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Single-field inflation, arguably the simplest and most compelling paradigm for the origin of our Universe, 
is strongly supported by the recent results of the Planck satellite and the BICEP2 experiment. The 
results from Planck, however, also confirm the presence of a number of anomalies in the Cosmic 
Microwave Background (CMB), whose origin becomes problematic in single-field inflation. Among the 
most prominent and well-tested of these anomalies is the Cold Spot, which constitutes the only 
significant deviation from Gaussianity in the CMB. Planck’s non-detection of primordial non-Gaussianity 
on smaller scales thus suggests the existence of a physical mechanism whereby significant non-
Gaussianity is generated on large angular scales only. In this Letter, we address this question by 
developing a localized version of the inhomogeneous reheating scenario, which postulates the existence 
of a scalar field able to modify the decay of the inflaton on localized spatial regions only. We demonstrate 
that if the Cold Spot is due to an overdensity in the last scattering surface, the localization mechanism 
offers a feasible explanation for it, thus providing a physical mechanism for the generation of localized
non-Gaussianity in the CMB. If, on the contrary, the Cold Spot is caused by a newly discovered 
supervoid (as recently claimed), we argue that the localization mechanism, while managing to enhance 
underdensities, may well shed light on the rarity of the discovered supervoid.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

After the recent results from Planck [1–4] and BICEP2 [5], 
the inflationary paradigm, and in particular single-field inflation, 
seems to be the one chosen by nature to generate the observed 
adiabatic, nearly scale-invariant, Gaussian spectrum of curvature 
perturbations and the B-mode polarization at degree angular 
scales. Nevertheless, a number of large-angle anomalies have been 
confirmed by Planck [3], which seems to pose a relative challenge 
for single-field inflation.

In this Letter we pay particular attention to the Cold Spot 
anomaly; a large, nearly circular region of the CMB sky, around 
10◦ in angular size in the southern hemisphere, with a signifi-
cant temperature decrement (see [6] for an extensive review). This 
anomaly was first detected in 2004 [7], and since then it has been 
the subject of numerous statistical analysis [8–10]. Similarly to the 
anomalies of the low quadrupole and the alignment of the low 
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multipoles [11], the Cold Spot has been argued to be of no sta-
tistical significance [12]. However, an intriguing observation first 
put forward in [10] is that there seems to exist an anomalous hot 
spot in the CMB, too. In fact, the results from Planck confirm the 
existence of several other anomalous hot and cold spots [3]. Al-
though detected to a smaller significance, their presence persists 
after applying different masks to the data [3]. This indicates that, 
provided the anomalous nature of the Cold Spot is confirmed [13], 
one should envisage a mechanism flexible enough to accommo-
date a number of anomalous hot and cold spots. On the theoretical 
front, on the other hand, a number of alternatives have been con-
sidered in the literature. Briefly, the most significant consider the 
Cold Spot as the result of: a local void [14], the Sunyaev–Zeldovich 
effect [15], the formation of a cosmic texture [16], multifield infla-
tion [17], or chaotic preheating [18]. At the time of writing, two 
simultaneous papers appeared that went unnoticed to the author1

[19,20]. In these, the detection (with 5σ –6σ significance) of a su-
pervoid aligned with the Cold Spot is reported and investigated as 

1 I thank R. Brandenberger for pointing these out.
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the origin of the Cold Spot itself via a Rees–Sciama effect. Although 
the discovered supervoid constitutes a plausible explanation of the 
Cold Spot, its extreme size, around 200h−1 Mpc in radius (consti-
tuting a 3.5–5σ fluctuation of the ΛCDM model) demands that 
this is confirmed by further studies. In this sense, although the 
LTB fit carried out in [19] (see also [21]) to the discovered super-
void is claimed to provide a perfect explanation of the Cold Spot, 
such a fit, in itself, does not address the rarity of the supervoid, 
which then remains an open question. As we argue later on, the 
mechanism here described might shed light on the rarity of such 
an extreme void. In any case, a number of other anomalous spots 
of similar size have been reported by Planck, and hence it is of 
fundamental importance to investigate the extent to which infla-
tionary fluctuations can give rise to such spots in the CMB.

Since observations clearly support an adiabatic, nearly scale-
invariant, Gaussian spectrum of curvature perturbations (according 
to the generic predictions of single-field inflation), in this Letter
we describe in detail a physical mechanism for the generation 
of the Cold Spot inspired by the idea that the latter, being the 
most prominent non-Gaussian signal in the CMB, has its origin 
in an isocurvature fluctuation. Hence, we take the view that the 
curvature perturbation imprinted by the inflaton is supplemented 
with an additional contribution providing the Cold Spot signal. The 
mechanism developed here is based on the spatial modulation ob-
tained by an interacting light field during inflation. In our setting, 
the spatial modulation arises as the result of a trapping mecha-
nism experienced by the light field due to its coupling to other 
degrees of freedom. Since light fields undergo inflationary fluctu-
ations, the trapping does not occur everywhere at the same time 
during inflation. Owing to this, it is possible that the field relaxes 
to its equilibrium value (due to its interactions with other fields) 
in some locations, whereas in others, the field manages to evade 
its trapping and retains an initially large expectation value, which 
we justify conveniently. To convert the modulation in the isocur-
vature field into a curvature perturbation we utilize the inhomoge-
neous reheating scenario, thus assuming that the isocurvature field 
controls the decay rate of the inflaton. In contrast to the usual in-
homogeneous reheating, in our scenario, owing to the modulation 
obtained by the isocurvature field, the contribution to the curva-
ture perturbation is imprinted on localized regions of the CMB only. 
We show how this localization mechanism allows us to account 
for the Cold Spot while respecting the stringent bounds on non-
Gaussianity imposed by Planck.

