Klyce [18] compared five vid-

eokeratographic methods for keratoconus detection

demonstrating the validity of the neural network ap-

proach. The ability to respond with the same terminol-

ogy used by clinicians, without requiring them to learn a
new terminology, represents a particular advantage of

this approach.

During a topographic screening, all the maps with a

keratoconus-like pattern should be classified as KCS.

But we believe it should also be possible to identify cases

of early KC among the KCS maps using suitable

methods of map analysis. To correctly perform such a

type of study, the reference maps should be KCS maps
successively evolved to KC with clinical signs. In prac-

tice, this is a very difficult task to perform, as it requires

many years of follow up. Therefore, we used the previ-

ously described criteria to obtain, with a high proba-

bility, early KC maps.

Another unsolved problem is whether keratoconus

screening must be performed taking into account both

eyes of the same subject (as proposed by Rabinowitz) or
each eye separately (as proposed by Maeda and Klyce);

hitherto, neural networks have only been used in the

second alternative. In 1989 Rabinowitz and McDonnell

[11] used the DCCP as an important parameter to

identify the keratoconus, following the clinical obser-

vation of the asymmetric presentation (different stage in

the two eyes) of this pathology.

In this paper we describe a new expert system based
on a neural network which utilises parameters that differ

from those used by Maeda et al. [8] to detect the KC

corneal patterns. At first, the parameters evaluated from

each eye were considered separately, then we used the

data taken from both eyes. A comparison among the

network architectures that were tested was carried out.

2. Materials and methods

2.1. Subjects

A study on KC progression must take into account

the repeatability of any corneal curvature measure,

particularly of corneal topography, which however has

not been determined for KC specifically [23]. That is
why, we followed the suggestions of Di Lorenzo [1] who

observed a better repeatability for sagittal cone apex

powers <53D. This repeatability is extremely important

if a corneal power increase is to be detected.

We divided our maps into normal maps (N), kera-

toconus (KC) and other non-keratoconus conditions

(O). Only KC of mild and moderate severity was con-

sidered, with a sagittal cone apex power <53D, where
no clinical sign was present (early KC) or only the Vogt�s
striae were detected (mild or moderate KC, 12 eyes).

In order to obtain a correct classification of our early

KC cases, we took into consideration all the maps that
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we had previously classified as KCS, and we defined as

KC only those in which one of the following criteria was

satisfied: (1) the pathology was already present (Vogt�s
striae) in the other eye with the same topographic pat-
tern, (2) a family history of KC was present, (3) the apex

progression of the corneal protrusion was >1D after 1

or 2 years of follow up investigation. Some KCS were

included in the O group if a contact lens warpage was

demonstrated by the disappearance of the corneal war-

page after 1–3 months of corneal lens abstention. All the

other KCS-type maps were excluded.

As far as the first criterion is concerned, we also in-
cluded in our study the 12 eyes with clinical KC (with

the highest corneal powers of our series), used to iden-

tify maps of early KC in the second eye.

Thus, 396 corneal topographic maps, obtained with a

videokeratoscope (EyeSys), were selected from the cases

recorded over a three-year period at the Ophthalmo-

logical Unit of the Children�s Hospital �Burlo Garofolo�
of Trieste. All the KCS cases had a follow up: if the KCS
case became Normal in both eyes for the interruption of

contact lens wearing, the first registered map would be

classified as contact lens corneal warpage and it would

be included in an �Other group� (O, 66 maps: 33 subjects,

9 males, and 24 females); if, instead, the KCS could be

classified as early KC, following the above-mentioned

criteria, the first registered map would be included in a

�KC group� (KC, 120 maps: 60 subjects, 35 males, and 25
females, 50 both eyes with KC and 10 only one eye with

KC); all the other KCS maps were discarded because it

was impossible to classify them differently from KCS.

Moreover, we considered the first 110 maps belonging to

Normal subjects in both eyes that were included in a

Normal group (N, 110 maps: 55 subjects, 28 males, and

27 females) and another 100 maps (50 subjects, 18 males,

and 32 females) of subjects with various bilateral non-
keratoconus conditions, especially congenital astigma-

tism, which were included in the Other group together

with the previous contact lens corneal warpage cases.

