Efficacy of FiO2 Increase During the Initial Resuscitation of Premature Infants < 29 Weeks: An Observational Study

Tereza Lamberska a, Jana Vaňkova b, Richard Plavka a,*

a Division of Neonatology, Department of Obstetrics and Gynecology, General Faculty Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
b Department of Bio-Statistics, General Faculty Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

Received Apr 1, 2013; received in revised form Jun 6, 2013; accepted Jun 29, 2013

Objective: To evaluate the heart rate (HR) and oxygen saturation (SpO2) at 15-second intervals within 60 seconds after incremental increases of fractional inspired oxygen (FiO2) during resuscitation of infants younger than 29 weeks requiring two different forms of ventilatory support.

Study design: Retrospective observational study.

Methods: Forty-three infants were stabilized, 14 by continuous positive airway pressure exclusively (CPAP group), and 29 by positive pressure ventilation (PPV group). Both groups received ventilatory support in a special bed with two cameras enabling the evaluation of all interventions including HR, SpO2, FiO2, positive inflation pressure, and positive end-expiratory pressure values. FiO2 was commenced at 0.30 and titrated in 0.1–0.2 increments every 30–60 seconds. The relationships between the incremental increases of FiO2 and related SpO2 and HR changes were evaluated.

Results: Although there was an inverse correlation between initial FiO2 and SpO2 in both groups, a significant positive correlation between the incremental increase of FiO2 and SpO2 changes after 30 seconds was found only in the CPAP group. Only higher initial levels of FiO2 had a positive effect on the improvement in SpO2 in the PPV group.

Conclusion: The efficacy of FiO2 titration in 0.1–0.2 increments may be attenuated and delayed in extremely preterm infants required PPV during the first 6 minutes of life.
Introduction

The latest recommendations of the International Liaison Committee on Resuscitation (ILCOR) were expanded to include the use of pulse oximetry during neonatal resuscitation. However, evidence as to the precise management of supplemental oxygen in premature newborns is currently lacking.

Several small, prospective randomized trials confirmed that resuscitation of extremely premature infants (EPI) may be initiated with lower levels of fractional inspired oxygen (FiO₂) between 0.21 and 0.40. However, except for one small study reporting a decrease in the incidence of bronchopulmonary dysplasia (BPD) in their low FiO₂ group, there is no evidence favoring these lower FiO₂ values in terms of reduction of adverse long-term outcomes.

Wang et al, Escrig et al, and Rabi et al have shown in randomized trials that it is possible to titrate administration of supplemental oxygen to oxygen saturation measurements in newly born preterm infants. More than 80% of infants initially receiving room air subsequently received supplemental oxygen titrated to attain targeted SpO₂ values. These cohorts included premature infants stabilized on continuous positive airway pressure (CPAP) as well as those who required positive pressure ventilation (PPV) in the delivery room.

Oxygen treatment in a newborn will not be effective if the infant’s lungs are not aerated, so the primary step is not oxygen treatment but rather the establishment of functional residual capacity. The strategy of oxygen tailoring, as a secondary step to appropriate gradual oxygenation, is based on evidence from small randomized controlled trials and has been recommended as appropriate by experts in the field of delivery room resuscitation. The FiO₂ incremental step of 0.1 every 30–60 seconds being practiced now in ongoing prospective comparative studies such as the premature infants resuscitated with oxygen or air (PRESOX) study and the targeted oxygenation in the resuscitation of premature infants and their developmental outcome (TO2RPIDO) trial. Another study, the room-air versus oxygen administration for resuscitation of preterm infants (ROAR) study, used bigger and quicker FiO₂ increments of 0.2 every 15 seconds to reach a target saturation range. Spontaneously breathing very preterm infants immediately after delivery prolong their expiration by a breath hold to defend lung volume. However, the PPV using the frequencies of 40–60/minute recommended by ILCOR do not allow expiratory braking. This pattern of artificial breathing together with the occurrence of leaks and obstructions may delay uniform lung aeration and establishment of lung volume/alveolar aeration, which may adversely influence the efficacy of supplemental oxygen.

