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Introduction

Standard modules over artin algebras were defined by C.M. Ringel (see [R]) in connection with the
study of quasi-hereditary algebras, where the category of modules filtered by them plays an essen-
tial role. Let P (1), . . . , P (n) be an ordered sequence of the non-isomorphic indecomposable projective
modules over an artin algebra Λ. By definition, the standard module Λ�(i) is the largest factor mod-
ule of P (i) with composition factors only amongst S(1), . . . , S(i), where S( j) is the simple top of
P ( j). Let mod(Λ) denote the category of finitely generated left Λ-modules. Denote by F (Λ�) the
subcategory of mod(Λ) consisting of the Λ-modules having a filtration with factors isomorphic to
standard modules. The algebra Λ is said to be standardly stratified if all projective Λ-modules belong
to F (Λ�). This class of algebras was originally defined by Cline, Parshall and Scott in [CPS], and was
widely studied by different mathematicians (see [ADL,AHLU,W,ES,PR,Xi]).
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Erdmann and Sáenz extended the notion of standard modules and defined the stratifying systems
in [ES] with respect to a finite linear ordered set. They proved that, for a stratifying system Θ , the
category of modules filtered by Θ is equivalent to the category of modules filtered by the standard
modules over an appropriate standardly stratified algebra. The same was done in [MSXi] for stratifying
systems defined on a finite pre-ordered set. Important work in this direction was done in the earlier
paper [W] of Webb, though stratifying systems were not defined there.

In contrast with the situation for quasi-hereditary algebras, if Λ is a standardly stratified algebra
then Λop need not also be standardly stratified. However, Dlab defined a new class of modules, the
proper standard modules (see [D1]), with the property that Λ is a standardly stratified algebra, that is,
Λ is filtered by the standard modules, if and only if Λop is filtered by the proper standard modules.
This motivates the study of the category of modules filtered by the proper standard modules (see
[AHLU,L]).

In this paper we define and study the notion of a proper costratifying system, which is a general-
ization of the so-called proper costandard modules to the context of stratifying systems.

One of our main results states that the category of modules filtered by a proper costratifying
system is dual to the category of modules filtered by the proper costandard modules over a certain
standardly stratified algebra.

Although stratifying systems and proper costratifying systems are quite different, they have similar
features, and they can be studied under a common frame. This comes from the observation that, in
either case, there is a module M in mod(Λ) such that the category F of modules filtered by the
corresponding system satisfies the following property:

For each X in F there is an exact sequence M2 → M1 → M0 → X → 0 with M0, M1, M2 in
add(M), which remains exact under the functor F = HomΛ(M,−). Here add(M) denotes the full
subcategory of mod(Λ) consisting of the direct sums of direct summands of M ,

as proved in Lemma 2.12 and Proposition 4.1.
For a Λ-module M , the category consisting of the Λ-modules admitting a sequence as above, is

denoted by C M
2 , and was studied by Platzeck and Pratti in [PP1]. In both cases M is Ext-projective

in F . More precisely, M is the sum of the non-isomorphic Ext-projective indecomposable modules
in F . Using this fact, results in [PP1] can be applied to prove properties of the category F .

The paper is organized as follows. After a brief section of preliminaries, we devote Section 2 to the
study of C M

2 categories and show how these results apply to give a new proof of the above mentioned
theorem of Erdmann and Sáenz concerning stratifying systems. In Section 3 we introduce the notion
of a stratifying system and study their properties. Finally, in Section 4 we prove our main results
about proper costratifying systems.

1. Preliminaries

Throughout this paper algebra means artin R-algebra, where R is a commutative artinian ring.
When Λ is an algebra the term ‘Λ-module’ will mean finitely generated left Λ-module. The category
of finitely generated left Λ-modules is denoted by mod(Λ) and the full subcategory of finitely gen-
erated projective Λ-modules by proj(Λ). For Λ-modules M and N , TrM(N) is the trace of M in N ,
that is, TrM(N) is the Λ-submodule of N generated by the images of all morphisms from M to N .
Let D : mod(Λ) → mod(Λop) denote the usual duality for artin algebras, and ∗ denote the functor
HomΛ(−,Λ) : mod(Λ) → mod(Λop). Then ∗ induces a duality from proj(Λ) to proj(Λop). For a given
natural number t , we set [1, t] = {1,2, . . . , t}.

Let Λ be an algebra. We next recall the definition (see [R,DR,ADL,D1]) of the following classes
of Λ-modules: standard, proper standard, costandard and proper costandard. Let n be the rank
of the Grothendieck group K0(Λ). We fix a linear order � on [1,n] and a representative set
Λ P = {Λ P (i): i ∈ [1,n]} containing one module of each iso-class of indecomposable projective Λ-
modules. The injective envelope of the simple Λ-module Λ S(i) = top(Λ P (i)) is denoted by Λ I(i). For
the opposite algebra Λop , we always consider the representative set Λop P = {Λop P (i): i ∈ [1,n]} of
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indecomposable projective Λop-modules, where Λop P (i) = (Λ P (i))∗ for all i ∈ [1,n]. So, with these
choices in mind, we introduce now the following classes of modules:

The set of standard Λ-modules is Λ� = {Λ�(i): i ∈ [1,n]}, where Λ�(i) = Λ P (i)/Tr⊕
j>i Λ P ( j)(Λ P (i)).

Then, Λ�(i) is the largest factor module of Λ P (i) with composition factors only amongst Λ S( j) for
j � i. The set of costandard Λ-modules is Λ∇ = D(Λop�), where the pair (Λop P ,�) is used to compute
Λop�.

The set of proper standard Λ-modules is Λ� = {Λ�(i): i ∈ [1,n]}, where Λ�(i) = Λ P (i)/
Tr⊕

j�i Λ P ( j)(rad Λ P (i)). Then, Λ�(i) is the largest factor module of Λ�(i) satisfying the multiplic-

ity condition [Λ�(i) : S(i)] = 1. The set of proper costandard Λ-modules is Λ∇ = D(Λop�), where the
pair (Λop P ,�) is used to compute Λop�.

Let F (Λ�) be the subcategory of mod(Λ) consisting of the Λ-modules having a Λ�-filtration,
that is, a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ms = M with factors Mi+1/Mi isomorphic to a module in
Λ� for all i. The algebra Λ is a standardly stratified algebra with respect to the linear order � on the
set [1,n], if proj(Λ) ⊆ F (Λ�) (see [ADL,D1,CPS]). The algebra Λ is a properly stratified algebra with
respect to the linear order � on the set [1,n], if and only if its regular representation is filtered by
standard as well as by proper standard modules. That is, proj(Λ) ⊆ F (Λ�) ∩ F (Λ�) (see [D2]).

Recall that a morphism f : C → M in mod(Λ) is right minimal if any morphism g : C → C , with
f = f g , is an automorphism. Moreover, for a given class C of objects in mod(Λ), f : C → M is a right

C -approximation of M if C ∈ C and the map HomΛ(C1, f ) : HomΛ(C1, C) → HomΛ(C1, M) is surjective
for all C1 ∈ C . A right minimal C -approximation is a right C -approximation which is right minimal. The
notion of left minimal morphism and left minimal C -approximation are defined dually.

Let Λ be an algebra and X a class of objects in mod(Λ). For each natural number n, we set
⊥n X = {M ∈ mod(Λ): Extn

Λ(M,−)|X = 0} and ⊥X = ⋂
n>0

⊥n X . Similarly, the notions of X ⊥n and
X ⊥ are introduced.