The mean ages in the three groups were 22� 13 (N),

35� 12 (KC) and 21� 14 (O) years. The mean age is

higher in the KC group because we considered all the

cases recorded during 3 years where a keratoconus-like

pattern was present, in order to identify a sufficient
number of early cases. In particular we considered also

cases of all ages where the corneal map was recorded for

an increment of the astigmatic correction with glasses.

Instead, the other two groups are constituted by the first

recorded patients for a pre-surgical KC screening.

However we underline that changes in corneal map are

age-linked only if a corneal pathology is present.

2.2. Neural networks: architecture

The neural network was constructed with three layers

and the backpropagation method was used in the

training process. To understand which network archi-

tecture provided the best KC identification, we exam-

ined six different combinations of neuron numbers both

in the input and output layers; for each of these situa-
tions we considered a different number of neurons in the

hidden layer, three possible learning rates and a suitable

number of epochs.

In particular (Table 1), the number of input neurons

could be 9 (corresponding to the topographic indices of

each eye listed below), 18 (corresponding to the same

parameters when considering both eyes of the same

subject simultaneously) or 10 or 19, by adding to
the previous indices the absolute difference between the

central corneal powers of the two eyes (DCCP). The

output layer could consist of three neurons, one for each

topographic category (N, KC, and O) or of six neurons,

one for each topographic category of the two eyes

considered simultaneously.

Thus, as regards the input, in the first situation

(Table 1) each eye was considered by itself (monocular
approach), while in the remaining approaches (situa-

tions II-VI) at least one information from both eyes of

the same subject was considered (binocular approach).

As regards the output, the goal was to detect the

presence of KC in a specific eye (eye screener—ES) or to

verify the presence of KC at least in one eye of a subject

(subject screener—SS). Since the clinical aim is the

identification of patients affected by KC, subject classi-
fications were also extracted from the results of the ES

(situations I, II, V, and VI) and compared to the SS of

situations III and IV.

The parameters used in the input layer were: simu-

lated K1 (SimK1), simulated K2 (SimK2), asphericity

(Q), and corneal uniformity (CU) indices, supplied by

the EyeSys Holladay diagnostic summary, and central

corneal power (CCP), inferior–superior asymmetry (I-
S), differential sector index (DSI), opposite sector index

(OSI) and centre/surround index (CSI) calculated from

Table 1

Possible combination of input and output neuron numbers considered

in this study

Situation

number

Number

of input

neurons

Number

of output

neurons

Input

approach

Output

approach

I 9 3 Monocular Eye

screener

II 10 3 Binocular Eye

screener

III 18 3 Binocular Subject

screener

IV 19 3 Binocular Subject

screener

V 18 6 Binocular Eye

screener

VI 19 6 Binocular Eye

screener
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the numeric maps. These nine parameters were chosen

from a larger number of indices taken from the litera-

ture or supplied by the videokeratoscope after a com-

parison, by means of the Student t test, of the mean
values detected in the N and KC groups.

The sum of the weighted inputs to a given neuron of

the hidden layer was transformed through a non-linear

transfer function (sigmoidal curve) to modulate the re-

sponse characteristics. The non-linear transfer function

(sigmoidal curve) for the neurons in the output layer was

normalised to provide an output ranging from 0 to 1. As

a result, a value of 0 for a particular output neuron
indicated a complete lack of response to the corre-

sponding category, whereas an output strength ap-

proaching 1 indicated maximum response.

The network weights and biases were initially set to

suitable values so that the active regions of the layer

neurons were more or less evenly distributed over the

input space (Nguyen–Widrow initialisation method

[10]).
With the aim of gaining the best accuracy and opti-

mising the network, the number of input and output

layers was changed as previously described and also the

number of hidden neurons was varied between 4 and 120

(from 4 to 20 with unitary step and from 25 to 120 with

a step of 5, for a total of 37 steps). The maximum value

was selected considering the number of the training

cases. Finally, the learning rate was varied. The values
considered were 0.1, 0.01, and 0.001. Thus, for each of

the six different input/output situations, 37� 3 ¼ 111

possible combinations were examined.

