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a b s t r a c t

Consider the Emden–Fowler sublinear dynamic equation

x∆∆(t)+ p(t)f (x(σ (t))) = 0, (0.1)

where p ∈ C(T,R), T is a time scale, f (x) =
∑m
i=1 aix

βi , where ai > 0, 0 < βi < 1, with
βi the quotient of odd positive integers, 1 ≤ i ≤ m. When m = 1, and T = [a,∞) ⊂ R,
(0.1) is the usual sublinear Emden–Fowler equation which has attracted the attention of
many researchers. In this paper, we allow the coefficient function p(t) to be negative for
arbitrarily large values of t . We extend a nonoscillation result ofWong for the second order
sublinear Emden–Fowler equation in the continuous case to the dynamic equation (0.1). As
applications, we show that the sublinear difference equation

∆2x(n)+ b(−1)nn−cxα(n+ 1) = 0, 0 < α < 1,

has a nonoscillatory solution, for b > 0, c > α, and the sublinear q-difference equation

x∆∆(t)+ b(−1)nt−cxα(qt) = 0, 0 < α < 1,

has a nonoscillatory solution, for t = qn ∈ T = qN
0 , q > 1, b > 0, c > 1+ α.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Emden–Fowler sublinear dynamic equation

x∆∆(t)+ p(t)f (x(σ (t))) = 0, (1.1)

where p ∈ C(T, R), T is a time scale, f (x) :=
∑m
i=1 aix

βi , where 0 < βi < 1, βi is the quotient of odd positive integers,
1 ≤ i ≤ m.
When T = R,m = 1, the dynamic equation (1.1) is the second order sublinear differential equation

x′′(t)+ p(t)xα(t) = 0, 0 < α < 1. (1.2)

In this case, the Emden–Fowler equation has several interesting physical applications in astrophysics (cf. Bellman [1] and
Fowler [2]).
Kwong and Wong [3] proved the following theorem.
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Theorem 1.1. Suppose that P(t) =
∫
∞

t p(s)ds exists for all t ≥ 0. If there exists a function F ∈ C
1
[0,∞) such that |P(t)| ≤ F(t)

for all large t where F(t) = O(t−α) as t →∞ and∫
∞

0
tα|F ′(t)|dt = B0 <∞, (1.3)

then (1.2) has a nonoscillatory solution.

In this paper, we extend Theorem 1.1 to dynamic equations on time scales. As applications, we show that the sublinear
difference equation

∆2x(n)+ b(−1)nn−cxα(n+ 1) = 0, 0 < α < 1, (1.4)

has a nonoscillatory solution, for b > 0, c > α, and the sublinear q-difference equation

x∆∆(t)+ b(−1)nt−cxα(qt) = 0, 0 < α < 1, (1.5)

has a nonoscillatory solution, for t = qn ∈ T = qN0 , q > 1, b > 0, c > 1+ α. Eqs. (1.4) and (1.5) are discrete analogs of Eq.
(1.2) with p(t) = tλ sin t.

Remark 1.2. In [4], we proved that (1.4) is oscillatory for c < −1. For Eq. (1.2), (in particular, p(t) = tλ sin t), oscillation
and nonoscillation criteria have been established in [3,5–8]. In a few of these results, we make the following conjecture as
an open problem.

Conjecture: For 0 < α < 1,−1 ≤ c ≤ α, b > 0, Eq. (1.4) is oscillatory.
For completeness, (see [9,10] for elementary results for the time scale calculus), we recall some basic results for dynamic

equations and the calculus on time scales. Let T be a time scale (i.e., a closed nonempty subset of R) with supT = ∞. The
forward jump operator is defined by

σ(t) = inf{s ∈ T : s > t},

and the backward jump operator is defined by

ρ(t) = sup{s ∈ T : s < t},

where inf∅ = supT, where ∅ denotes the empty set. If σ(t) > t , we say t is right-scattered, while if ρ(t) < t we say t is
left-scattered. If σ(t) = t we say t is right-dense, while if ρ(t) = t and t 6= infT we say t is left-dense. Given a time scale
interval [c, d]T := {t ∈ T : c ≤ t ≤ d} in T the notation [c, d]κT denotes the interval [c, d]T in case ρ(d) = d and denotes
the interval [c, d)T in case ρ(d) < d. The graininess function µ for a time scale T is defined by µ(t) = σ(t)− t , and for any
function f : T→ R the notation f σ (t) denotes f (σ (t)). We say that x : T→ R is differentiable at t ∈ T provided

x∆(t) := lim
s→t

x(t)− x(s)
t − s

,

exists when σ(t) = t (here by s → t it is understood that s approaches t in the time scale) and when x is continuous at t
and σ(t) > t

x∆(t) :=
x(σ (t))− x(t)

µ(t)
.