The Letter is organized as follows. In Section 2, we describe the 
main idea and basic working of the mechanism. In Section 3, we 
study the stochastic behavior of the field responsible for the emer-
gence of the Cold Spot and quantify the number density of anoma-
lous spots in the CMB. In Section 4, we estimate the curvature 
perturbation contributed by our localized version of the inhomoge-
neous reheating and constrain the model parameters accordingly. 
Conclusions to this Letter are presented in Section 5.

2. A mechanism for the Cold Spot

We investigate a system of two interacting, massive scalar 
fields, σ and χ , minimally coupled to gravity and whose energy 
density remains always subdominant. Taking an interaction term 
of the form g2σ 2χ2 and setting aside the interactions of σ and χ
with other fields, the Lagrangian of the system is

L = 1

2
∂μσ∂μσ + 1

2
∂μχ∂μχ − 1

2
m̄2

σ σ 2 − 1

2
m̄2

χχ2

− 1
g2σ 2χ2, (1)
2

where g is a coupling constant. The above interaction g2σ 2χ2

is ubiquitous in quantum field theory, and its consequences have 
been extensively studied in the theory of reheating and preheat-
ing [22]. Moreover, this coupling results in a trapping mechanism 
whereby points of enhanced symmetry become a preferred loca-
tion (in field space) for string moduli [23]. The trapping mech-
anism has been employed in inflation model building (trapped 
inflation) [24], to generate non-Gaussianity of the inflaton’s per-
turbation spectrum [25], and more recently to study the stochastic 
evolution of coupled flat directions [26]. In our setting, we take ad-
vantage of a result pointed out in [26], namely, that the trapping 
mechanism gives rise to a spatial modulation in one of the fields 
involved in the coupling, provided it begins with an expectation 
value large enough to make the other field heavy.

2.1. The spatial modulation of σ

As shown in [26], when two scalar fields are subject to a cou-
pling of the form g2σ 2χ2 in an inflationary background, one of the 
fields (σ in the following) manages to fluctuate as a free field pro-
vided its expectation value is sufficiently large for the other field 
(χ ) to become heavy. In [26] it was assumed that the mass of χ
is mainly determined by its interaction with σ , hence the con-
dition for σ to fluctuate as a free field is m2

χ � g2σ 2 � H2. We 
then assume that at t = t∗ , when the scale of the observable Uni-
verse exits the horizon N∗ e-foldings before the end of inflation, 
the field’s expectation value σ∗ satisfies this requirement. Since σ
is light enough to undergo particle production, as the last phase 
of slow-roll progresses, the field fluctuates similarly to a free field, 
growing larger in some locations and smaller in others. The trap-
ping mechanism is triggered after σ , owing to both its dynamics 
and random fluctuations, decreases enough for the χ field to be 
produced during inflation. This happens when σ ∼ σc , where we 
introduce the crossover scale [26]

σc ≡ √
10g−1 H . (2)

This mechanism confines σ to the origin of its potential, where 
it fluctuates indefinitely with an expectation value typically far 
smaller than before its trapping [23].

Owing to the inflationary fluctuations, the trapping of σ does 
not happen everywhere at the same time. Therefore, as slow-roll 
inflation progresses, σ obtains a spatial modulation which can be 
schematically described as: σ = σout � σc (where “out” stands for 
out-of-equilibrium or outstanding) in regions where σ fluctuates 
similarly to a free field, and σ = σeq < σc (where “eq” stands for 
equilibrium) in the remaining regions where σ is trapped due to 
its interaction with χ . Regarding the magnitude of σeq, it is im-
portant to note that the strength of the trapping mechanism is 
enhanced by the multiplicity of the χ field. For example, if χ be-
longs to a large GUT group one can expect σeq 	 σc shortly after 
the trapping mechanism is set off. In any case, if σ becomes heavy 
after the trapping, and in the following we assume this is indeed 
the case, its expectation value becomes exponentially suppressed 
as inflation progresses.2 Therefore, at the end of inflation σ fea-
tures a spatial modulation (obtained during the last N∗ e-foldings) 
such that

σeq 	 σout. (3)

The details of the modulation are investigated in the next sec-
tion, but for now we discuss the large value σ∗ required for the 
modulation to arise, i.e. gσ∗ � H∗ . In principle, such condition is 

2 The magnitude of this suppression is studied in detail in [27].
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not problematic if mσ 	 H , for in that case the equilibrium value 
of σ in de Sitter space is anomalously large [28]. However, in the 
context of the inhomogeneous reheating scenario, an important 
remark concerning mσ is in order. On the one hand, the recent 
discovery of the primordial B-mode polarization by the BICEP2 ex-
periment, setting the tensor-to-scalar ratio to r � 0.20 [5], implies 
that the inflaton excursion during inflation is above the Planck 
scale [29]. If σ couples to the inflaton (to modulate its decay rate) 
through renormalizable interactions, then σ receives a large cor-
rection to m2

σ . On the other hand, if σ couples to the inflaton 
through non-renormalizable interactions, then m2

σ ∼ H2 as long as 
the time-averaged vacuum energy is positive [30]. Therefore, in the 
following we consider that m2

σ is dominated by Hubble-induced 
corrections, namely

m2
σ � cσ H2, (4)

where3 cσ ∼ O(1). As a result, σ evolves under the time-
dependent quadratic potential V (σ ) � 1

2 cσ H2σ 2. The lack of tun-
ing entailed by allowing cσ ∼ O(1), although expected on theo-
retical grounds, immediately raises concerns as to the naturalness 
of the value σ∗ necessary to achieve the modulation in Eq. (3). 
The reason is that fields with masses on the Hubble scale typically 
have expectation values on the same scale (see Eq. (17)), which 
is incompatible with the condition gσ∗ � H∗ . However, as shown 
below, this difficulty can be successfully addressed under certain, 
reasonable assumptions.