2. C M
2 categories and C-filtered modules

The categories C M
n , whose definition is recalled in the next paragraph, were introduced by Platzeck

and Pratti in [PP1], where particular interest was focused on the case when C M
0 = C M

1 . Here, we will
apply these ideas in a different context. We will mainly concentrate in the case when C ⊆ C M

2 , and
study properties of the category F (C) of modules filtered by C . These results apply to the category
of modules filtered by a stratifying system (Theorem 2.14), as well as to those filtered by a proper
costratifying system (Theorem 4.3), since both categories are contained in C Q

2 , for an appropriate Q .
Other examples of categories contained in C M

2 are the torsion modules of a tilting module M . This
gives a new approach to prove well-known results in tilting theory [PP1,PP2].

Let Λ be an artin R-algebra. For each M ∈ mod(Λ), we consider the opposite algebra Γ =
EndΛ(M)op and the R-functors

mod(Λ)
F−→ mod(Γ )

G−→ mod(Λ),

where F = HomΛ(ΛMΓ ,−) and G = ΛMΓ ⊗Γ −. Following M.I. Platzeck and N.I. Pratti in Section 2
of [PP1], for n � 0 we denote by C M

n the full subcategory of mod(Λ) consisting of the Λ-modules X
admitting an exact sequence in mod(Λ)

Mn → Mn−1 → ·· · → M1 → M0 → X → 0

with Mi ∈ add(M), and such that the induced sequence

F (Mn) → F (Mn−1) → ·· · → F (M1) → F (M0) → F (X) → 0

is exact in mod(Γ ).
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We recall next the following useful result due to M. Auslander in [A].

Theorem 2.1. For M ∈ mod(Λ), Γ = EndΛ(M)op and F = HomΛ(M,−) : mod(Λ) → mod(Γ ), the follow-
ing statements hold.

(a) The restriction F |C M
1

: C M
1 → mod(Γ ) is full and faithful.

(b) F : HomΛ(Z , X) → HomΓ (F (Z), F (X)) is an isomorphism in mod(R), for all Z ∈ add(M), X ∈
mod(Λ).

(c) The restriction F |add(M) : add(M) → proj(Γ ) is an equivalence of R-categories.

Remark 2.2. As a consequence of Theorem 2.1(b) and the left exactness of F , it follows that if X ∈ C M
2

then there exists an exact sequence in mod(Λ), 0 → K → M0 → X → 0, with M0 ∈ add(M) and
K ∈ C M

1 , such that the sequence 0 → F (K ) → F (M0) → F (X) → 0 is exact in mod(Γ ).

The following result, proven in [PP1], will be very useful in what follows, where ε : GF → 1 is the
co-unit of the adjunction η : HomΛ(G−,−) → HomΓ (−, F−), that is, εX = η−1(1F (X)) : GF(X) → X .

Proposition 2.3. Let M ∈ mod(Λ), Γ = EndΛ(M)op, F = HomΛ(M,−) : mod(Λ) → mod(Γ ) and G =
M ⊗Γ − : mod(Γ ) → mod(Λ). Then

C M
1 ⊆ {

X ∈ mod(Λ) such that εX : GF(X) → X is an isomorphism
}
.

Proof. See [PP1, Proposition 2.2]. �
The next propositions show that the modules in C M

2 have nice homological properties.

Proposition 2.4. Let M ∈ mod(Λ), Γ = EndΛ(M)op, F = HomΛ(M,−) : mod(Λ) → mod(Γ ) and Y ⊆ C M
1

be such that M ∈ ⊥1 Y . Then, for all X ∈ C M
2 , Y ∈ Y , the map induced by F

ρX,Y : Ext1
Λ(X, Y ) → Ext1

Γ

(
F (X), F (Y )

)
is an isomorphism of R-modules.

Proof. Let X ∈ C M
2 and Y ∈ Y . By Remark 2.2 there exists an exact sequence

ε : 0 → K → M0 → X → 0,

with K ∈ C M
1 and M0 ∈ add(M), such that the sequence

F (ε) : 0 → F (K ) → F (M0) → F (X) → 0

is exact in mod(Γ ). Since M0 ∈ add(M) and M ∈ ⊥1 Y , we have that Ext1
Λ(M0, Y ) = 0 = Ext1

Γ (F (M0),

F (Y )) because F (M0) ∈ proj(Γ ) (see Theorem 2.1(c)). Then, by applying HomΛ(−, Y ) to ε, and
HomΓ (−, F (Y )) to F (ε), we get the following exact and commutative diagram

HomΛ(M0, Y )




HomΛ(K , Y )




Ext1
Λ(X, Y )

ρX,Y

0

HomΓ (F (M0), F (Y )) HomΓ (F (K ), F (Y )) Ext1
Γ (F (X), F (Y )) 0.
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By Theorem 2.1, we have that the two first vertical arrows are isomorphisms. Hence ρX,Y is an iso-
morphism. �
Proposition 2.5. Let M ∈ mod(Λ), Γ = EndΛ(M)op and F = HomΛ(M,−) : mod(Λ) → mod(Γ ). Then the
following statements hold.

(a) F (C M
2 ) ⊆ Ker TorΓ1 (M,−).

(b) If ε : 0 → F (X) → Y ′ → F (Z) → 0 is exact in mod(Γ ), with X, Z ∈ C M
2 , then there is an exact sequence

η : 0 → X → Y → Z → 0 in mod(Λ) such that ε 
 F (η).

Proof. We consider the functor G = M ⊗Γ − : mod(Γ ) → mod(Λ).
(a) The arguments in the proof of [PP1, Theorem 3.7] can be easily adapted to this case.

(b) Let ε : 0 → F (X) → Y ′ g−→ F (Z) → 0 be exact in mod(Γ ), with X, Z ∈ C M
2 . Applying G to ε,

we have the exact sequence

TorΓ1
(
M, F (Z)

) → GF(X) → G
(
Y ′) → GF(Z) → 0.

Since C M
2 ⊆ C M

1 , from the last sequence and (a), we get the exact and commutative diagram

G(ε) : 0 GF(X)




G(Y ′) GF(Z)




0

η : 0 X G(Y ′) Z 0.

We will show next that η is the desired sequence, where Y = G(Y ′). Indeed, by applying the left
exact functor F to G(ε), we obtain the following exact and commutative diagram

0 F (X)




Y ′ g

h

F (Z)

θ 


0

0 FGF(X) FG(Y ′)
FG(g)

FGF(Z).

From the equality θ g = FG(g)h and the fact that θ is an isomorphism, it follows that FG(g) is an
epimorphism. Hence h is an isomorphism, and this proves that ε 
 F (η). �

For a functor F : A → B and a class of objects X in A, let F (X ) = {Z ∈ B: Z 
 F (X) for some
X ∈ X }.

Corollary 2.6. Let M ∈ mod(Λ), Γ = EndΛ(M)op, F = HomΛ(M,−) : mod(Λ) → mod(Γ ) and X ⊆ C M
2 . If

X is closed under extensions, then F (X ) is so.