2.3. Neural networks: training

The learning process was performed by using the

maps of the right and left eyes, either separately or to-
gether, of 25 normal subjects, 30 subjects with KC (25

both eyes, 5 only one eye) and 40 subjects with other

alterations (55 normal maps, 55 KC maps, and 80 other

alterations maps when the eyes were considered sepa-

rately). In each group the maps were randomly selected.

The training of the neural network was performed by

using the backpropagation method, which was consid-

ered completed when either the value of the training
performance, measured as the mean square error of

output approximation (mse), went below 0.005 or when

a minimum gradient (fixed to 1E-7) in the performance

curve was reached. The mse was calculated as the mean

sum of squares of the network errors:

mse ¼
XN

i¼1

ðEi � OiÞ2=N ð1Þ

being N the output neuron number (3 or 6), Ei and Oi

respectively, the expected and the observed outputs of

the ith neuron.

2.4. Neural networks: test

The efficacy of the neural network classifier was

evaluated with a test set of 30 normal subjects, 30 sub-
jects with KC (25 both eyes, 5 only one eye) and 43

subjects with other alterations. A winner-takes-all

threshold criterion of 0.5 was used to determine the

classification made by the neural network, thus each

map or each pair of maps was associated to the category

with a value which exceeded the threshold. If no cate-

gory satisfied this requirement, it was classified as un-

known.
The results for each category were described in terms

of sensitivity (true positive/[true positive + false nega-

tive]), specificity (true negative/[true negative + false po-

sitive]), and accuracy ([true positive + true negative]/total

number of maps). These statistical measures were com-

puted both separately for each category and globally.

We computed the Akaike Information Criterion

(AIC) score to determine the best network in order to
reward a network with low mean square error (mse) but

to penalize networks with a large number of weights.

Since the contribution of the mse in the test set was

negligible at all (or became negligible already with eight

neurons in the situations I and II) in respect to the

contribution of the number of free parameters that lin-

early rises with the increasing of hidden neurons num-

ber, the AIC score only states that, when the global
sensitivity values are equivalent, the best network is that

has got the minimum number of hidden neurons. Then,

in each situation, the network configuration that pro-

duced the highest global sensitivity was considered.

These six best neural networks were used to compare the

six situations. To this aim, the simple bootstrapping

method (with N¼ 300 resampling with replacement of

the test data) was applied [4,19] in order to obtain, for
each considered network, a distribution of the bootstrap

estimates so as to determine possible significant differ-

ences in sensitivity, sensibility and accuracy, among the

six situations. In this work the bootstrap estimate

without any modification correction was used because

the contribution of the training set error (considered in

the so-called 632 bootstrap) was about constant and less

than 1%.1

1 Efron [3] states that the bootstrap estimate we used (Rb) could

result upward biased, so he proposed to use the bootstrap 632 estimate

(R632) where the weighted contribution of the training set error E was

introduced to correct the upward bias in Rb as R632 ¼ :368 � Eþ
:632 �Rb.

Since in our NN the E values for different situations and number of

hidden neurons was very low and about constant (from 0.03 to 0.01 in

situations I and II, less than 0.01 in the other situations), we used the

simple Rb neglecting the correction that does not affect the final

results.
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The neural network model developed in this study

was implemented on a PC using the MATLAB v.5

software package.

3. Results

3.1. Parameters mean values

Table 2 shows that in KC the mean values of all the

used parameters are very different from those obtained

in the remaining two groups; the difference between the
KC and N groups and between the KC and O groups is

always significant (p < 0:00001 at the Student�s t test)

for all the parameters. The difference between theN and

O groups is also significant for all the parameters

(p < 0:05 for CCP, DCCP and I–S; p < 0:01 for all the

other parameters) although some variables presented a

high standard deviation.