2.2. Generating the initial condition

Among the natural assumptions on the beginning of inflation is 
that it kicks off at energies close to the Planck scale in some sort 
of non-slow-roll phase. The initial phase, which occurs with the 
observable Universe within the horizon, is called primary inflation 
[32]. Usually, primary inflation is thought to set the initial condi-
tions for the subsequent phase of slow-roll inflation. Such is the 
case of fast-roll inflation [33], for example. The initial phase, how-
ever, has been argued to be of little interest (compared to the last 
phase of slow-roll) since the scales that exited the horizon dur-
ing that epoch are well outside the present horizon. Nevertheless, 
despite this judgment, we investigate the conditions under which 
a non-slow-roll phase of primary inflation sets the appropriate ini-
tial conditions for the emergence of the Cold Spot. This approach 
thus suggests the use of this well-tested anomaly as a tool to con-
strain the primary epoch of inflation.

To illustrate this approach we consider a non-slow-roll phase 
characterized by a constant ε ≡ −Ḣ/H2 �O(1) for simplicity. This 
phase can be motivated, for example, by an inflaton with a non-
negligible kinetic density due to its evolution under a steep poten-
tial.4 Denoting by H0 the scale at the beginning of inflation, the 
evolution of the background geometry is given by

H = H0a(t)−ε, a(t) = (1 + εH0t)1/ε . (5)

We further assume that σ begins the non-slow-roll phase with 
a vanishing expectation value, σ0 = 0. Later non-vanishing values 
of σ thus arise due to the accumulation of superhorizon modes. 
Using Eq. (5), the mode equation

3 This mass limit has also been studied in relation to large non-Gaussianities in 
quasi-single field inflation in [31].

4 Steep scalar potentials are known to be ubiquitous in string theory. In turn, 
the results from BICEP2 [5] on the tensor-to-scalar ratio, implying an inflaton field 
in the Planck scale during inflation [29], may be understood as an indication to 
consider string models of inflation (see [34] for a recent review). In that case, a non-
slow-roll phase of primary inflation can be easily motivated.
¨δσk + 3H ˙δσk +
(

k2

a2
+ m2

σ

)
δσk = 0 (6)

can be solved exactly. Imposing the flat spacetime vacuum solution 
in the subhorizon limit k/aH → ∞ we find

δσk(t) = a−1e
iπ
2 (ν+ 1

2 )

√
−πτ

4
H(1)

ν (−kτ ), (7)

where τ = −[(1 − ε)aH]−1 is the conformal time and ν2 ≡ 9
4 −

cσ −ε(3−2ε)

(1−ε)2 . In the superhorizon regime, k/aH → 0, the mode δσk

scales as

δσk ∝ a−α, α ≡ 3

2
− ν + ε

(
ν − 1

2

)
. (8)

Since H ∝ a−ε , the ratio δσk/H ∝ aε−α grows exponentially during 
inflation when ε − α > 0. The ensuing growth of σ can be under-
stood similarly to a tachyonic instability due to the shape of the 
scalar potential. In our case, however, the instability arises as a re-
sult of the rapid evolution of the background geometry.

Using Eq. (7), we compute the perturbation spectrum

Pδσ (k) ≡ lim
k/aH→0

k3|δσk|2
2π2

= γ
H2

4π2

(
k

aH

)3−2ν

, (9)

where γ = 2−1+2νΓ (ν)2

π(1−ε)1−2ν , and the variance5

Σ2 ≡ 〈
(σ − σ̄ )2〉 = γ

H2

4π2(3 − 2ν)

(
1 − e−(3−2ν)N)

, (10)

where N is the number of elapsed e-foldings since the begin-
ning of inflation. In the above we used σ̄ = 0, which follows from 
σ0 = 0.

Coming back to the issue on the naturalness of σ∗ , we may con-
sider a particular initial condition σ∗ justified provided Σ2 � σ 2∗
by the end of the non-slow-roll phase. From Eq. (10), this hap-
pens when 2ν > 3 and N is sufficiently large. In such case, using 
Eq. (5) and the minimum N required to fulfill Σ2 � σ 2∗ , we may 
compute the minimum H0 compatible with the generation of σ∗ . 
To be precise, let us assume that Σ2 = σ 2∗ is fulfilled right at the 
onset of the slow-roll phase, when the observable Universe exits 
the horizon at H∗ � 2 × 1014 GeV. Taking for example ε = 0.30, 
cσ = 0.15, gσ∗ � 60H∗ and g in the range 0.1 ≤ g ≤ 1, we find 
the corresponding ranges 23 ≥ N ≥ 17 and 2.4 × 1017 GeV ≥ H0 ≥
3.4 × 1016 GeV, thus setting the beginning of inflation close to 
the Planck scale, as suggested in [32]. Of course, the ratio σ∗/H∗
cannot be arbitrarily large. If we require the field σ to be sub-
dominant by the onset of slow-roll inflation, then ρσ 	 H2∗m2

P . 
Neglecting the kinetic density for simplicity, we obtain σ∗/H∗ 	
c−1/2
σ (mP /H∗) ∼ 104c−1/2

σ , thus validating the value of σ∗ previ-
ously chosen.