Proof. The proof follows immediately from Proposition 2.5(b). �
Let Λ be an algebra and C be a class of objects in mod(Λ). We denote by F (C) the class of the

Λ-modules having a C -filtration, that is, a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of submodules
with factors Mi+1/Mi isomorphic to a module in C for all i. Then F (C) is the smallest class in
mod(Λ) which is closed under extensions and contains C . Moreover, it is straightforward to see that
⊥1 C = ⊥1 F (C).
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Corollary 2.7. Let M ∈ mod(Λ), Γ = EndΛ(M)op, F = HomΛ(M,−) : mod(Λ) → mod(Γ ) and C ⊆
mod(Λ). If the restriction F |F (C) : F (C) → mod(Γ ) is an exact functor and F (C) ⊆ C M

2 , then F (F (C)) =
F (F (C)).

Proof. Since the restriction F |F (C) : F (C) → mod(Γ ) is an exact functor, it follows that F (F (C)) ⊆
F (F (C)). On the other hand, the condition F (C) ⊆ C M

2 and Corollary 2.6 give us the other inclu-
sion. �

We recall that a class X of objects in mod(Λ) is resolving if it is closed under extensions, kernels
of epimorphisms and proj(Λ) ⊆ X (see [AR]).

Lemma 2.8. If X is a resolving subcategory of mod(Λ), then proj(Λ) = X ∩ ⊥1 X .

Proof. Assume that X is resolving. It is clear that proj(Λ) ⊆ X ∩ ⊥1 X . The proof is completed by
showing the other inclusion. Let X ∈ X ∩⊥1 X , and consider the exact sequence ε : 0 → K → P0(X) →
X → 0 in mod(Λ), where P0(X) is the projective cover of X . Since X is resolving, we conclude that
K ∈ X , and hence ε splits, because X ∈ ⊥1 X . Thus X ∈ proj(Λ). �

The following lemma will be useful in the sequel.

Lemma 2.9. Let M ∈ mod(Λ), Γ = EndΛ(M)op, F = HomΛ(M,−) : mod(Λ) → mod(Γ ) and G = M ⊗Γ

− : mod(Γ ) → mod(Λ). Let A and B be full subcategories of mod(Λ) and mod(Γ ) respectively, closed under
isomorphisms and such that the restriction F |A : A → B is an equivalence of categories. If εA : GF(A) → A is
an isomorphism for all A ∈ A, then the restriction G|B : B → A is a quasi-inverse of F |A .

Proof. Let B ∈ B. First, we prove that G(B) ∈ A. Indeed, since B ∈ B and F |A is dense, there exists an
isomorphism ρ : B → F (A) in B for some A ∈ A. Therefore G(B) 
 GF(A) 
 A and hence G(B) ∈ A.

Let now μ : 1 → FG denote the unit of the adjunction η : HomΛ(G−,−) → HomΓ (−, F−), that
is, μY = η(1G(Y )) : Y → FG(Y ). We next prove that the natural transformation μB : B → FG(B) is an
isomorphism for all B ∈ B. To do so, we consider the following commutative diagram

B
μB


ρ

FG(B)


FG(ρ)

F (A)
μF (A)

FGF(A)
F (εA)

F (A).

Observe that F (εA) is an isomorphism since εA is so. From this and the fact that F (εA)μF (A) =
1F (A) , we conclude that μF (A) is an isomorphism. Hence μB is an isomorphism and this proves the
lemma. �

We are in a position to prove the main result of this section, which we state in the next theorem.

Theorem 2.10. Let C be a class of objects in mod(Λ), M ∈ ⊥1 C , Γ = EndΛ(M)op, F = HomΛ(M,−) :
mod(Λ) → mod(Γ ) and G = M ⊗Γ − : mod(Γ ) → mod(Λ). If F (C) ⊆ C M

2 , then the following statements
hold.

(a) F |F (C) : F (C) → F (F (C)) is an exact equivalence of categories and G|F (F (C)) : F (F (C)) → F (C) is a
quasi-inverse of F |F (C) .

(b) If add(M) ⊆ F (C) and F (F (C)) is closed under kernels of epimorphisms, then F (F (C)) is resolving and
add(M) = F (C) ∩ ⊥1 F (C).
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Proof. Let F (C) ⊆ C M
2 and recall that ⊥1 C = ⊥1 F (C).

(a) By Theorem 2.1(a), we have that F |F (C) : F (C) → F (F (C)) is an equivalence of categories.
Furthermore, since M ∈ ⊥1 F (C), it follows that F |F (C) is exact. Then, by Corollary 2.7, we get that
F (F (C)) = F (F (C)) and this proves the first claim in (a). The rest of the proof of (a) follows immedi-
ately from Proposition 2.3 and Lemma 2.9.

(b) Let add(M) ⊆ F (C) and let F (F (C)) be closed under kernels of epimorphisms. By Theo-
rem 2.1(c), we have that F |add(M) : add(M) → proj(Γ ) is an equivalence and therefore proj(Γ ) ⊆
F (F (C)). Then, by Lemma 2.8, proj(Γ ) = F (F (C)) ∩ ⊥1 F (F (C)).

The hypotheses imply that add(M) ⊆ F (C)∩⊥1 F (C). Let A ∈ F (C)∩⊥1 F (C). Then F (A) ∈ F (F (C))

and, since F (F (C)) is resolving, there exists an exact sequence in F (F (C))

ε : 0 → Z ′ → P → F (A) → 0

with P ∈ proj(Γ ). By (a), we have that Z ′ 
 F (Z) for some Z ∈ F (C). Hence, by Proposition 2.5(b),
there exists an exact sequence in F (C)

η : 0 → Z → Q → A → 0

such that F (η) 
 ε. Since A ∈ ⊥1 F (C), then η splits, and so does ε. Thus F (A) ∈ proj(Γ ) = F (add(M)).
Consequently, A ∈ add(M). �

The above results can be applied to the study of proper costratifying systems, which will be intro-
duced in the next section. We will show next that they can also be used to obtain, in a unified way,
known results about Ext-projective stratifying systems. To do so, we start with two lemmas. The first
one states a result proven in [MMS], which is fundamental for our considerations, and the second one
is a useful technical lemma. To start with, we recall firstly the definition of Ext-projective stratifying
system.

Definition 2.11. (See [MMS].) Let Λ be an artin R-algebra. An Ext-projective stratifying system
(Θ, Q ,�), of size t in mod(Λ), consists of two families of non-zero Λ-modules Θ = {Θ(i)}t

i=1 and
Q = {Q (i)}t

i=1, with Q (i) indecomposable for all i, and a linear order � on the set [1, t], satisfying
the following conditions.

(a) HomΛ(Θ(i),Θ( j)) = 0 if i > j.
(b) For each i ∈ [1, t], there is an exact sequence

εi : 0 → K (i) → Q (i)
βi−→ Θ(i) → 0,

with K (i) ∈ F ({Θ( j): j > i}).
(c) Q ⊆ ⊥1Θ , that is, Ext1

Λ(Q (i),−)|Θ = 0 for any i ∈ [1,n].

Lemma 2.12. Let (Θ, Q ,�) be an Ext-projective stratifying system in mod(Λ) of size t. Then, for each M ∈
F ({Θ( j): j � i}), there exists an exact sequence in F (Θ)

0 → N → Q 0(M) → M → 0

such that Q 0(M) ∈ add(
⊕

j�i Q ( j)) and N ∈ F ({Θ( j): j > i}). Moreover, for Q = ⊕t
i=1 Q (i), F (Θ) ⊆ C Q

m
for all m � 1.