There are no clear clinical data that evaluate the efficacy of incremental increases of FiO₂ on the rise of HR and SpO₂, specifically when comparing two very different EPI groups, namely (1) spontaneously breathing on CPAP exclusively, and (2) not spontaneously breathing and requiring PPV. The two different groups would presumably undergo different mechanisms and dynamics in order to establish their functional residual capacity. We undertook this retrospective analysis to test the hypothesis that infants who are not breathing spontaneously and require PPV will respond less well to incremental increases in FiO₂ than those who have established a better FRC by their spontaneous respiratory effort.

Objectives

The objectives of this study were to evaluate the HR and SpO₂ changes after incremental increases of FiO₂ in newly born extremely preterm infants receiving CPAP versus infants receiving PPV during the first 6 minutes of life.

Patients and methods

This observational study was conducted at the tertiary perinatal center of General Faculty Hospital in Prague, where approximately 4500 infants are delivered and approximately 140 infants <1500 g are admitted into the neonatal intensive care unit annually. In the period from January 2010 to February 2011, delivery room interventions, heart rate, and SpO₂ values were systematically collected from all inborn EPI <29 weeks to evaluate an internal standardized protocol for resuscitation of EPI. This protocol had been created on a background of current knowledge and evidence. In addition, these prospectively collected data allowed us to analyze our strategy of FiO₂ tailoring retrospectively. All the EPI were placed immediately after delivery onto a specially modified mobile resuscitation warmer bed (ALFAMEDIC sro, Lisov, Czech Republic) with two cameras attached to the frame. One camera recorded all interventions that the patient was receiving on the resuscitator, whereas the second camera recorded the actual time, pulse oximetry (PO) values, FiO₂, positive inflation pressure (PIP), and positive end-expiratory pressure (PEEP). Using TRAL software sequence analysis made it possible to concurrently evaluate both of the recorded sequences on one screen. All infants were resuscitated according to a standard protocol and algorithm, and were attended by a team of two doctors and two nurses, one of each having a minimum 10 years of neonatal clinical experience.

Resuscitation procedure

A PO sensor was placed on the right wrist as soon as possible and connected to a PO with a preset 2-second interval (Radical, Masimo, California, USA). Primary settings for the T-piece were as follows: gas flow of 8 L/min, PIP of 26 cmH₂O, and PEEP of 5 cmH₂O. The frequency of PPV in the range of 40–60/minutes was suggested and sustained inflation was not routinely used with the initiation of PPV. CPAP provided by a facemask was given for all infants and PPV via facemask was only initiated if: (1) bradycardia occurred after more than 90 seconds after cord clamping, or (2) spontaneous breathing activity was not sufficient to achieve a target range of SpO₂ after 5 minutes of life. Intubation followed by surfactant administration was indicated when PPV with PEEP was required for more than 6 minutes. FiO₂ was commenced at 0.30 and was subsequently titrated in 0.1–0.20 increments every 30–60 seconds if (1) the preductal SpO₂
value was outside of a defined time-related range (an increasing trend between 60-85% at 2–6 minutes, then between 80–93%), or (2) HR <100/minute persisted for more than 1 minute after the initiation of PPV. If bradycardia <60/minute lasted for more than 30 seconds, a switch to the use of FiO₂ ≥0.80 was suggested.