2.3. Localized inhomogeneous reheating and the generation
of the Cold Spot

To generate the Cold Spot we need a mechanism to convert the 
spatial modulation in σ into a curvature perturbation. A simple 
option to achieve this is through the inhomogeneous reheating hy-
pothesis [35], which considers that a field undergoing inflationary 
fluctuations (σ in our case) determines the inflaton decay rate, de-
noted by Γ (σ ). In this scenario, the contribution to the curvature 
perturbation on uniform density slices is given by [35,36]

5 A result similar to Eq. (10) can be obtained using the stochastic approach to 
inflation applied to σ [27].
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ζσ = α
δΓ (σ )

Γ (σ )

∣∣∣∣
dec

, (11)

where “dec” indicates the time of inflaton decay and α is the effi-
ciency parameter. In the following, we consider that inflation gives 
way to a Universe dominated by the matter-like oscillations of the 
inflaton. Also, we assume that the inflaton decays much after in-
flation, which corresponds to α � 1/6 [35,36].

To illustrate our localized version of the inhomogeneous reheat-
ing, let us consider the decay rate [37]

Γ (σ ) = Γ0

[
1 +

(
σ

M

)q]r

, (12)

where Γ0 is the unperturbed inflaton’s decay rate, q ≥ 1, M is 
a mass scale, which we treat as a free parameter, and σ < M at 
the time of decay. The central idea behind the localized mecha-
nism is that σout (corresponding to an outstanding value of σ ) is 
large enough so that the corresponding ζσ , given by

ζσ � αqr

(
σ

M

)q
δσ

σ

∣∣∣∣
dec

, (13)

represents a sizable contribution to the total curvature perturba-
tion, whereas σeq (with σeq 	 σout as discussed in Section 2.1) 
results in a negligible contribution. At this point, it is important 
to remark that out-of-equilibrium patches may either persist until 
the time of inflaton decay (implying that Eq. (3) holds), or disap-
pear, if σ undergoes a non-perturbative decay after inflation, for 
example. Nevertheless, since a number of alternatives exist to pre-
vent the non-perturbative decay of σ , in the following we assume 
that out-of-equilibrium patches do survive until reheating. In that 
case, it follows from Eq. (13) that the curvature perturbation ζσ
inherits the spatial modulation of σ , namely

ζeq 	 ζout. (14)

In view of Eq. (13), one might think that for q = 1, when ζσ de-
pends on the perturbation δσ only, the mechanism becomes inop-
erative since the spatial modulation of σ is not transferred to ζσ . 
However, since the potential for σ is quadratic, the ratio δσ/σ
remains constant, and consequently ζσ becomes modulated as in 
Eq. (14) since (δσ )eq 	 (δσ )out.

The growth of the decay rate in Eq. (12) with σ implies an 
anticipated decay in out-of-equilibrium regions, where σ features 
an outstanding value. As a result, the energy density in these re-
gions experiences an enhanced redshift compared to equilibrium 
ones, where the smallness of σeq 	 σout causes a negligible per-
turbation of the inflaton decay. Consequently, out-of-equilibrium 
patches result in enhanced underdensities, which appear randomly 
in the observable Universe with the number density in Eq. (22). 
It is thus feasible that one such enhanced underdensity becomes 
the seed of the Cold Spot if it results in the formation of the 
discovered supervoid of about 200h−1 Mpc in radius at redshift 
z � 0.2 [19–21]. On the other hand, when enhanced underdensi-
ties intersect the last scattering surface, anomalous hot spots are 
generated in the CMB. Remarkably, an anomalous hot spot was 
identified in the WMAP data [10], whereas the more recent analy-
sis of the Planck data suggests the existence of two anomalous hot 
spots [3]. Therefore, from the qualitative point of view, the local-
ized inhomogeneous reheating, along with the decay in Eq. (12), 
might suffice to imprint the pattern of anomalous spots observed 
in the CMB through enhanced underdensities along the line of 
sight (cold spots) and in the last scattering surface (hot spots) in 
just one strike.

In this Letter, however, we focus on the possibility that the Cold 
Spot is caused by an enhanced overdensity in the last scattering 
surface, for which it is necessary to consider a decay rate differ-
ent from that in Eq. (12). For example, if the inflaton undergoes 
a 2-body decay into ψ particles, the corresponding rate is [37]

Γ = Γ0

[
1 −

(
2mψ

mφ

)2]1/2

, (15)

where mψ = λσ and λ is a dimensionless coupling. Since Γ

decreases as σ grows large, out-of-equilibrium patches undergo 
a suppressed redshift due to the delayed inflaton decay, thus re-
sulting in enhanced overdensities. The contribution to the cur-
vature perturbation in this case can be obtained from Eq. (13)
after taking q = 2, r = 1 and performing the substitution M →√

qrλ−1mφ .
From the above discussion, it follows that the checklist to ac-

count for the Cold Spot through an enhanced overdensity in the 
last scattering surface encompasses the following requirements. 
First, as we just discussed, the inflaton decay rate must have 
the appropriate dependence with σ to actually generate a Cold 
Spot. Secondly, large expectation values σout must be correlated 
on scales comparable to the Cold Spot. At this point, we should re-
mark that, in principle, field correlations with σ � σc may appear 
on scales other than the corresponding to the Cold Spot. Therefore, 
one might expect to find other anomalous spots in the CMB within 
a range of angular sizes. We address this important observation in 
Section 3, where we compute the probabilistic distribution of out-
of-equilibrium regions that appear in the CMB. The third require-
ment is that ζσ is sufficiently large in out-of-equilibrium regions 
to affect the curvature perturbation imprinted by the inflaton field, 
i.e. ζσ ∼ 4.8 × 10−5 [1,2]. The constraints on the model parameters 
following from this requirement are obtained in Section 4, after 
discussing the post-inflation evolution of σ .