Proof. See in [MMS, Proposition 2.10]. The last statement of the lemma is proved using Defini-
tion 2.11(c). �
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For the following lemma, we consider a set {M1, . . . , Mn} of indecomposable Λ-modules which are
pairwise not isomorphic, M = ⊕t

i=1 Mi , Γ = EndΛ(M)op and F = HomΛ(M,−) : mod(Λ) → mod(Γ ).

Lemma 2.13. Let M ′ α−→ Mi
β−→ X → 0 be an exact sequence in mod(Λ), with J ⊆ [1, t], M ′ ∈

add(
⊕

j∈ J M j) and β �= 0, such that the induced sequence

F
(
M ′) F (α)−→ F (Mi)

F (β)−→ F (X) → 0

is exact in mod(Γ ). Then the following statements hold.

(a) Im(F (α)) ⊆ Tr⊕
j∈ J F (M j)(rad F (Mi)).

(b) If HomΛ(M j, X) = 0 for all j ∈ J , then

Im
(

F (α)
) = Tr⊕

j∈ J F (M j)

(
F (Mi)

)
.

Proof. The proof is a straightforward consequence of Theorem 2.1. �
We are now in a position to give a different proof of the following known result ([ES,MMS]; see

also [W] for related results).

Theorem 2.14. Let (Θ, Q ,�) be an Ext-projective stratifying system of size t in mod(Λ), Q = ⊕t
i=1 Q (i),

Γ = EndΛ(Q )op, F = HomΛ(Q ,−) : mod(Λ) → mod(Γ ) and G = Q ⊗Γ − : mod(Γ ) → mod(Λ). Then,
the following statements hold.

(a) The family Γ P = {F (Q (i)): i ∈ [1, t]} is a representative set of the indecomposable projective Γ -modules.
In particular, Γ is a basic algebra and rk K0(Γ ) = t.

(b) (Γ,�) is a standardly stratified algebra, that is, proj(Γ ) ⊆ F (Γ �).
(c) The restriction F |F (Θ) : F (Θ) → F (Γ �) is an exact equivalence of categories and G|F (Γ �) : F (Γ �) →

F (Θ) is a quasi-inverse of F |F (Θ) .
(d) F (Θ(i)) 
 Γ �(i), for all i ∈ [1, t].
(e) add(Q ) = F (Θ) ∩ ⊥1 F (Θ).

Proof. (a) follows from the fact that Q = {Q (i)}t
i=1 is a family of indecomposable and pairwise not

isomorphic Λ-modules (see [ARS, II Proposition 2.1]).
On the other hand, by Lemma 2.12 we know that F (Θ) ⊆ C Q

2 , so the hypotheses of Theorem 2.10
are satisfied for C = Θ and M = Q . Furthermore, the same lemma implies, for each i ∈ [1, t], the
existence of a presentation

Q ′ αi−→ Q (i)
βi−→ Θ(i) → 0

with Q ′ ∈ add(
⊕

j>i Q ( j)) and such that the induced sequence

F
(

Q ′) F (αi)−→ F
(

Q (i)
) F (βi)−→ F

(
Θ(i)

) → 0

is exact in mod(Γ ). Since HomΛ(Q ( j),Θ(i)) = 0 for all j > i (see [MMS, Lemma 2.6(b)]), we conclude
from Lemma 2.13(b) that

Im
(

F (αi)
) = Tr⊕ F (Q ( j)) F

(
Q (i)

)
.

j>i
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But, according with (a), the standard Γ -modules are the factors Γ�(i) = F (Q (i))/Tr⊕
j>i F (Q ( j)) F (Q (i)).

Hence Γ �(i) = F (Q (i))/ Im(F (αi)) 
 F (Θ(i)) for all i ∈ [1, t]. Items (c) and (d) follow now from The-
orem 2.10(a).

On the other hand, since add(Q ) ⊆ F (Θ) and F (F (Θ)) = F (Γ �) is closed under kernels of epi-
morphisms (see [DR,Xi]), we can apply Theorem 2.10 and obtain that (b) and (e) hold. �
3. Proper costratifying systems

In this section we introduce the notion of a proper costratifying system (Ψ,Q,�) and illustrate it
with some examples. We also show that the notions of Ψ -length and Ψ -multiplicity are well defined.

Definition 3.1. Let Λ be an artin R-algebra. A proper costratifying system (Ψ,Q,�), of size t in
mod(Λ), consists of two families of Λ-modules Ψ = {Ψ (i)}t

i=1 and Q = {Q (i)}t
i=1, with Q (i) inde-

composable for all i, and a linear order � on the set [1, t], satisfying the following conditions.

(a) EndΛ(Ψ (i)) is a division ring for all i ∈ [1, t].
(b) HomΛ(Ψ (i),Ψ ( j)) = 0 if i < j.
(c) For each i ∈ [1, t], there is an exact sequence

εi : 0 → Z(i) → Q (i)
βi−→ Ψ (i) → 0,

with Z(i) ∈ F ({Ψ ( j): j � i}).
(d) Q ⊆ ⊥1Ψ , that is, Ext1

Λ(Q (i),−)|Ψ = 0 for any i ∈ [1,n].

We will denote by Q the Λ-module
⊕t

i=1 Q (i).

The notion of a proper stratifying system is defined dually.

Remark 3.2. Let Λ be an artin R-algebra and (Ψ,Q,�) be a proper costratifying system of size t in
mod(Λ). Then:

(a) For any i ∈ [1, t], the map βi : Q (i) → Ψ (i) is a right-minimal add Q -approximation of Ψ (i).
Indeed, this follows from the fact that Q (i) is indecomposable and Q ⊆ ⊥1Ψ = ⊥1 F (Ψ ).

(b) Let (Ψ ′,Q′,�) be another proper costratifying system of size t in mod(Λ). If Ψ (i) 
 Ψ ′(i) for all
i ∈ [1, t], then there is an exact and commutative diagram in F (Ψ )

0 Z(i) Q (i)
βi

Ψ (i) 0

0 Z ′(i) Q ′(i)
β ′

i
Ψ ′(i) 0,

where the vertical arrows are isomorphisms. This statement follows from the item (a), since
F (Ψ ) = F (Ψ ′).

Example 3.3. Let (Θ, Q ,�) be an Ext-projective stratifying system of size t in mod(Λ). If EndΛ(Θ(i))
is a division ring for all i ∈ [1, t], then (Ψ = Θ,Q = Q ,�op) is a proper costratifying system of size t .

Example 3.4. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ). For i ∈ [1, t], consider
the families of Λ-modules Ψi = {Ψ ( j): j � i} and Qi = {Q ( j): j � i}. Then, (Ψi,Qi,�) is a proper
costratifying system in mod(Λ), with size less or equal than t .
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Example 3.5. Let (Λ,�) be a standardly stratified algebra and T = ⊕n
i=1 T (i) be the characteristic tilt-

ing module. We consider Q = {T (1), . . . , T (n)} and Ψ = Λ∇ the proper costandard modules. Then, by
[AHLU, Lemma 1.2(iii), Theorem 2.1 and Lemma 2.5(iii)], it follows that (Ψ,Q,�) is a proper costrati-
fying system of size n in mod(Λ). We say that (Λ∇, {T (i)}n

i=1,�) is the canonical proper costratifying
system associated to the standardly stratified algebra (Λ,�).