3.2. Neural network results

In situations III–VI shown in Table 1, the tolerance

threshold in most training cases was reached after a few

hundreds of epochs (see the example in Fig. 1a), while in

situations I and II the minimum gradient of the per-

formance curve was often reached without satisfying the

preset performance (see in Fig. 1b an example of the
situation I).

With the aim of identifying for each situation the

network that could produce the highest global sensitivity

(GS), the number of neurons in the hidden layer and the

three learning rates (0.1, 0.01, and 0.001) were modified

during the training phases. The results are reported in

Fig. 2a–f.

The behaviour of the GS was similar both in the
training and test sets for each couple (I–II, III–IV, V–

VI) of situations, differing only for the absence/presence

of the DCCP parameter.
In situations I and II, the performance never reached

100% (ranging between 97% and 99%) during the

training, while in the test set (Fig. 2a–b) the maximum

value of GS was obtained with a low number (about 20)

of hidden neurons. The highest sensitivity values were

reached in situation II (with DCCP).
In situations III and IV, a GS of 100% was always

reached in the training set; in the test set (Fig. 2c–d),
after maximum GS values for 4–8 hidden neurons, a

quick decrease was present.

In situations V and VI, the GS during the training set

almost always reached 100% (99% at minimum), while

in the test (Fig. 2e–f), the GS was independent of the

number of hidden neurons showing intermediate values

between situations I–II and III–IV, respectively.

In all the cases, the comparison of the results ob-
tained by using the three learning rates (0.1, 0.01, and

0.001) showed that even if a significant difference was

not present, the 0.1 learning rate appeared to be the

most convenient, being the value producing the quickest

convergence.

Table 3 reports the combinations of the hidden neu-

ron numbers and learning rates that produced the

highest GS in the six situations. Situations III and IV (18
or 19 inputs, 3 output categories) presented the highest

GS values. Table 4 shows the results obtained for each

neural network of Table 3 when the complete test set

was used.

Tables 5 and 6 show the 5th and the 95th percentiles

together with the mean values of the global sensitivity,

specificity, and accuracy, obtained from the 300 test set

Table 2

Mean values and standard deviations of the 10 considered indices in

the three groups

Normal

(n ¼ 120 maps)

Keratoconus

(n ¼ 110 maps)

Other alterations

(n ¼ 166 maps)

CCP 43:47� 1:47 47:13� 5:12 43:96� 1:96

DCCP 0:28� 0:22 3:48� 3:70 0:58� 1:67

I-S �0:12� 0:54 4:22� 3:36 0:06� 0:89

DSI 0:88� 0:41 6:99� 3:98 2:47� 1:29

OSI 0:66� 0:42 6:39� 3:79 1:10� 0:95

CSI 0:23� 0:28 2:13� 3:42 0:44� 0:69

SimK1 43:71� 1:47 47:14� 4:05 45:09� 2:06

SimK2 43:20� 1:45 44:89� 3:34 42:64� 1:85

Q �0:08� 0:15 �0:63� 0:87 �0:14� 0:25

CU Index 100 84:00� 16:66 98:86� 6:73

CCP, central corneal power; DCCP, absolute value of the difference
in CCP between the two eyes of a given patient; I–S, inferior–superior

asymmetry; DSI, differential sector index; OSI, opposite sector index;

CSI, centre/surround index; SimK1, simulated K1; SimK2, simulated

K2; Q, corneal asphericity; CU index, corneal uniformity index.

Fig. 1. Examples of training performance behaviour as a function of

the number of epochs: (a) situation III, 7 hidden neurons, learning

rate¼ 0.1, global sensitivity¼ 94.2%, required tolerance error met; (b)

situation I, 8 hidden neurons, learning rate¼ 0.01, global sensitiv-

ity¼ 87.2%, minimum gradient of the performance curve met.
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resampling combinations, for both the ES (situations I,

II, V, and VI) and the SS, respectively. However, from

the results of ES it is possible to obtain a SS considering

the classification of the two eyes jointly. Thus, with the

aim to identify the situation that bring to the best SS, in

Table 6, we reported together with the two SS condi-

tions (situations III and IV), the Subject Screeners built
by using the data of situations I, II, V, and VI of Table

5. In these cases we classified as KC a subject with at

least one eye with keratoconus and as UK a subject

whose eyes were classified in different categories by the

ES (or at least one eye was classified as unknown).