3. Stochastic description of the spatial modulation

As previously discussed, in order to account for the Cold Spot 
through localized inhomogeneous reheating, it is first necessary 
that an out-of-equilibrium patch of the appropriate size arises in 
the CMB. The goal of this section is to estimate the number density 
of spatial patches in which outstanding values σ � σc are corre-
lated on a given comoving scale k−1. For the sake of brevity, in the 
following we refer to the latter as k-patches.

We assume that the scale corresponding to the observable Uni-
verse (k = H∗) exits the horizon N∗ e-foldings before the end of 
inflation, and that the field’s expectation value in the Hubble-sized 
patch from which our observable Universe emerges is σ∗ > σc . To 
obtain the distribution of k-patches at the end of inflation we need 
to describe the probabilistic evolution of σ during slow-roll, which 
is dictated by the Fokker–Planck equation [38]

∂ P

∂t
= ∂

∂σ

(
V ′(σ )

3H
P

)
+ 1

2
D

∂2 P

∂σ 2
. (16)

In the case of fields with a non-negligible mass, as is the case of 
σ , the diffusion coefficient D features a mild scale dependence, 
which is studied in more detail in [27]. In the following, and for 
simplicity, we neglect this mild dependence and take D � H3

4π2 . 
The first term in the right-hand side accounts for the determinis-
tic evolution of P (σ , t), and depends on the scalar potential V (σ ). 
The second term accounts for the stochastic evolution of P (σ , t), 
and its origin is the continuous outflow of perturbation modes 
δσk crossing outside the horizon during inflation. This outflow of 
modes entails an imprint of structure in the classical field config-
uration on progressively smaller scales as inflation proceeds. The 
classical field σ thus features correlations on comoving scales k−1

and larger as long as k−1 is outside the horizon. This reflects the 
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fact that P (σ , t) carries the probabilistic information concerning 
field correlations on all superhorizon scales at time t .

An aspect of P (σ , t) of fundamental importance to the localiza-
tion mechanism is its width. In the case of a massive field during 
slow-roll inflation, the width of the distribution is given by [28]

〈
(σ − σ̄ )2〉 � 3H4

8π2m2
σ

[
1 − exp

(
−2m2

σ t

3H

)]
, (17)

which can be obtained from Eq. (10) in the slow-roll limit for 
cσ 	 1. From Eq. (17) it follows an important observation regard-
ing the feasibility of the mechanism to generate the Cold Spot. 
Since the width of P (σ , t) grows with time (as smaller scales 
exit the horizon), the largest deviation of σ (away from σ̄ ) is 
found in patches bearing field correlations on the smallest super-
horizon scales. As a result, to describe the statistics of the region 
where σ � σc (provided such region is non-vanishing), field cor-
relations on the scale k−1 become comparatively more important 
as k grows. The importance of this to the mechanism relies on the 
fact that field correlations on small scales, even if abundant in the 
region σ � σc due to the larger expectation value, have a small 
chance to intersect the last scattering surface, and hence of arising 
in the CMB. On the other hand, regions where the field is cor-
related over larger distances, albeit comparatively less important 
(or even non-existing) to describe the region σ � σc due to the 
smaller field value, have nevertheless a greater chance to intersect 
the last scattering surface. The ensuing conclusion from this fact is 
that the k-patches that intersect the last scattering surface appear 
predominantly on a given scale, while their presence on both larger 
and smaller scales is suppressed. The remaining of the section is 
dedicated to quantify this argument.

Returning to the probability density P (σ , t), the usual proce-
dure in the stochastic approach to inflation consists in using an ap-
proximately constant diffusion coefficient D = H3

4π2 throughout the 
entire inflationary phase and then solving for Eq. (16). The density 
P (σ , t) so computed carries the information on field correlations 
on all scales that are superhorizon by the end of inflation. For our 
purposes, however, we need to obtain the information on field cor-
relations on a given comoving scale k−1 only, hence we need to 
proceed differently. For our computation we consider a comoving 
scale k−1 exiting the horizon at t = tk . At that time, the solution 
to Eq. (16), P (σ , tk), carries the information on field correlation 
on scales r � k−1. Next, we need to evolve P (σ , tk) until the end 
of inflation. However, doing so by keeping the stochastic term in 
Eq. (16) leads to the imprint of structure on smaller scales. To ob-
tain the information regarding field correlations on scales r � k−1

only, the imprint of structure must be shut down after t = tk . This 
is equivalent to switching off the stochastic term in Eq. (16). The 
simplest alternative to do so is by introducing a scale-dependent 
cut-off in D to filter the appropriate modes. Thus, we solve for 
Eq. (16) using the diffusion coefficient