Example 3.6. The following is an example of a proper costratifying system (Ψ,Q,�) such that Ψ �= Λ∇
and (Λ,�) is a standardly stratified algebra. Let Λ be the path algebra of the quiver

◦
1
→ ◦

2
→ ◦

3
.

Consider the natural order on {1,2,3}. The proper costandard Λ-modules can be described as follows

Λ∇(1) = 1, Λ∇(2) = 1
2
, Λ∇(3) =

1
2
3
.

Now, consider Ψ = {Ψ (1) = 3, Ψ (2) = 1, Ψ (3) = 1
2
} and

Q =
{

Q (1) = 3, Q (2) = 1, Q (3) =
1
2
3

}
.

Then (Ψ,Q,�) is a proper costratifying system of size 3 in mod(Λ), which is not the canonical one.

Example 3.7. The following is an example of a proper costratifying system (Ψ,Q,�) such that Ψ �= Λ∇
and (Λ,�) is not a standardly stratified algebra.

Let Λ be given by the quiver

◦ ◦
α

β

◦
γ

1 2 3

with the relations β2 = 0, βα = 0 and γ β = 0. Consider the natural order � on {1,2,3}, and the sets

Ψ =
{

Ψ (1) = 2, Ψ (2) =
3
2
1
, Ψ (3) = 2

1

}

and

Q =
{

Q (1) = 2
2
, Q (2) =

3
2
1
, Q (3) = 2

1 2

}
.

Then (Ψ,Q,�) is a proper costratifying system of size 3 in mod(Λ), and Ψ �= Λ∇ .

Lemma 3.8. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ). If i < j then

HomΛ

(
Q (i),Ψ ( j)

) = 0 = HomΛ

(
Z(i),Ψ ( j)

)
and Ext1

Λ

(
Ψ (i),Ψ ( j)

) = 0.
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Proof. Let i < j. By Definition 3.1(c), there is an exact sequence in F (Ψ )

εi : 0 → Z(i) → Q (i) → Ψ (i) → 0.

Applying the functor HomΛ(−,Ψ ( j)) to εi , we get the exact sequence

0 → HomΛ

(
Ψ (i),Ψ ( j)

) → HomΛ

(
Q (i),Ψ ( j)

) → HomΛ

(
Z(i),Ψ ( j)

) → Ext1
Λ

(
Ψ (i),Ψ ( j)

) → 0.

We know that Z(i) ∈ F ({Ψ (λ): λ � i}) and, since λ � i < j, HomΛ(Ψ (λ),Ψ ( j)) = 0 (see Defini-
tion 3.1(b), (c)). Then, it is easy to see that HomΛ(Z(i),Ψ ( j)) = 0. Finally, the lemma follows from
the last sequence. �

K. Erdmann and C. Saenz proved in [ES] that the filtration multiplicity [M : Θ(i)] of Θ(i) in a Θ-
filtered Λ-module M is well defined, for the relative simple module Θ(i) associated to a stratifying
system (Θ,�). The same result holds for the relative simple module Ψ (i) of a proper costratifying
system, as we state in the following lemma.

Lemma 3.9. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ). Then the following statements
hold.

(a) For any M ∈ F (Ψ ), the filtration multiplicity [M : Ψ (i)]ξ of Ψ (i) in M does not depend on the given
Ψ -filtration ξ of M.

(b) Q (i) �
 Q ( j) if i �= j.

Proof. (a) The proof is dual to the one given in [ES, Lemma 1.4] (see also [MMS, Lemma 2.6]), which
can be adapted by using Lemma 3.8 and length instead of dimension.

(b) Suppose that Q (i) 
 Q ( j) and i < j. By (a) and Definition 3.1, we know that [Q (i) : Ψ ( j)] = 0
and [Q ( j) : Ψ ( j)] > 0, contradicting our first assumption. �

Given a proper costratifying system (Ψ,Q,�) of size t in mod(Λ), the above lemma shows that
the filtration multiplicity is well defined. Thus we can define the function Ψ -length �Ψ : F (Ψ ) → N

as follows, �Ψ (M) = ∑t
i=1[M : Ψ (i)]. It can be seen that the Ψ -length is an additive function, that is,

for any exact sequence 0 → N → E → M → 0 in F (Ψ ), we have that �Ψ (E) = �Ψ (N) + �Ψ (M).

Lemma 3.10. Let Ψ = {Ψ (i)}t
i=1 be a family of Λ-modules satisfying that Ext1

Λ(Ψ (i),Ψ ( j)) = 0 for i < j.
Then, for all M ∈ F (Ψ ), any Ψ -filtration of M can be rearranged, with the same Ψ -composition factors, to get
a Ψ -filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ms = M such that Mi/Mi−1 
 Ψ (ki), with k1 � · · · � ks.

Proof. The proof is based on the following observation. Let Z ⊆ Y ⊆ X be a chain of Λ-submodules
such that X/Y 
 A and Y /Z 
 B . If Ext1

Λ(A, B) = 0 then there exists a Λ-submodule W such that
Z ⊆ W ⊆ X with X/W 
 B and W /Z 
 A. �

The following result is the straightforward generalization of [AHLU, Lemma 1.7] to the context
of proper costratifying systems (Ψ,Q,�). This lemma shows, in particular, that the Ψ (i)’s behave in
some sense as simple objects in F (Ψ ), since non-zero morphisms into them are surjective, and it is
fundamental in all that follows.

Lemma 3.11. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ), X ∈ F ({Ψ ( j): j � i}) and
f ∈ HomΛ(X,Ψ (i)). If f �= 0 then f is surjective and Ker( f ) ∈ F ({Ψ ( j): j � i}).

Proof. The proof in [AHLU] can be adapted directly, by using that the Ψ -filtration multiplicity is well
defined (see Lemma 3.9), and Lemmas 3.8 and 3.10. �
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Corollary 3.12. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ). Then any non-zero map
f ∈ HomΛ(Q (i),Ψ (i)) is a right minimal add(Q )-approximation of Ψ (i).

Proof. Let 0 �= f ∈ HomΛ(Q (i),Ψ (i)). Then, by Lemma 3.11, we have that 0 → Ker( f ) → Q (i)
f−→

Ψ (i) → 0 is an exact sequence in F ({Ψ ( j): j � i}). Furthermore, since Ext1
Λ(Q ,Ker( f )) = 0 and Q (i)

is indecomposable, it follows that f is a right minimal add(Q )-approximation of Ψ (i). �
4. The standardly stratified algebra associated to a proper costratifying system

In this section we prove, for a proper costratifying system (Ψ,Q,�), that the pair (EndΛ(Q ),�op)

is a standardly stratified algebra. Moreover, the category of modules filtered by Ψ is dual to the cat-
egory of modules filtered by the proper costandard modules over EndΛ(Q ). Finally, we show that
F (Ψ ) is coresolving precisely when Ψ coincides with the costandard modules of a standardly strati-
fied algebra.

The following proposition is important for our considerations, because it will allow us to apply the
results in Section 2.

Proposition 4.1. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ). Then, for each M ∈
F ({Ψ ( j): j � i}), there exists an exact sequence 0 → M ′ → Q ′ → M → 0 in F ({Ψ ( j): j � i}) with
Q ′ ∈ add(

⊕
j�i Q ( j)). In particular F (Ψ ) ⊆ C Q

m for all m � 1.

Proof. Let M ∈ F ({Ψ ( j): j � i}). We proceed by induction on �Ψ (M). For �Ψ (M) = 1, we get the
sequence from Definition 3.1(c).