In the ES there were no significant differences be-

tween the four situations for each statistic parameter

(sensitivity, specificity and accuracy). In the SS the dif-
ferences were significant only between situation I and

situations III, IV, and VI for sensitivity and between

situations II and V for specificity.

4. Discussion

Corneal topography is an objective and quantitative
support to the clinical diagnosis of KC. In fact, many

quantitative parameters can be evaluated from the maps

and also be used in some automatic methods, like the

neural network, to identify the patterns of corneal pa-

thologies.

The ability to screen automatically KC corneal to-

pographic patterns is very important if large popula-

tions are to be studied, in particular in the propaedeutic
examination for refractive surgery. For a screening

purpose that today has a practical application (refrac-

tive surgery and genetic studies in families), the most

important information is the presence or absence of an

early KC.

Maeda et al. [8] and Smolek and Klyce [18] already

demonstrated the quality and value of the neural net-

work approach in identifying the topographic patterns
of KC; our work agrees with their results. Unlike other

authors, our work considered only cases of early KC

and compared different network architectures to evalu-

ate the results of both ES and SS. We chose nine pa-

rameters with a remarkable difference in mean values

among the three categories (Table 2), we tested the six

situations shown in Table 1 and we used different

numbers of hidden neurons and learning rates that al-
lowed us to reach the preset goal (Tables 5 and 6).

While normally each eye is considered as an inde-

pendent case (ES based on a monocular approach), we

Table 3

Hidden neuron numbers and learning rates that produce the highest

global sensitivities in the six considered situations

Situation Number of

hidden neurons

Learning

rate

Global

sensitivity

I 8 0.01 87.86

II 45 0.1 90.78

III 7 0.1 94.17

IV 4 0.1 94.17

V 55 0.01 88.83

VI 7 0.01 92.23

 
 

 

   

Fig. 2. Global sensitivity (GS) vs. number of neurons in the hidden layer in the six considered situations for three different learning rates. Panels

(a)–(f) progressively correspond to situations from I to VI. Diamond: learning rate¼ 0.1; square: learning rate¼ 0.01; star: learning rate¼ 0.001.
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also matched the information obtained from both eyes

of the same subject (ES and SS based on a binocular

approach). Moreover, we also compared the perfor-

mances of the ES and the SS, as, for clinical purposes,
the identification of the patient is more important than

the identification of the sick eye. In fact, a patient suf-

fering from a monolateral pathology must be periodi-

cally checked to assess the eventual incoming of KC in

his/her sound eye and moreover, KC represents the

major contraindication to refractive surgery in both eyes

even if one is (still) sound.

The introduction of the DCCP parameter slightly
improves the neural network performance in situations

II and VI with respect to I and V, both in ES and SS

(Tables 5 and 6 and Fig. 2b–f compared to 2a–e) while

in situation IV vs. III this parameter is ineffective (Table

6 and Fig. 2d vs. 2c). However, such differences are

generally not significant, although situation I has a GS

mean value significantly lower than that of situations

III, IV, and VI. It is evident that the monocular ap-

proach, normally used in clinical procedures, is less

Table 4

Classification results of the six neural networks described in Table 3,

by using the complete test set

Actual

category

Estimated category Total

N O KC UK

Situation I

N 55 8 1 1 65

O 8 77 1 0 86

KC 1 5 49 0 55

Total 64 90 51 1 206

Situation II

N 54 10 1 0 65

O 5 80 0 1 86

KC 1 1 53 0 55

Total 60 91 54 1 206

Situation III

N 30 0 0 0 30

O 4 37 1 1 43

KC 0 0 30 0 30

Total 34 37 31 1 103

Situation IV

N 30 0 0 0 30

O 4 37 2 0 43

KC 0 0 30 0 30

Total 34 37 32 0 103

Situation V

N 60 3 2 0 65

O 10 75 1 0 86

KC 0 5 48 2 55

Total 70 83 51 2 206

Situation VI

N 63 1 0 1 65

O 10 75 1 0 86

KC 0 3 52 0 55

Total 73 79 53 1 206

N, normal; KC, keratoconus; O, other alterations; UK, unknown.