3.2. Data collection and statistical analysis

All FiO₂ settings, HR and SpO₂ values, and all interventions were assessed and tabulated in 15-second intervals from the collected video recordings of each patient by a single unbiased independent physician who was not involved in the actual resuscitations. All individual incremental increases of FiO₂, performed during the 6 minutes after cord clamping, and the related changes of HR and SpO₂ during the subsequent four 15-second intervals were identified and statistically evaluated in all patients. These data were then compared between the two EPI groups; all infants were divided according to the extent of ventilatory support required: the CPAP group only received CPAP and the PPV group received CPAP and positive pressure inflations. Because the data were collected in 15-second intervals, each incremental increase of FiO₂ (ΔFiO₂) could occur at any time during the 15-second interval (Figure 1). The correlation of the response between the initial HR and SpO₂ values (HR₀ and SpO₂₀) and the resuscitator’s adjustment of FiO₂ (FiO₂₀) was determined by the Spearman rank correlation and furthermore by the Kruskal-Wallis test. Multiple linear regression and the nonparametric Spearman rank correlation tested the relationship between the ΔFiO₂ and HR as well as SpO₂ changes over the next 60 seconds in 15-second intervals (ΔHR₀, 0–30; 0–45; 0–60, ΔSpO₂₀, 0–30; 0–45; 0–60) in all infants and in the two groups separately. The nonparametric Mann-Whitney U and Wilcoxon tests were used to compare related changes between the two groups of infants. The Pearson Chi-square test and the Fisher exact test were used for categorical variables. In post hoc analysis we used Kruskal-Wallis analysis to test the effect of the extent of ΔFiO₂₀ as well as the initial FiO₂ levels (FiO₂₀) on related changes of ΔHR₀, 0–15; 0–30; 0–45; 0–60, ΔSpO₂₀, 0–15; 0–30; 0–45; 0–60.

4. Results

Of the 65 EPIs <29 weeks live-born during the investigational period, 43 EPIs could be enrolled in this study because of different technical difficulties with the extraction of the recorded data: 14 of these were supported by facemask CPAP exclusively, followed by nasal CPAP, and the remaining 29 required PPV (with PEEP) during the first 6 minutes of life. The basic clinical characteristics and delivery room interventions are summarized in Tables 1 and 2. Only 3 of 14 infants (21%) were initially bradycardic <100/minute in the CPAP group, although spontaneous breathing activity was present. In infants requiring PPV, bradycardia <100/minute and/or poor spontaneous breathing activity was the reason for initiation of PPV at the median time (IQR) of 114 seconds (72–150 seconds). In 18 of 29 infants (62%), bradycardia was present in the first clear PO measurement. Within the first 6 minutes of life, 731 measurements of HR as well as SpO₂ in 15-second intervals could be analyzed, 493 in the PPV group and 238 in the CPAP group. Together we found 336 of 731 hypoxemic measurements (46%; below the 10th percentile), 12 of 336 (12%) in the CPAP group and 294/336 (88%) in the PPV group (p < 0.001). Only 40 of 731 hyperoxemic measurements (5%; SpO₂ > 93%) were found in all infants, 34 of 40 (85%) in the CPAP group and 6 of 40 (15%) in PPV group (p < 0.001). Seventy-seven incremental increases of FiO₂ were required in 37 of the infants (86%); 26 (34%) were required in 10 infants (71%) in the CPAP group, whereas 27 infants (93%) in the PPV group required 51 incremental increases in FiO₂ (68%). Only seven episodes of a direct switching of FiO₂ to ≥0.80 were identified, all of which were in the PPV group. The characteristics of all incremental increases of FiO₂ and those related to each group are shown in Table 2.

4.1. Interaction between initial HR and SpO₂ values (HR₀, SpO₂₀) and FiO₂ adjustment (FiO₂₁)

We found a significant negative correlation between SpO₂₀ and FiO₂₁ values but not between HR₀ and FiO₂₁ levels in both groups (r = –0.214, p < 0.001; r = –0.572, p < 0.001).