Dk ≡ Dθ(tk − t), (18)

where θ(t) is the step function. Taking as initial condition a dis-
tribution sharply peaked around σ∗ when the observable Universe 
exits the horizon at t = t∗ , i.e. Pk(σ , t∗) = δ(σ − σ∗), we obtain 
a Gaussian distribution Pk(σ , t) whose mean and width Σ2(k, t) ≡
〈(σ − σ̄ )2〉 at the end of inflation (t = te) are

σ̄ (te) = σ∗e−cσ N∗/3 (19)

and

Σ2(k, te) = 3H2

2
e− 2cσ N∗

3

[(
k

) 2cσ
3

− 1

]
, (20)
8π cσ H∗
where H∗ is the comoving Hubble scale at the onset of slow-roll. 
As shown later on, the scale dependence of Σ2(k, te) proves es-
sential to the generation of k-patches in the appropriate range of 
scales.

The above parameters correspond to the solution of Eq. (16)
in unbounded field space. However, given the trapping mecha-
nism operating at σc , the Fokker–Planck equation must be supple-
mented with the so-called absorbing barrier boundary condition: 
Pk(σc, t) = 0 [39] (see also [40,26] for applications to inflationary 
cosmology), and thus we should question the validity of Eqs. (19)
and (20) in the region σ ≥ σc . The region σ < σc , on the other 
hand, becomes unphysical due to the presence of the barrier. For 
σ ≥ σc , we must point out that as long as Eq. (16) (with D re-
placed by Dk) is the usual Fokker–Planck equation, i.e. for t ≤ tk , 
its solution Pk(σ , t) deviates significantly from a Gaussian when it 
reaches the absorbing barrier, thus invalidating Eqs. (19) and (20). 
On the other hand, the behavior of Pk(σ , t) is very different if it 
reaches the barrier for t > tk , thus implying that all the relevant 
structure is already imprinted in the field configuration when the 
distribution meets the barrier. Since Eq. (16) becomes a first or-
der equation in this case, its solution Pk(σ , t) is “absorbed” by 
the barrier without undergoing any distortion. This also implies 
a discontinuity in Pk(σ , t) to satisfy the boundary condition. Since 
Pk(σ , t) is not affected by the barrier for σ > σc , Eqs. (19) and (20)
hold exactly provided the scale k−1 becomes superhorizon before 
the distribution hits the barrier. This turns out to be the situa-
tion for the range of scales probed in the CMB if σ∗ is sufficiently 
larger than σc and cσ � O(1). We address this question in more 
detail in [27], where it will be shown that σ∗ can be consistently 
chosen so that Eqs. (19) and (20) hold for all CMB scales in the en-
tire range of the parameters g and cσ allowed by the mechanism 
(see Eqs. (29) and (30)).

Using Pk(σ , t) at the end of inflation (Eqs. (19) and (20)), the 
fraction of the inflated volume where σ � σc is correlated over 
comoving distances r � k−1 is

F(k) =
∞∫

σc

Pk(σ , te)dσ = 1

2

[
1 + Erf

(
σ̄ (te) − σc√

2Σ2(k, te)

)]
, (21)

which is scale-dependent owing to the evolution of the width 
during slow-roll. Clearly, F ′(k) dk represents the fraction of the 
inflated volume with field correlations on scales in the interval 
[k +dk, k]. Using this fraction, the corresponding comoving volume 
in the observable Universe with field correlations in the above in-
terval is dVk = H−3∗ × F ′(k) dk. Regarding the shape of k-patches, 
although the spatial region where a random Gaussian field is 
above certain threshold (which corresponds to our definition of 
out-of-equilibrium patch after identifying the threshold with the 
crossover scale) can have a complicated structure (see for example 
[41]), in [42] it was shown that the triaxial ellipsoid approximation 
is a valid description in the immediate neighborhood of the peak, 
and that high peaks tend to be more spherically symmetric than 
lower ones. In turn, nearly spherical shapes are only likely when 
very large thresholds (i.e. rarely occurring peaks) are considered. 
In the context of the Cold Spot, this fact is already appreciated in 
[17]. However, as we move away from the peak and encompass 
a larger spatial region, the triaxial ellipsoid approximation ceases 
to apply. In that case, the averaged shape of the region above the 
threshold (i.e. the out-of-equilibrium patch) tends to be spherically 
symmetric. Based on these results, it is then reasonable to conjec-
ture that the roughly circular shape of the Cold Spot, inferred from 
its morphological analysis [9], originates as the intersection of an 
out-of-equilibrium patch with the last scattering surface. Also, the 
above results allow us to estimate that a k-patch (where σ � σc
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is correlated on the scale k−1) occupies a typical volume k−3, and 
hence that the typical number of k-patches is dNk = k3dVk . Corre-
spondingly, the number density n(k) of k-patches per unit interval 
dk in the observable Universe is

n(k) ≡ dNk/dk = F ′(k)

(
k

H∗

)3

. (22)

Since the factor (k/H∗)3 dominates the scale dependence in the 
cases of interest, out-of-equilibrium regions are more abundant on 
small scales than on larger ones, as expected.

Concerning the field’s spatial profile, after taking all the above 
into account it is reasonable to expect that, to some extent, the 
profile resembles a spherical top-hat. Such an expectation relies, 
on the one hand, on the different magnitude of the field be-
tween equilibrium and out-of-equilibrium regions (see Eq. (3)) and, 
on the other hand, on the fact that the field value in out-of-
equilibrium patches at the end of inflation can be easily seen to 
be of order σ ∼ σc [27].