The numbers represent eyes (situations I, II, V, and VI) or subjects

(situations III and IV) classified by NN compared to the actual (clini-

cal) categories.

Table 5

Mean values and 5th and 95th percentiles of the global sensitivity,

specificity, and accuracy distributions, obtained from the 300 test set

resampling combinations, for the eye screening (situations I, II, V, and

VI)

Situation Mean (%) 5th percentile 95th percentile

Global sensitivity

I 85.4 81.5 89.1

II 88.6 84.3 91.9

V 86.1 81.2 89.7

VI 91.4 87.4 94.9

Global specificity

I 93.7 92.0 95.5

II 96.1 94.6 97.4

V 94.2 91.7 95.9

VI 96.2 94.1 97.6

Global accuracy

I 90.9 88.6 93.1

II 93.6 91.2 95.3

V 91.5 88.1 94.0

VI 94.6 92.1 96.7

Table 6

Mean values and 5th and 95th percentiles of the global sensitivity,

specificity, and accuracy distributions, obtained from the 300 test set

resampling combinations, for the subject screening (all situations)

Situation Mean

(%)

5th

percentile

95th

percentile

Mean (%)

Global sensitivity KC sensitivity

I 81.7 75.8 86.9 96.6

II 87.4 81.4 91.9 100

III 94.1 90.4 97.8 100

IV 93.2 89.4 95.7 96.7

V 88.4 82.3 92.5 93.3

VI 92.3 88.4 95.7 100

Global specificity KC specificity

I 98.6 97.0 99.9 98.6

II 99.0 98.1 99.9 98.6

III 97.6 95.7 99.4 98.6

IV 97.6 95.7 98.9 100

V 96.1 93.7 97.8 100

VI 97.6 95.6 98.9 98.6

Global accuracy KC accuracy

I 92.9 90.6 95.0 98.0

II 95.1 92.9 97.0 99.0

III 96.4 93.9 98.6 99.0

IV 96.1 93.9 98.0 99.0

V 93.5 90.7 95.9 98.0

VI 95.8 93.3 98.1 98.0

The data of situations I, II, V, and VI were calculated classifying as

KC a subject with at least one eye with keratoconus and as UK a

subject whose eyes had been previously classified in different categories

or who had at least one eye that was classified as unknown. In the last

column, the KC sensitivity, specificity, and accuracy mean values are

also reported.
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effective than a binocular approach for a correct iden-

tification of the cases of each group (N, O, and KC).

Moreover, the binocular approach generally appears to

be slightly better than the monocular one for the de-
tection of KC sensitivity (Table 6).

In any case, the best results in terms of global sensi-

tivity and accuracy as well as KC screening power, are

obtained with situation III (slightly better than in situ-

ation IV).

However, the subject screener presented in situation

II (Table 6) showed the best performance in terms of

mean global specificity, even if this higher value was
gained with a lower global sensitivity. This was mainly

due to the classification of subjects with other altera-

tions. In fact, when the SS was evaluated in situations I

and II, with respect to the ES, there was a cancellation

of the false positives (O cases no longer classified as N)

and a corresponding increment of the false negatives (O

cases classified as UK).

The KC specificity value (linked the false positive
cases) in the SS (Table 6) was high in all the situations,

standing at 100% in situations IV and V. The KC sen-

sitivity value (linked the false negative cases) in the SS,

was low in situation V. The input/output configuration

used as well as the low number of monolateral KC cases

considered during the NN training could explain this

low value of sensitivity. On the contrary, in the other SS

situations, with the exception of situations I and IV, all
the KC subjects were correctly identified (sensitivity

of 100%), pointing out an optimal discriminative capa-

bility, for KC subjects, of the various architectures used,

in spite of the reduced presence of KC in the NN

training.