Figure 1 The time labels of HR and SpO₂ values and changes after incremental increases of FiO₂. All incremental increases of FiO₂ were performed at any time during 360 seconds after the cord clamping. Because the data were collected in 15-second intervals, each incremental increase in FiO₂ (ΔFiO₂) could be done at any time during the first 15-second interval. The assigned labels for related values of HR and SpO₂ expressed the real time interval from the time 0 and changes (Δ) in HR and SpO₂ are labeled by time intervals between were calculated. FiO₂ = fractional inspired oxygen; HR = heart rate; SpO₂ = oxygen saturation.
was significantly higher than mean (SD) FiO\textsubscript{0} in both groups (p<0.001). This was not true for the different values of HR0 and related levels of FiO\textsubscript{2}.

4.2. Correlation between the incremental increases in FiO\textsubscript{2} (ΔFiO\textsubscript{2})0→15 and the subsequent HR and SpO\textsubscript{2} changes in 15-second intervals (ΔHR0→15, 0→30, 0→45, 0→60 and ΔSpO\textsubscript{2})

No significant correlation was found between all ΔFiO\textsubscript{2}0→15 and the subsequent ΔHR0→15, 0→30, 0→45, 0→60 and ΔSpO\textsubscript{2}0→15, 0→30, 0→45, 0→60 in all infants by Spearman rank correlation test. When the relationships were correlated for each group separately, a significant correlation between the ΔFiO\textsubscript{2} and ΔSpO\textsubscript{2} as well as ΔSpO\textsubscript{2} was found only in the CPAP group (r = 0.41 and r = 0.51, respectively, p < 0.05).

4.3. FiO\textsubscript{2} levels prior to and after incremental increases in FiO\textsubscript{2} (FiO\textsubscript{2})0→15, 30, 45, 60 and related values of heart rate and saturation of oxygen in 15-second intervals (HR0, 0→30, 0→45, 0→60, and SpO\textsubscript{2})

Significantly higher FiO\textsubscript{2}0, 15, 30, 45, 60 levels were administered in the PPV group and lower related values of HR0, 0→30, 0→45, 0→60 and SpO\textsubscript{2}0, 15, 30, 45, 60 were found at each time point (p < 0.01). The mean [Standard Deviation (SD)] FiO\textsubscript{2} level was significantly higher than mean (SD) FiO\textsubscript{2} in both groups [0.31 (0.11) vs. 0.42 (0.15), p < 0.01; 0.40 (0.15) vs. 0.55 (0.18), p < 0.001]; however, only average (SD) SpO\textsubscript{2} and SpO\textsubscript{2} values in the CPAP group were significantly higher in comparison with SpO\textsubscript{2} (56% (18) vs. SpO\textsubscript{2} 68% (17), and SpO\textsubscript{2} 72% (16), p < 0.01; Figure 2. The significance of differences between the CPAP and the PPV groups in extent of incremental increases of FiO\textsubscript{2} and related changes of HR and SpO\textsubscript{2} are summarized in Table 3.

4.4. Post hoc analysis in PPV group

Despite the nonsignificant correlation between the ΔFiO\textsubscript{2}0→15 and related ΔHR0→15, 0→30, 0→45, 0→60 and ΔSpO\textsubscript{2}0→15, 0→30, 0→45, 0→60 that was found in the group of infants supported by PPV, further Kruskal-Wallis analysis was completed to test if any independent variables such as the extent of ΔFiO\textsubscript{2}0→15 and the initial levels of FiO\textsubscript{2}, HR0, or SpO\textsubscript{2} may have had a positive effect on the ΔHR0→15, 0→30, 0→45, 0→60 and ΔSpO\textsubscript{2}0→15, 0→30, 0→45, 0→60 as the dependent variables.

The significances between those relations are introduced in Table 3. The lower HR0 and SpO\textsubscript{2} values increased significantly (p = 0.007 and p = 0.002) more than values closer to normal, but without any relation to the FiO\textsubscript{2} level or to the extent of the incremental increase of FiO\textsubscript{2}. Higher FiO\textsubscript{2} level tested from mean (SD) level from 0.30 (0.00) to 0.62 (0.08) had a significant positive effect on SpO\textsubscript{2} rise (p = 0.002) and this initial dose-dependent effect was also positively time-related (p = 0.010). Larger ΔFiO\textsubscript{2}0→15 tested from mean (SD) level of 0.05 (0.08) up to 0.37 (0.08) had a borderline significance on a positive rise of SpO\textsubscript{2} (p = 0.049).