Let �Ψ (M) > 1. Then, there is an exact sequence in F ({Ψ ( j): j � i})

0 → Ψ (i1)
α−→ M

γ−→ M1 → 0,

with �Ψ (M1) < �Ψ (M). Hence, by induction, there exists an exact sequence in F ({Ψ ( j): j � i})

0 → M ′
1 → Q ′

1
β−→ M1 → 0

with Q ′
1 ∈ add(

⊕
j�i Q ( j)). Since Q ∈ ⊥1 F (Ψ ), there is a morphism β : Q ′

1 → M such that β = γ β .
Hence we get an exact and commutative diagram

0 0 0

0 Z(i1) X2 M ′
1 0

0 Q (i1)
(1

0)

βi1

Q (i1) ⊕ Q ′
1

(0,1)

f

Q ′
1

β

0

0 Ψ (i1)
α

M
γ

M1 0

0 0 0
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where f = (αβi1 , β) and X2 = Ker( f ). Then X2 ∈ F ({Ψ ( j): j � i}) and the middle vertical sequence
is the desired one. �
Corollary 4.2. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ), Γ = EndΛ(Q )op, F =
HomΛ(Q ,−) : mod(Λ) → mod(Γ ) and G = Q ⊗Γ − : mod(Γ ) → mod(Λ). Then, the following statements
hold.

(a) The restriction F |F (Ψ ) : F (Ψ ) → F (F (Ψ )) is an exact equivalence of categories and G|F (F (Ψ )) :
F (F (Ψ )) → F (Ψ ) is a quasi-inverse of F |F (Ψ ) .

(b) If F (F (Ψ )) is closed under kernels of epimorphisms, then

add(Q ) = F (Ψ ) ∩ ⊥1 F (Ψ ).

Proof. By Proposition 4.1, we know that F (Ψ ) ⊆ C Q
2 . On the other hand, since Q (i) is indecom-

posable for each i and F (Ψ ) is closed under extensions, it follows that add(Q ) ⊆ F (Ψ ). Hence, the
hypotheses of Theorem 2.10 are satisfied for C = Ψ and M = Q , and so the result follows. �

We will prove that the family {F (Ψ (i))}t
i=1 coincides with the family of proper standard modules

over Γ . This fact and the previous corollary will lead us to the main result of this section, which we
state in the following theorem.

Theorem 4.3. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ), Γ = EndΛ(Q )op, F =
HomΛ(Q ,−) : mod(Λ) → mod(Γ ) and G = Q ⊗Γ − : mod(Γ ) → mod(Λ). Let Γ � = {Γ �(i): i ∈ [1, t]}
be the proper standard modules corresponding to the pair (Γ P ,�op), where �op is the opposite order of �.
Then, the following statements hold.

(a) The family Γ P = {F (Q (i)): i ∈ [1, t]} is a representative set of the indecomposable projective Γ -modules.
In particular Γ is a basic algebra and rk K0(Γ ) = t.

(b) The restriction F |F (Ψ ) : F (Ψ ) → F (Γ �) is an exact equivalence of categories and G|F (Γ �) : F (Γ �) →
F (Ψ ) is a quasi-inverse of F |F (Ψ ) .

(c) F (Ψ (i)) 
 Γ �(i), for all i ∈ [1, t].
(d) (Γ op,�op) is a standardly stratified algebra.
(e) add(Q ) = F (Ψ ) ∩ ⊥1 F (Ψ ).
(f) F (Γ �) is resolving and closed under direct summands in mod(Γ ).

Proof. It is well known that the functor F : mod(Λ) → mod(Γ ) induces, by restriction, an equivalence
from add(Q ) to proj(Γ ) (see [ARS, II Proposition 2.1]).

(a) Since Q = {Q (i)}t
i=1 is a family of indecomposable and pairwise not isomorphic Λ-modules

(see Lemma 3.9(b)), we get (a) from the above observation.
(b) and (c): From Corollary 4.2, we know that the restriction F |F (Ψ ) : F (Ψ ) → F (F (Ψ )) is an exact

equivalence of categories and G|F (F (Ψ )) : F (F (Ψ )) → F (Ψ ) is a quasi-inverse of F |F (Ψ ) . So, to get (b)
and (c), it is enough to prove that

F
(
Ψ (i)

) 
 Γ �(i) = Γ P (i)/Tr⊕
j�opi Γ P ( j)

(
rad Γ P (i)

)
, for all i ∈ [1, t].

Let i ∈ [1, t]. Then, from Definition 3.1(c), we have an exact sequence

0 → Z(i)
αi−→ Q (i)

βi−→ Ψ (i) → 0,

where Z(i) ∈ F ({Ψ ( j): j � i}). Hence, by Proposition 4.1, we get an exact sequence



O. Mendoza et al. / Journal of Algebra 348 (2011) 276–293 289
0 → Ker(t) → Q ′ t−→ Z(i) → 0

in F ({Ψ ( j): j � i}), where Q ′ ∈ add(
⊕

j�i Q ( j)). Therefore, since F is exact on F (Ψ ), we have a

presentation Q ′ αi t−→ Q (i)
βi−→ Ψ (i) → 0 such that F (Q ′) F (αi t)−→ F (Q (i))

F (βi)−→ F (Ψ (i)) → 0 is exact in
mod(Γ ). So, applying Lemma 2.13(a), it follows that

Im
(

F (αi)
) = Im

(
F (αit)

) ⊆ Tr⊕
j�i F (Q ( j))

(
rad F

(
Q (i)

))
.

So, in order to prove that F (Ψ (i)) 
 Γ �(i), it is enough to show the inclusion Tr⊕
j�i F (Q ( j))

(rad F (Q (i))) ⊆ Im(F (αi)). To prove such inclusion, we assume that j � i and consider a mor-
phism δ : F (Q ( j)) → rad F (Q (i)). Let ı : rad F (Q (i)) → F (Q (i)) be the inclusion map, which is
not an isomorphism since F (Q (i)) ∈ proj(Γ ) is indecomposable (see (a)). Furthermore, from the
equivalence F |add(Q ) : add(Q ) → proj(Γ ), there is a morphism η : Q ( j) → Q (i) such that ıδ =
F (η). Hence Im(δ) ⊆ Im(F (η)). We assert that Im(F (η)) ⊆ Im(F (αi)) and, from this, it follows that
Im(δ) ⊆ Im(F (αi)), proving that Tr⊕

j�i F (Q ( j))(rad F (Q (i))) ⊆ Im(F (αi)). So, to prove that Im(F (η)) ⊆
Im(F (αi)), we need to show that F (βi)F (η) = 0 since we have the following exact sequence

0 → Im
(

F (αi)
) → F

(
Q (i)

) F (βi)−→ F
(
Ψ (i)

) → 0.

Thus, we only need to prove that the composition Q ( j)
η−→ Q (i)

βi−→ Ψ (i) is zero. If j < i this is true
since, by Lemma 3.8, we know that HomΛ(Q ( j),Ψ (i)) = 0.

Let i = j and suppose that βiη �= 0. By Corollary 3.12, we know that βiη : Q (i) → Ψ (i) and
βi : Q (i) → Ψ (i) are both minimal right add(Q )-approximations of Ψ (i). Thus, from the commutative
diagram

Q (i)
βiη

η

Ψ (i)

Q (i)
βi

Ψ (i)

we get that η is an isomorphism. Therefore F (η) = ıδ is also an isomorphism, contradicting that the
inclusion map ı : rad F (Q (i)) → F (Q (i)) is not an isomorphism, and therefore βiη = 0 as desired.