Note that if T = R, then the delta derivative is just the standard derivative, and when T = Z the delta derivative is just
the forward difference operator. Hence our results contain the discrete and continuous cases as special cases and generalize
these results to arbitrary time scales. For example, the q-difference time scale T = qN0 := {1, q, q2, q3, . . .}, q > 1, has
important applications in quantum theory (see Kac and Cheung [11]).

2. Nonoscillation theorem

Throughout this paper we assume t0 ∈ T and t0 > 0. We now state our main theorem.

Theorem 2.1. Suppose that P(t) =
∫
∞

t p(s)∆s converges. Let α = max{βi, i = 1, 2, . . . ,m}, 0 < α < 1. If there exists a
nonnegative function F ∈ C1rd[0,∞)T such that |P(t)| ≤ F(σ (t)) for all large t ∈ T, where F(t) = O(t−α) as t →∞ and∫

∞

tα|F∆(t)|∆t <∞, (2.1)

then (1.1) has a nonoscillatory solution.
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Proof. Pick T > max{t0, 1}, sufficiently large, so that

|P(t)| ≤ F(σ (t)), t ∈ [T ,∞)T. (2.2)

Let xk(t) be a solution of (1.1) satisfying xk(T ) = 0, x∆k (T ) = k, where k is a positive number. We claim that when k is large
enough, x∆(t) > 0 for all t > T and so x(t) is nonoscillatory. For the sake of brevity, we omit the subscript k in the following
discussion. Recall (see [9, page 146]) that h : T → R is said to have a generalized zero at t̂ ∈ T if either h(t̂) = 0 or t̂
is left-scattered and h(ρ(t̂))h(t̂) < 0. Suppose now that x∆(t) has a generalized zero at some t ∈ [T ,∞)T. Let t1 be the
smallest such t . If x∆(t) < 2k for all t ∈ [T ,∞)T, let t2 := ∞. Otherwise, let t2 be the smallest generalized zero of x∆(t)−2k
in (T ,∞)T. Finally, let τ := min{t1, t2}. Then on [T , τ ), 0 < x∆(t) < 2k. By theMean Value Theorem on time scales (see [10,
page 5]), there exist ξ, η ∈ [T , τ ) such that for t ∈ (T , τ ]

x∆(ξ)(t − T ) ≤ x(t)− x(T ) ≤ x∆(η)(t − T ).

So

0 < x(t) < 2kt, t ∈ (T , τ ]. (2.3)

At t = τ , we have either

τ is a generalized zero of x∆(t) if τ = t1

or

τ is a generalized zero of x∆(t)− 2k if τ = t2.

That is, at t = τ either

x∆(τ ) = 0 or x∆(ρ(τ )) > 0, x∆(τ ) < 0 when τ is left-scattered, if τ = t1, (2.4)

or

x∆(τ ) = 2k or x∆(ρ(τ )) < 2k, x∆(τ ) > 2kwhen τ is left-scattered, if τ = t2. (2.5)

Integrating (1.1) from T to t , for t ∈ [T , τ ]we have

x∆(t) = k−
∫ t

T
p(s)f (x(σ (s)))∆s. (2.6)

Integrating by parts (see [9, Theorem 1.77, (v)]), we get∣∣∣∣∫ t

T
p(s)f (x(σ (s)))∆s

∣∣∣∣ ≤ ∣∣∣∣−P(t)f (x(t))+ ∫ t

T
P(s)(f (x(s)))∆∆s

∣∣∣∣ . (2.7)

For s ∈ [T , τ ], using the Pötzsche chain rule [9, Theorem 1.90]

(f (x(s)))∆ =
∫ 1

0
f ′(x(s)+ hµ(s)x∆(s))dhx∆(s)

=

∫ 1

0
f ′((1− h)x(s)+ hx(σ (s)))dhx∆(s)

> 0.