5. Discussion

During the transition from placental to lung breathing the establishment and the maintenance of alveolar expansion is the first step to oxygenation. This is a dynamic process following delivery and may be influenced by intrinsic variables such as lung maturation, prenatal infection, and the level of spontaneous breathing activity, as well as by extrinsic variables such as the level of the resuscitator’s skill, iatrogenic airway obstruction, and mask leak.

This observational study shows the different efficacy of incremental increases in FiO\textsubscript{2} in the two groups of extremely preterm infants with different levels of

Table 1 Characteristics of infants.

<table>
<thead>
<tr>
<th></th>
<th>All infants (n = 43)</th>
<th>CPAP group (n = 14)</th>
<th>PPV group (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age, mean (SD), wk</td>
<td>26.6 (1.8)</td>
<td>27.5 (0.7)*</td>
<td>26.1 (1.9)*</td>
</tr>
<tr>
<td>Birthweight, mean (SD), g</td>
<td>815 (240)</td>
<td>863 (236)</td>
<td>793 (238)</td>
</tr>
<tr>
<td>Male</td>
<td>14 (33)</td>
<td>4 (29)</td>
<td>10 (34)</td>
</tr>
<tr>
<td>Full course of antenatal steroids</td>
<td>22 (51)</td>
<td>10 (71)</td>
<td>12 (41)**</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>36 (84)</td>
<td>13 (93)</td>
<td>23 (79)</td>
</tr>
<tr>
<td>General anesthesia</td>
<td>20 (47)</td>
<td>5 (36)</td>
<td>15 (52)</td>
</tr>
<tr>
<td>Placental transfusion (milking)</td>
<td>19 (44)</td>
<td>5 (36)</td>
<td>14 (48)</td>
</tr>
<tr>
<td>Multiple birth</td>
<td>12 (28)</td>
<td>2 (14)</td>
<td>10 (34)</td>
</tr>
<tr>
<td>Died before discharge</td>
<td>5 (12)</td>
<td>0</td>
<td>5 (17)</td>
</tr>
<tr>
<td>Apgar score at 1 min</td>
<td>5 (4–6)</td>
<td>7 (6–8)</td>
<td>4 (2–6)*</td>
</tr>
<tr>
<td>Apgar score at 5 min</td>
<td>6 (5–8)</td>
<td>9 (8–9)</td>
<td>6 (5–7)*</td>
</tr>
<tr>
<td>HR at 5 min, bpm</td>
<td>135 (122–152)</td>
<td>147 (135–156)</td>
<td>132 (103–149)*</td>
</tr>
<tr>
<td>SpO\textsubscript{2} at 5 min, %</td>
<td>75 (49–85)</td>
<td>87 (78–92)</td>
<td>57 (41–77)*</td>
</tr>
<tr>
<td>Time of HR ≥ 120 bpm achievement, sec</td>
<td>150 (97–277)</td>
<td>105 (90–142)</td>
<td>225 (120–315)*</td>
</tr>
<tr>
<td>Time of SpO\textsubscript{2} ≥ 80% achievement, sec</td>
<td>390 (247–555)</td>
<td>225 (165–277)</td>
<td>420 (330–660)*</td>
</tr>
</tbody>
</table>

Data are presented as n (%) or median (IQR), unless otherwise indicated.

*p < 0.01, Mann-Whitney U test.

**p = 0.064, χ² test.

Bpm = beats per minute; HR = heart rate; IQR = interquartile range; SD = standard deviation; SpO\textsubscript{2} = saturation of oxygen.
spontaneous breathing activity requiring a different extent of ventilatory support to establish their functional residual capacity during the first 6 minutes of life.