(d) The fact that (Γ op,�op) is a standardly stratified algebra is equivalent to the condition Γ Γ ∈
F (Γ �) (see [D1, 2.2], [ADL, 2.2] or [L]). It is easy to check the last claim. In fact, Q ∈ F (Ψ ) and so
ΓΓ 
 F (Q ) ∈ F (Γ �).

(e) and (f): Since (Γ op,�op) is a standardly stratified algebra (see (d)), it follows from [AHLU,
Theorem 1.6(ii)] that F (Γ op∇) is coresolving. We get by duality that F (Γ �) is resolving. On the other
hand, from (b), we know that F (F (Ψ )) = F (Γ �). Hence, (e) follows from Corollary 4.2. Finally, we
prove that F (Γ �) is closed under direct summands in mod(Γ ). Indeed, we have that DΓ (F (Γ �)) =
F (Γ op∇) = F (Γ op�)⊥1 (the last equality follows from [AHLU, Theorem 1.6(iv)]), and so the result
follows observing that F (Γ op�)⊥1 is closed under direct summands in mod(Γ op). �
Remark 4.4. We recall that an algebra Λ is properly stratified if and only if ΛΛ ∈ F (Λ�) ∩ F (Λ�)

(see [D2]). In this case, the standard modules provide a stratifying system, and the proper standard
modules a proper stratifying system.

Example 4.5. Let (Λ∇, {T (i)}n
i=1,�) be the canonical proper costratifying system associated to the

standardly stratified algebra (Λ,�) (see Example 3.5). Then, by Theorem 4.3(d), Γ op = EndΛ(T ) is
the ‘Ringel dual’ of Λ.
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Example 4.6. Let (Ψ,Q,�) be the proper costratifying system considered in Example 3.6. In this case,
the algebra Γ op = EndΛ(Q ) is given by the quiver

◦
1

ε−→ ◦
3

μ−→ ◦
2

with the relation με = 0. Then

Γ opΓ op = 1
3

⊕ 2 ⊕ 3
2
.

We consider (Γ op,�op), where 3 �op 2 �op 1. Then the corresponding standard modules are Γ op� =
{Γ op�(1) = 1

3
, Γ op�(2) = 2, Γ op�(3) = 3}. In this case, it is easy to check directly that Γ opΓ op ∈

F (Γ op�). That is, (Γ op,�op) is a standardly stratified algebra.

Proposition 4.7. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ), Γ = EndΛ(Q )op and F =
HomΛ(Q ,−) : mod(Λ) → mod(Γ ). If X, Y ∈ F (Ψ ) then the map ρX,Y : Ext1

Λ(X, Y ) → Ext1
Γ (F (X), F (Y )),

induced by F , is an isomorphism.

Proof. The result is a direct consequence of Proposition 2.4 applied to X = F (Ψ ) and M = Q , since
Proposition 4.1 shows that F (Ψ ) ⊆ C Q

m for any m � 1. �
Let C be a class of Λ-modules such that add(Q ) = F (C) ∩ ⊥1 F (C) for some Λ-module Q . Let

M ∈ F (C). We recall that a C -projective cover of M , is a surjective morphism f : Q M → M of Λ-
modules such that Q M ∈ add(Q ), Ker( f ) ∈ F (C) and f is a right minimal add(Q )-approximation
of M .

Proposition 4.8. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ). Then F (Ψ ) is closed
under direct summands in mod(Λ), and any object in F (Ψ ) admits a Ψ -projective cover.

Proof. Recall that we have the exact equivalence F = HomΛ(Q ,−) : F (Ψ ) → F (Γ �), and also that
F (Γ �) is closed under direct summands in mod(Γ ) (see Theorem 4.3). We will carry this property
back to F (Ψ ). In fact, let G : F (Γ �) → F (Ψ ) be a quasi-inverse of F and M ∈ F (Ψ ), and let M =⊕n

i=1 Mi and F (M) = ⊕m
j=1 X j with Mi and X j indecomposable modules for all i, j. Since F (Γ �) is

closed under direct summands, then X j belongs to it.
We have M 
 GF(M) 
 ⊕m

j=1 G(X j). Since G is faithful and full, G preserves indecomposables.
Therefore, it follows from Krull–Schmidt Theorem that Mi 
 G(Xi j ) for some i j , proving that Mi ∈
F (Ψ ), as desired.

We prove next that F (Ψ ) admits Ψ -projective covers. Indeed, by Proposition 4.1 we know the
existence of an exact sequence in F (Ψ )

0 → M ′ → Q ′ f ′
−→ M → 0,

where f ′ is a right add(Q )-approximation of M . Therefore, since F (Ψ ) is closed under direct sum-
mands, we get that the right minimal version f : Q M → M of f ′ is the desired Ψ -projective cover. �

The following proposition gives sufficient conditions for F (D(ΛΛ)) to be a cotilting Γ -module.

Proposition 4.9. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ), Γ = EndΛ(Q )op, F =
HomΛ(Q ,−) : mod(Λ) → mod(Γ ) and T = F (D(ΛΛ)). Let Γ � be the family of proper standard modules.
If D(ΛΛ) ∈ F (Ψ ) and t = rk K0(Λ), then the following statements hold.
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(a) T is a cotilting Γ -module.

(b) F (Γ �) = ⊥T and F (Γ �) ∩ F (Γ �)
⊥1 = add(T ).

Proof. Let D(ΛΛ) ∈ F (Ψ ) and t = rk K0(Λ). Since Ext1
Λ(−, D(ΛΛ)) = 0, by Proposition 4.7, it follows

that Ext1
Γ (F (X), F (D(ΛΛ))) = 0 for any X ∈ F (Ψ ). Hence T = F (D(ΛΛ)) ∈ F (Γ �)

⊥1 and so add(T ) ⊆
F (Γ �) ∩ F (Γ �)

⊥1 . In addition, from the fact that (Γ op,�op) is a standardly stratified algebra (see
Theorem 4.3), the duals of [AHLU, Theorem 2.1, Proposition 2.2(i)] show that there is a basic cotilting

Γ -module T ′ such that F (Γ �) = ⊥T ′ and F (Γ �) ∩ F (Γ �)
⊥1 = add(T ′). Finally, since T ′ and T have

the same number of indecomposable direct summands and add(T ) ⊆ add(T ′), we have T ′ 
 T and
the proof is complete. �

We know from Theorem 4.3(e) that the Ext-projective modules in F (Ψ ) coincide with add(Q ).
The next proposition describes the Ext-injectives in F (Ψ ).

Proposition 4.10. Let (Ψ,Q,�) be a proper costratifying system of size t in mod(Λ), Γ = EndΛ(Q )op, F =
HomΛ(Q ,−) : mod(Λ) → mod(Γ ) and G = Q ⊗Γ − : mod(Γ ) → mod(Λ). If Γ op T is the characteristic
tilting module associated to the standardly stratified algebra (Γ op,�op), then

F (Ψ ) ∩ F (Ψ )⊥1 = add
(
GD(Γ op T )

)
.

Proof. By Proposition 4.7, we know that

X ∈ F (Ψ ) ∩ F (Ψ )⊥1 ⇔ F (X) ∈ F (Γ �) ∩ F (Γ �)⊥1 .