So from (2.7) and (2.2), integrating by parts, and using (2.3) we get that, for t ∈ (T , τ ]∣∣∣∣∫ t

T
p(s)f (x(σ (s)))∆s

∣∣∣∣ ≤ F(σ (t))f (x(t))+ ∫ t

T
F(σ (s))(f (x(s)))∆∆s

≤ [F(σ (t))+ F(t)]f (x(t))+
∫ t

T
|F∆(s)|f (x(s))∆s

≤ (2k)αtα[F(σ (t))+ F(t)]
m∑
i=1

ai(2kt)βi−α

+ (2k)α
∫ t

T
|F∆(s)|

m∑
i=1

ai(2ks)βi−αsα∆s. (2.8)

Since

F(t) = O(t−α), as t →∞
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there exists a constant B1 > 0 such that |tαF(t)| ≤ B1 (without loss of generality) for t ∈ (T ,∞)T. Also, let B0 :=∫
∞

T t
α
|F∆(t)|∆t . Note that

F(σ (t))tα = F(σ (t))(σ (t))α
(
t

σ(t)

)α
≤ B1.

So from (2.8), we get∣∣∣∣∫ t

T
p(s)f (x(σ (s)))∆s

∣∣∣∣ ≤ (2k)α(2B1 + B0) m∑
i=1

ai = M(2k)α, (2.9)

whereM = (2B1 + B0)
∑m
i=1 ai. Using (2.9) and (2.6), we obtain

k−M(2k)α ≤ x∆(t) ≤ k+M(2k)α, for all t ∈ [1, τ ].

For k > (2αM)
1
1−α , we have in particular 0 < x∆(τ ) < 2k. This contradicts (2.4) and (2.5). �

3. Example 1

Consider the sublinear difference equation (here T = N0)

∆2x(n)+ p(n)xα(n+ 1) = 0, 0 < α < 1, (3.1)

where p(n) = b(−1)nn−c , b > 0. For c > α, we obtain

P(n) =
∫
∞

n
p(s)∆s = b

∞∑
i=n

(−1)ii−c . (3.2)

Let ε > 0 be given, then since

lim
x→0

(1+ x)c − 1
x

= c,

there is a δ > 0 such that

−cε <
(1+ x)c − 1

x
− c < cε

for |x| < δ. It follows that there is a positive integer K such that for all i ≥ K

−cε <
(1+ 1

2i )
c
− 1

1
2i

− c < cε.

Then we have that for all i ≥ K that

c(1− ε)
2i

<

(
1+

1
2i

)c
− 1 <

c(1+ ε)
2i

.

It follows from this that for all i ≥ K

c(1− ε)
2i(2i+ 1)c

<
1
(2i)c

−
1

(2i+ 1)c
<
c(1+ ε)
2i(2i+ 1)c

.

Summing all sides of this last set of inequalities from i = k to infinity, where k ≥ K , we get that

(1− ε)
∞∑
i=k

c
2i(2i+ 1)c

≤

∞∑
i=k

[
1
(2i)c

−
1

(2i+ 1)c

]
≤ (1+ ε)

∞∑
i=k

c
2i(2i+ 1)c

.

Hence we get that

∞∑
i=k

[
1
(2i)c

−
1

(2i+ 1)c

]
∼

∞∑
i=k

c
2i(2i+ 1)c

. (3.3)
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From (3.3) we get

P(2k) = b
∞∑
i=2k

(−1)i

ic

= b
∞∑
i=k

[
1
(2i)c

−
1

(2i+ 1)c

]

∼ b
∞∑
i=k

c
2i(2i+ 1)c

. (3.4)

Next note that
∞∑
i=k

c
2i(2i+ 1)c

≤

∞∑
i=k

c
(2i)c+1

=
c
2c+1

∞∑
i=k

1
ic+1

≤
c
2c+1

∫
∞

k−1

1
tc+1

dt

=
1

2[2(k− 1)]c
. (3.5)

Also note that
∞∑
i=k

c
2i(2i+ 1)c

≥

∞∑
i=k

c
(2i+ 2)c+1

=
c
2c+1

∞∑
i=k

1
(i+ 1)c+1

≥
c
2c+1

∫
∞

k

1
tc+1

dt

=
1

2(2k)c
. (3.6)

From (3.6) and (3.5) we get that
∞∑
i=k

c
2i(2i+ 1)c

∼
1

2(2k)c
.