We found that the incremental increases of FiO2 had a significant effect on the improvement in SpO2 within 45 seconds when the infants were breathing spontaneously on facemask CPAP only. In this group of infants, 18% (42 of 238) of the 15-second interval measurements of SpO2 were below the 10th percentile and 14% (34 of 238) of measurements had SpO2 > 93%. Nearly 70% of the measurements of SpO2 were within target range (the 25th—75th percentile of SpO2 nomogram) during the first 6 minutes of life.12 Interestingly, in this small CPAP group of extremely premature infants, the medians and IQRs of HR and SpO2 at 5 minutes correspond very closely to the reference ranges of Dawson et al’s12 nomograms even despite the higher mean level of FiO2 prior to incremental increase to an even larger extent. These differences in FiO2 tailoring could be explained by mostly larger incremental increases of FiO2 performed by specialists in the recommended range of 0.1—0.2 (14% of them were identified as the direct switches to FiO2 ≥ 0.8). The longer median time of mean FiO2 incremental increases in PPV group corresponds well with the chronological order of our interventions described in resuscitation procedure. First, CPAP via mask was switched to PPV and then the first incremental increase of FiO2 followed if bradycardia persisted. In this group of infants, 60% (294 of 493) of the SpO2 measurements were below the 10th percentile during the first 6 minutes of life.12 These infants did not respond well to facemask PPV managed by our specialists and finally 41% of them required intubation at the median time (IQR) of 378 (348—389) seconds after delivery. They were significantly more immature, had a lower rate of full antenatal steroid treatment, and had lower Apgar scores at the 1st minute and 5th minute.

In a post hoc analysis the larger extent of the incremental increases of FiO2 was found effective in improving oxygenation with a borderline significance, but when higher initial levels of FiO2 were used the significantly larger SpO2 changes were found. This dose-related effect of the initial level of FiO2 is also time-related and the synergic effect of a higher dose of oxygen and advanced lung aeration may play a role in better oxygenation. These findings correspond well with the significantly longer time needed to achieve stable HR and SpO2 in this group of EPI. The PPV using

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Delivery room interventions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All infants (n = 43)</td>
</tr>
<tr>
<td></td>
<td>CPAP group (n = 14)</td>
</tr>
<tr>
<td></td>
<td>PPV group (n = 29)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to first PO data</td>
<td>87 (70–110)</td>
</tr>
<tr>
<td>CPAP start sec postpartum</td>
<td>72 (50–98)</td>
</tr>
<tr>
<td>PPV start sec postpartum</td>
<td>114 (72–150)</td>
</tr>
<tr>
<td>PPV end sec postpartum</td>
<td>339 (250–414)</td>
</tr>
<tr>
<td>Sustained inflation maneuver</td>
<td>5 (12)</td>
</tr>
<tr>
<td>Intubation in DR</td>
<td>15 (35)</td>
</tr>
<tr>
<td>Intubation start sec postpartum, sec</td>
<td>378 (348–389)</td>
</tr>
<tr>
<td>Intubation end sec postpartum</td>
<td>450 (444–759)</td>
</tr>
<tr>
<td>Surfactant administered in DR</td>
<td>15 (35)</td>
</tr>
<tr>
<td>Time of surfactant administration, sec</td>
<td>713 (523–881)</td>
</tr>
<tr>
<td>Infants with FiO2 1.0</td>
<td>4 (9)</td>
</tr>
<tr>
<td>Infants with incremental increases of FiO2</td>
<td>37 (86)</td>
</tr>
<tr>
<td>Incremental increases of FiO2, n</td>
<td>77</td>
</tr>
<tr>
<td>FiO2 level before incremental increase, mean (SD)</td>
<td>0.37 (0.16)</td>
</tr>
<tr>
<td>FiO2 level after incremental increase, mean (SD)</td>
<td>0.51 (0.20)</td>
</tr>
<tr>
<td>Time of FiO2 incremental increases, sec</td>
<td>195 (145–259)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) or median (IQR), unless otherwise indicated. CPAP = continuous positive airway pressure; DR = delivery room; FiO2 = fractional inspiratory oxygen; IQR = interquartile range; PPV = positive pressure ventilation.
frequencies of 40–60/minute recommended by ILCOR does not allow expiratory braking as spontaneous breathing. Manual inflations were performed mostly with a short inflation time, sometimes interrupted by repositioning of the facemask, thereby losing PEEP. The T-piece device was used without changes in the preset pressure and a crossover to self-inflating bag ventilation was not practiced during the first 6 minutes of life. This pattern of artificial breathing together with the common occurrence of leaks and obstructions may delay uniform lung aeration and the establishment of lung volume, which may adversely influence the efficacy of supplemental oxygen. Fuchs et al have shown that a sustained inflation can increase HR rapidly and SpO2 with slight delay in apneic infants. However, infants in our study did not routinely receive a sustained inflation. Three of five patients increased their HR within 1 minute after one unrepeated 10-second inflation of 25 cmH2O.