Therefore, one of the main results of this study is that

the utilisation of the nine parameters from both eyes

(binocular approach) and of the three output categories
improves the discriminative capability of the neural

network: in situation III the global accuracy was 96.4%

and the KC sensitivity was 100% (Table 6). Moreover, if

the O group is divided into subgroups, this system

would be suitable for detecting other specific patterns in

corneal topography, choosing the appropriate quanti-

tative indices. Finally, the low number of hidden neu-

rons, which is necessary to obtain the best result,
produces a network that is easy to implement and quick

in both the training and test phases.

Maeda et al. [8], who reported global results similar

to ours, divided their KC maps into two groups, with

only eight maps of mild KC.

Our results are slightly different with respect to those

obtained by Smolek and Klyce [18], who reported 100%

right classification using their neural network. It is
however important to remember that there are sub-

stantial differences in the choice of cases. Their maps

were divided into three groups (KCS, KC, and O): the

KCS group was constituted by six maps in the training

and test sets. The KC group was separated in three

subgroups: mild (up to 55D; 11 maps), medium and

severe (a total of 22 maps). In any case the maximum

total number of early maps was 17, but in the classical
classification [6] the mild and moderate cases present a

corneal power lower than 52D.

In our opinion for a KC screening, the training set

cannot be performed using KCS maps, where in many

cases the use of a contact lens is responsible for the KC-

like pattern. Rabinowitz [14] took into account only KC

with clinical signs to obtain the reference values (he did

not use neural networks), and he required that screening
be used in a noncontact lens wearing population.

It is evident that the aim of Smolek and Klyce [18],

using a KCS group as the input and output of their

neural network, was to obtain an indication of the cases

of the screened population to be followed up. This is an

important goal but, in the case of a KC screening, an

increase of both the false positives (due to the large

number of persons wearing contact lenses) and (since
these persons produce an increment of contact lens

corneal warpages) of the screening costs is expected. We

believe that it is more correct to use an expert system to

take KC out of the KCS: this is what we have tried to

do, using a neural network to differentiate KC and

contact lens corneal warpage, inserted in the O group.

We used 110 KC maps (55 in the test set), especially

of early cases, recorded on 60 patients, of whom 10
presented a monolateral pathology.

In our work we decided to identify three categories

(N, KC, and O), with a category of normal maps (with

the rule astigmatism < 1D) because, being KC an

asymmetrical (rarely monolateral) pathology, at its be-

ginning one eye is affected while the other is still sound.

The classifier must consequently know the characteris-

tics of normality.
It is clinically easy to identify KC with clinical signs,

but it is also normally identified by a screener using only

corneal maps. A KC screening is usually performed in

young patients; therefore it is important to consider

especially early cases and try to obtain a diagnosis of

KC as soon as possible.

For this reason, a screener classification in which a

KCS group appears should not be accepted. We believe
that the various types of maps constituting KCS could

be separated directly by a well-trained screener, with few

errors. Furthermore, a good KC screening has to iden-

tify the largest number of cases, with the minimum

possible false positives. The capability of our screener to

differentiate at least KC and contact lens warpage is

another important result of this study.

Finally, even if in the situations II and V the high
number of hidden neurons (Table 3) could suggest an

overfitting of data, we could accept the second highest

values for GS (situation II: GS¼ 89.81, 10 neurons,

learning rate¼ 0.1; situation V: GS¼ 87.84, 8 neurons,
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learning rate¼ 0.01) without changing of the final result

of the work (that the simultaneous utilisation of topo-

graphic parameters from both eyes improves the dis-

criminative capability of the neural network).

5. Conclusion

This study expands the value of the neural network
approach to the automatic screening of early keratoc-

onus and states that the simultaneous utilisation of to-

pographic parameters from both eyes improves the

discriminative capability of the neural network.
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