On the other hand, by using [AHLU, Theorem 1.6(iii), Proposition 2.2(i)], it follows that

D
(

F (Γ �) ∩ F (Γ �)⊥1
) = F (Γ op∇) ∩ ⊥1 F (Γ op∇) = add(Γ op T ).

Thus, we have that X ∈ F (Ψ ) ∩ F (Ψ )⊥1 if and only if X ∈ add(GD(Γ op T )). �
We recall that a class X , of objects in mod(Λ), is coresolving if it is closed under extensions, coker-

nels of monomorphisms and contains the injective Λ-modules [AR]. In what follows, we characterize
the situation when a proper costratifying system is the canonical one.

Theorem 4.11. Let Λ be a basic artin algebra and (Ψ,Q,�) be a proper costratifying system of size t in
mod(Λ). Let Γ = EndΛ(Q )op and Γ op T be the characteristic tilting module associated to the standardly strat-
ified algebra (Γ op,�op). Then, the following statements are equivalent.

(a) F (Ψ ) is coresolving.
(b) F (Ψ ) ∩ F (Ψ )⊥1 = add(D(ΛΛ)).
(c) D(ΛΛ) ∈ F (Ψ ) and t = rk K0(Λ).
(d) Λ 
 End(Γ op Q ) and Γ op Q 
 Γ op T .
(e) t = rk K0(Λ) and there is a choice of the representative set Λ P = {Λ P (i): i ∈ [1, t]} of indecomposable

projective Λ-modules such that Λ∇(i) 
 Ψ (i) for all i ∈ [1, t] and (Λ,�) is a standardly stratified alge-
bra.

(f) D(ΛΛ) ∈ F (Ψ ) and Q is a generalized tilting Λ-module.

Proof. Consider the quasi-inverse functors F : F (Ψ ) → F (Γ �) and G : F (Γ �) → F (Ψ ), given in
Theorem 4.3. Then, from [CE, p. 120], we have G = Q ⊗Γ − 
 D HomΓ (−, D(Q )).

The implication (a) ⇒ (b) follows from the dual of Lemma 2.8.
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(b) ⇒ (d) Let F (Ψ )∩F (Ψ )⊥1 = add(D(ΛΛ)). Then D(ΛΛ) 
 GF(D(ΛΛ)) = G(HomΛ(Q , D(ΛΛ))) 

G(D(Q )). In addition, by hypothesis and Proposition 4.10, we have add(D(ΛΛ)) = add(GD(Γ op T )).
Then, since Λ is basic, we get that GD(Γ op T ) 
 G(D(Q )) and therefore Γ op Q 
 Γ op T . Now, we
prove that Λ 
 End(Γ op Q ). Indeed, the isomorphisms D(ΛΛ) 
 G(D(Q )) 
 D HomΓ (D(Q ), D(Q )) 

D HomΓ op (Q , Q ) show that Λ 
 End(Γ op Q ).

(d) ⇒ (e) Let Λ 
 End(Γ op Q ) and Γ op Q 
 Γ op T . In particular, since Γ op T is basic, it follows
that Γ op Q is so, and therefore t = rk K0(Λ). On the other hand, by Example 3.5, we know that
(Γ op∇, {Γ op T (i)}t

i=1,�op) is a proper costratifying system of size t in mod(Γ op). Hence, applying
Theorem 4.3 to this system, we get an exact equivalence F̃ = HomΓ op (T ,−) : F (Γ op∇) → F (A�)

such that F̃ (Γ op∇(i)) 
 A�(i) for all i ∈ [1, t], with A = End(Γ op T )op . The same theorem implies that
(Aop,�) is a standardly stratified algebra and the A�(i)’s correspond to the pair (A P ,�), where
A P = {A P (i) = F̃ (T (i))}t

i=1.
Since we are assuming that Γ op Q 
 Γ op T , we get that their endomorphism rings are isomorphic.

We will identify Λ and Aop through this isomorphism. Then Λ∇ = D(A�), where the projective A-
modules are (A P (i))∗ = HomA(A P (i), A).

Finally, it remains to show that Λ∇(i) 
 Ψ (i) for all i ∈ [1, t]. Let i ∈ [1, t]. Since F (Ψ (i)) 
 Γ �(i),
we have

Ψ (i) 
 GD
(
Γ op∇(i)

) 
 D HomΓ

(
D

(
Γ op∇(i)

)
, D(Q )

) 
 D HomΓ op
(

Q , Γ op∇(i)
)


 D HomΓ op
(
T , Γ op∇(i)

) 
 D
(

A�(i)
) 
 Λ∇(i).

(e) ⇒ (f) Assume that (e) holds. In particular ΛΛ ∈ F (Λ�). Then, it follows from [D1, 2.2] (see
also [L]) that D(ΛΛ) ∈ F (Λ∇) = F (Ψ ). If ΛT = ⊕t

i=1 T (i) is the characteristic tilting module as-
sociated to the standardly stratified algebra (Λ,�), we know that (Λ∇, {T (i)}t

i=1,�) is a proper
costratifying system. From Λ∇(i) 
 Ψ (i), for all i ∈ [1, t], and the uniqueness of proper costratify-
ing systems proven in Remark 3.2, it follows that Λ Q 
 ΛT . Hence Λ Q is a tilting module.

(e) ⇒ (a) Since (Λ,�) is a standardly stratified algebra, we know from [AHLU, Theorem 1.6(ii)]
that F (Λ∇) is coresolving. Furthermore, F (Ψ ) = F (Λ∇) since Λ∇(i) 
 Ψ (i), for all i ∈ [1, t], and so
(e) follows.

(b) ⇒ (c) Let F (Ψ )∩ F (Ψ )⊥1 = add(D(ΛΛ)). Then, by Proposition 4.10, we get that add(D(ΛΛ)) =
add(GD(Γ op T )) and hence t = rk K0(Λ).

(c) ⇒ (b) Let D(ΛΛ) ∈ F (Ψ ) and t = rk K0(Λ). Applying the functor G to the second equal-
ity in Proposition 4.9(b), we have the equalities F (Ψ ) ∩ F (Ψ )⊥1 = G(F (Γ �) ∩ F (Γ �)⊥1 ) =
add(GF(D(ΛΛ))) = add(D(ΛΛ)).

(f) ⇒ (c) We have that t = card(ind(add(Q ))) = rk K0(Λ), where the last equality holds since Λ Q
is tilting, and this completes our proof. �
Remark 4.12. Let (Ψ,Q,�) be the proper costratifying system considered in Example 3.7. In this case,
Γ op = End(Λ Q ) is given by the quiver

◦
1

μ

�
δ

◦
3

ε−→ ◦
2

with the relations εμ = 0 and μδμ = 0. By Theorem 4.3 we know that (Γ op,�op) is a standardly
stratified algebra. The characteristic tilting module is

Γ op T =
3
1
3

⊕ 3
2

⊕ 3,
1
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and it is not isomorphic to

Γ op Q = 2
1

⊕
3

1 2
3
1

⊕ 2.

On the contrary, in Example 3.6 (see also Example 4.6), we have that Γ op T = Γ op Q = 3
2

⊕ 3 ⊕ 1
3

, but

Λ �
 End(Γ op Q ). Note that, in both cases, we have that Λ∇ �= Ψ .
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