3.1. Intersecting the last scattering surface

Of course, the number density in Eq. (22) is not the desired, fi-
nal result. If the anomalous CMB spots emerge as the intersection 
of a k-patch (for the appropriate k) with the last scattering sur-
face, the number density in Eq. (22) must be multiplied times the 
corresponding probability of intersection. Regarding the location 
of k-patches, since these emerge as a result of the particle pro-
duction undergone by σ from its vacuum fluctuation, their spatial 
location is random. Invoking the separate Universe approach [43], 
this implies that a k-patch has equal probability of emerging (pro-
vided it actually does) in any of the (k/H∗)3 independent patches 
of comoving size k−3 contained in the volume H−3∗ . Also, since 
the density in Eq. (22) corresponds to the number of k-patches in 
the observable Universe, the sought-after probability of intersec-
tion is subject to the condition that the k-patch emerges within 
the observable Universe. For the sake of simplicity, to estimate this 
probability we take the observable Universe as a box of side 2rlss , 
where rlss is the comoving radius of the last scattering surface, and 
k-patches to be spheres of comoving radius r = k−1/2. Moreover, 
we assume that the size of the intersection between k-patches 
and the last scattering surface is of order k−1 too. Under these 
assumptions, the probability that a k-patch intersects the last scat-
tering surface, written as P lss(r) = 1 −[P in(r) + Pout(r)], where “in” 
(“out”) refers to the probability that the k-patch falls entirely in-
side (outside) the last scattering surface,6 can be easily computed.

To compute P in(r), it suffices to realize that a k-patch falls en-
tirely inside the last scattering surface whenever the center of the 
former, while randomly located in the observable Universe, lies 
within a sphere of radius rlss − r centered at our location. For 
r > rlss, the probability P in(r) is obviously zero, hence we multiply 
it times the step function θ(rlss −r). On the other hand, to compute 
Pout(r) it is enough to note that a k-patch falls entirely outside 
the last scattering surface when the distance between their cen-
ters is larger than rlss + r. The range of validity of this probability 
(r � rlss) can be extended to larger r by defining Pout(r ≥ rlss) = 0. 
The probabilities P in,out(r) determine the probability of intersec-
tion as a function of r. It is convenient, however, to rewrite the 
latter as a function of (k/H∗), similarly to Eq. (22). To do this, 
we note that since the scale of the observable Universe is cur-
rently entering the horizon, we have khor = H0 = H∗ . Using also 
r−1

lss �H0/2, we obtain [27]

6 We do not consider the case when two or more spheres intersect to give rise 
to an out-of-equilibrium patch of size larger than r in the last scattering surface.
Fig. 1. Number density N (k) of k-patches in the CMB. The plot illustrates the case 
cσ = 0.15 and gσ∗ � 60H∗ .

P lss(k) = π

2

H∗
k

[
1 + 1

12

(
H∗
k

)2]
. (23)

Finally, multiplying Eqs. (22) and (23) together we obtain the ex-
pected number density of k-patches per unit interval dk in the last 
scattering surface:

N (k) ≡ n(k)P lss(k) � π

2
F ′(k)

(
k

H∗

)2

. (24)

If the localization mechanism is to account for the Cold Spot 
by means of an overdensity in the last scattering surface, then 
we should expect to find N (kcs) ∼ O(1), where kcs denotes the 
comoving scale of the Cold Spot. Note that the same condition 
must be imposed to account for anomalous hot spots through en-
hanced underdensities in the last scattering surface. To estimate 
kcs/H∗ , we use that the angle subtended by the Cold Spot on 
the last scattering surface is ϑcs � 10◦ [6], whereas ϑdec � 1.7◦
is the angle subtended by the horizon at decoupling. Assuming 
for simplicity a matter dominated Universe at present, we obtain 
kcs
H∗ � ϑdec

ϑcs
Ω

1/2
m /(1 + zdec)

1/2 � 3. We consider the case illustrated 
in Section 2.2, for which cσ = 0.15 and gσ∗ � 60H∗ , and plot the 
predicted number density N (k) in Fig. 1. As shown in the plot, 
we find N (k) ∼ O(1) in the range 1 � log(k/H∗) � 3, thus en-
compassing the Cold Spot scale. Also, since N (k) grows with k, 
we should expect to find a larger number of out-of-equilibrium 
patches on smaller scales. Remarkably, this result is indeed con-
sistent with the identification of several other anomalous spots in 
the CMB on scales slightly smaller than the corresponding to the 
Cold Spot [10,3]. Regarding the magnitude of σ∗ , we can clarify 
now that this is so chosen since, for cσ = 0.15, the average field 
after N∗ = 60 e-foldings of slow-roll is σ̄ (te) � σc . In turn, this im-
plies that F(k) ∼ O(1), and hence the existence of k-patches in 
the range of scales of interest.