There are several limitations to this study. The infants in the PPV group were more immature, smaller, and sicker and their lungs might have been less developed than those in the CPAP group and required more ventilatory support with poor response to the incremental increases of FiO2. Although significantly higher incremental increases in FiO2 were performed in the positive pressure ventilation (PPV) group, the significantly higher changes in SpO2 were found in the continuous positive airway pressure group, which was mainly recognized between 30-second and 45-second intervals after FiO2 increase. In the same time interval, the HR changes were significantly higher in the PPV group but it was not confirmed during the entire investigational period.

Table 3 Significance of differences between continuous positive airway pressure and positive pressure ventilation groups in extents (Δ) of incremental increases of fractional inspired oxygen and related changes (Δ) of heart rate and saturation of oxygen during investigational period (Mann-Whitney U test). *

<table>
<thead>
<tr>
<th></th>
<th>15"</th>
<th>30"</th>
<th>45"</th>
<th>60"</th>
<th>0–60"</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔFiO2</td>
<td>0.019</td>
<td>0.455</td>
<td>0.280</td>
<td>0.195</td>
<td>0.007</td>
</tr>
<tr>
<td>ΔHR, bpm</td>
<td>0.233</td>
<td>0.120</td>
<td>0.021</td>
<td>0.095</td>
<td>0.140</td>
</tr>
<tr>
<td>ΔSpO2, %</td>
<td>0.175</td>
<td>0.490</td>
<td>0.010</td>
<td>0.499</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Bpm = beats per minute; FiO2 = fractional inspired oxygen; HR = heart rate; SpO2 = oxygen saturation.

* Although significantly higher incremental increases in FiO2 were performed in the positive pressure ventilation (PPV) group, the significantly higher changes in SpO2 were found in the continuous positive airway pressure group, which was mainly recognized between 30-second and 45-second intervals after FiO2 increase. In the same time interval, the HR changes were significantly higher in the PPV group but it was not confirmed during the entire investigational period.

Figure 2 Initial FiO2 levels prior to and after incremental increases of FiO2 and related HR and SpO2 values at each time point within 1 minute in both groups. (A) Values of FiO2, 15, 30, 45, 60 in the CPAP group (triangles) and in the PPV group (squares); (B) related HR, 15, 30, 45, 60 and (C) SpO2, 15, 30, 45, 60 values. Mann-Whitney U testing found significant differences between the two groups in independent and both dependent variables at each time point of investigation (p < 0.01). The values are mean with standard deviations. CPAP = continuous positive airway pressure; FiO2 = fractional inspired oxygen; HR = heart rate; PPV = positive pressure ventilation; SpO2 = oxygen saturation.
whether the attenuated effect of the oxygen increases was
causely by the delayed aeration of the lungs in the
poorly spontaneously breathing infants or due to the effects
of such obstructions and/or leaks.