Hence from (3.4) we have

P(2k) ∼ b
1

2(2k)c
. (3.7)

Similar to the proof of (3.7)

P(2k+ 1) = b
∞∑

i=2k+1

(−1)i

ic
∼ −

b
2(2k+ 1)c

. (3.8)

From (3.7) and (3.8) we have

P(n) ∼ b
(−1)n

2nc
,

so it follows that given ε > 0 for large n

|P(n)| =

∣∣∣∣∣b ∞∑
i=n

(−1)ii−c
∣∣∣∣∣ ≤ b(1+ ε)

2(n+ 1)c
.

Let

F(n) =
b(1+ ε)
2nc

≤
b(1+ ε)
2nα

.
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We have

|P(n)| ≤ F(σ (n)) and F(n) = O(n−α).

Note that

nα|(n+ 1)−c − n−c | = nα−c |(1+ n−1)−c − 1|

= cnα−c−1
∣∣∣∣1− n · o(1n

)∣∣∣∣
∼
|c|
n1−α+c

.

So when c > α,∫
∞

1
tα|F∆(t)|∆t = 2b(1+ ε)

∞∑
n=1

nα|(n+ 1)−c − n−c |

is convergent. Therefore F(n) satisfies the hypotheses of Theorem 2.1 and so (3.1) has a nonoscillatory solution.

4. Example 2

Consider the q-difference equation

x∆∆(t)+ p(t)xα(qt) = 0, 0 < α < 1, (4.1)

where p(t) = b(−1)nt−c , t = qn ∈ T = qN0 , q > 1, b > 0, c > 1+ α.
It is easy to get that, for t = qn, when c > 1,

P(t) =
∫
∞

t
b(−1)

ln s
ln q s−c∆s

= b(−1)nq(1−c)n
q− 1
1+ q1−c

= b(−1)nt1−c
q− 1
1+ q1−c

.

If we let F(t) := b t1−c (q−1)
q1−c (1+q1−c )

, then we have |P(t)| ≤ F(σ (t)). If c ≥ 1 + α, we have F(t) = O(t−α), and if c > 1 + α, we
have that∫

∞

1
|F∆(t)|tα∆t = b

|1− qc−1|
1+ q1−c

∫
∞

1
tα−c∆t <∞.

By Theorem 2.1, Eq. (4.1) has a nonoscillatory solution.

Acknowledgment

The second author of this project is supported by the NSF of Guangdong Province of China (No. 8151027501000053).

References

[1] R. Bellman, Stability Theory of Differential Equations, in: Dover Books on Intermediate and AdvancedMathematics, Dover Publications, Inc., NewYork,
1953.

[2] R.H. Fowler, Further studies of Emden’s and similar differential equations, Quart. J. Math. 2 (1931) 259–288.
[3] Man Kam Kwong, James S.W. Wong, On the oscillation and nonoscillation of second order sublinear equations, Proc. Amer. Math. Soc. 85 (1982)
547–551.

[4] Jia Baoguo, Lynn Erbe, Allan Peterson, Oscillation of sublinear Emden–Fowler dynamic equations on time scales, J. Difference Equ. Appl. (in press).
[5] Man Kam Kwong, James S.W. Wong, Linearization of second order nonlinear oscillation theorems, Trans. Amer. Math. Soc. 279 (1983) 705–722.
[6] G.J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980) 190–200.
[7] T. Kura, Oscillation theorems for a second order sublinear ordinary differential equations, Proc. Amer. Math. Soc. 84 (1982) 535–538.
[8] H. Onose, On Butler’s conjecture for oscillation of an ordinary differential equation, Quart. J. Math., Oxford 34 (1983) 235–239.
[9] M. Bohner, A. Peterson, Dynamic Equation on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
[10] M. Bohner, A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[11] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer, 2002.


	Nonoscillation for second order sublinear dynamic equations on time scales
	Introduction
	Nonoscillation theorem
	Example 1
	Example 2
	Acknowledgment
	References