Another limitation is that PPV was only initiated if
bradycardia was present after 90 seconds or target satu-
rations were not reached by 5 minutes. It is possible that
earlier initiation of PPV in infants with marginal respiratory
effort might be more effective in establishing functional
residual capacity and might lead to a better response to
incremental increase of FiO2.

In conclusion, spontaneous breathing, supported by
continuous distending pressure, appears to be the best
condition for adequate lung aeration resulting in gradual
improvement of oxygenation. These infants can be
managed effectively by “gentle” tailoring of FiO2 in in-
crements of 0.1–0.2 in 30–45-second intervals.

However, when PPV was required in more immature in-
fants who were not initially spontaneously breathing, a
much higher incremental increase in FiO2 was required to
improve oxygenation.

Establishment of adequate functional residual capacity
should be the primary aim during the first minutes of life in
extremely premature infants. The technique of facemask
positive pressure ventilation used in this study, which is
based on the last ILCOR recommendation, did not achieve
adequate lung volume recruitment. Further studies are
required in order to determine best ways of lung volume
recruitment in infants lacking spontaneous respiratory
effort and to accurately guide the administration of FiO2
during the resuscitation of extremely preterm infants based
on the degree of spontaneous respiratory activity.

References

1. Perlman JM, Wyllie J, Kattwinkel J, Atkins DL, Chameides L,
 Consensus on Cardiopulmonary Resuscitation and Emergency
 Cardiovascular Care Science with Treatment Recommenda-

 Finer NN. Resuscitation of preterm neonates by using room air
 or 100% oxygen. Pediatrics 2008;121:1083–9.

 et al. Achievement of targeted saturation values in extremely
 low gestational age neonates resuscitated with low or high
 oxygen concentrations: a prospective, randomized trial. Pedi-
 atrics 2008;121:875–81.

4. Rabi Y, Singhal N, Nettel-Aguirre A. Room-air versus oxygen
 administration for resuscitation of preterm infants: the ROAR

 Preterm resuscitation with low oxygen causes less oxidative
 stress, inflammation, and chronic lung disease. Pediatrics

6. Dawson JA, Kamlin CO, Wong C, te Pas AB, O’Donnell CP,
 Donath SM, et al. Oxygen saturation and heart rate during
delivery room resuscitation of infants >30 weeks’ gestation
 with air or 100% oxygen. Arch Dis Child Fetal Neonatal Ed

7. Finer N, Saugstad O, Vento M, Barrington K, Davis P, Duara S,
et al. Use of oxygen for resuscitation of the extremely low birth

8. Vento M. Tailoring oxygen needs of extremely low birth
 weight infants in the delivery room. Neonatology 2011;99:
 342–8.

9. te Pas AB, Davis PG, Kamlin CO, Dawson J, O’Donnell CP,
 Morley CJ. Spontaneous breathing patterns of very preterm
 infants treated with continuous positive airway pressure at

10. Schmo¨ lzer GM, Dawson JA, Kamlin CO, O’Donnell CP,
 Morley CJ, Davis PG. Airway obstruction and gas leak during
 mask ventilation of preterm infants in the delivery room. Arch

 SMP Group Ltd.; 2006–09. Available at: http://www.smp-

12. Dawson JA, Kamlin CO, Vento M, Wong C, Cole TJ, Donath SM,
et al. Defining the reference range for oxygen saturation for

13. Vento M, Cubells E, Escobar JJ, Escrig R, Aguar M, Brugada M,
et al. Oxygen saturation after birth in preterm infants treated
 with continuous positive airway pressure and air: assessment
 of gender differences and comparison with a published
 nomogram. Arch Dis Child Fetal Neonatal Ed 2013;98:
 F228–32.

 Hummler HD. Cerebral oxygenation in very low birth weight
 infants supported with sustained lung inflations after birth.