The plot in Fig. 1 also features a sharp fall on scales close to 
H−1∗ . Such an abrupt fall owes to having assumed an absorbing 
barrier with zero thickness in field space, i.e. P (σc, t) = 0, which is 
also responsible for the discontinuity of Pk(σ , t) at the barrier pre-
viously noticed. This implies that for a range of scales very close to 
H−1∗ , the distribution Pk(σ , te), while sharply peaked around σ̄ (te)

(partly because of the δ-like initial condition), is almost entirely 
either above the barrier (F � 1) or below (F � 0). In any case, 
F ′ � 0 for scales very close to H−1∗ . On the other hand, an absorb-
ing barrier with zero thickness is clearly an idealized situation, for 
it entails an instantaneous trapping of the field. In a more realistic 
situation, however, the trapping of the field occurs in the Hub-
ble timescale. This is evident since the trapping of σ relies on the 
production of the χ field from its vacuum fluctuation, which in 
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Fig. 2. Relative number density R(k) of k-patches in the CMB, in the case cσ = 0.15
and gσ∗ � 60H∗ . The predicted ratio peaks around the preferred scale kout.

turn takes place in the Hubble timescale. The implications of such 
a finite trapping time for the generation of k-patches is further 
discussed in [27].

3.2. A preferred scale in the CMB

The growth of N (k) displayed in Fig. 1, although consistent 
with the identification of several other anomalous spots in the 
CMB, also suggests that the effect of k-patches should be notice-
able on smaller scales too. In particular, one might anticipate that 
if a k-patch leading to an enhanced overdensity in the last scatter-
ing surface is responsible for the Cold Spot, then a larger number 
of other k-patches should also have observational consequences on 
the scales affecting cosmological parameter fits (� ≥ 50). For exam-
ple, one could expect to find the same level of non-Gaussianity im-
plied by the Cold Spot, which would certainly result in | fNL| � 1. 
However, the Planck data leave little room for primordial non-
Gaussianity, establishing the consistency of the local, equilateral 
and orthogonal bispectrum amplitudes with zero at the 68% con-
fidence level [4]. Therefore, the non-detection of primordial non-
Gaussianity suggests that the effect of k-patches on smaller scales 
must be negligible, which is seemingly incompatible with the gen-
eration of the Cold Spot by a k-patch. In the following, however, 
we show how the effect of k-patches on smaller scales indeed be-
comes negligible as k increases.

The key to understand why the effect of k-patches on scales 
smaller than the Cold Spot is imperceptible is very simple: the 
number of k-patches relative to the total number of patches of co-
moving size k−1 in the last scattering surface, denoted by nlss(k), 
becomes suppressed on smaller scales. To see this it suffices to 
note that the total number of regions of size k−1 in the last scat-
tering surface grows as nlss(k) ∝ k2. Using Eq. (24), we find the 
relative number density of k-patches per unit interval dk

R(k) ≡ N (k)

nlss(k)
� π

27
F ′(k). (25)

In Fig. 2 we depict the predicted ratio R(k) that follows from the 
number density N (k) plotted in Fig. 1, i.e. for cσ = 0.15 and gσ∗ �
60H∗ . The most salient feature of our result is that R(k) peaks 
around certain scale kout, becoming suppressed on both larger and 
smaller scales. Using Eqs. (2) and (19)–(21), the preferred scale kout
can be computed in terms of the model parameters solving for

F ′′(kout) = 0. (26)

Moreover, using Eq. (22) we can also compute the ratio of isocur-
vature patches to adiabatic ones in the observable Universe, which 
is proportional to F ′(k). Therefore, k-patches in the observable 
Universe also emerge preferentially on the scale kout. Since these 
give rise to overdensity regions, it would be worth investigat-
ing the consequences of the existence of k-patches at lower red-
shift, which is beyond the scope of this Letter. Nevertheless, we 
note that the consequences of subhorizon bubbles at lower red-
shift have been examined in the context of the multifield inflation 
model of [17].

According to the above discussion, k-patches are expected to 
have observational consequences in the CMB around the scale kout
only. This implies that on the range of scales relevant to cos-
mological parameter fits (� ≥ 50), the curvature perturbation im-
printed in the CMB is almost entirely determined by the inflaton. 
Consequently, the simple fact that isocurvature k-patches are out-
numbered by adiabatic ones on scales smaller than k−1

out, allows to 
account for the Cold Spot by means of a k-patch in the last scat-
tering surface while, in principle, respecting the stringent bounds 
on non-Gaussianity imposed by Planck [4].

Before closing this section, we wish to point out that our 
localization mechanism for the generation of out-of-equilibrium 
patches could be applicable not only to scalars, but also to vec-
tor fields. In that case, cosmological vector fields obtain a spatial 
modulation similar to the one discussed in Section 2.1. Therefore, 
one might envisage a localized version of the vector curvaton sce-
nario [44] to motivate a localized, direction-dependent contribu-
tion to the curvature perturbation, for example. This possibility is 
examined in more detail in a forthcoming publication [27].

4. Post-inflation evolution

In order to determine the curvature perturbation contributed 
by inhomogeneous reheating (see Eq. (13)) we need to specify the 
evolution of σ from the end of inflation, when the Universe be-
comes dominated by the matter-like oscillations of the inflaton, 
until the time of reheating. Since the inflaton oscillations provide 
a non-vanishing vacuum energy, in the following we envisage the 
persistence of the Hubble-induced correction to m2

σ until reheat-
ing [30]. In such case, the field equation for σ is

σ̈ + 3Hσ̇ + cσ H2σ = 0, (27)

where H = 2t
3 . The scaling of the growing mode (the dominant 

one after inflation) is σ ∝ aγ , where γ = − 3
4 + 1

4

√
9 − 16cσ . If 

16cσ > 9, γ obtains an imaginary part, giving rise to field oscil-
lations, and a real one that determines the scaling of the solu-
tion. This case describes the field dynamics in equilibrium patches, 
where σ behaves as a heavy field due to its coupling to χ . Tak-
ing the average over many oscillations, the field amplitude scales 
as σeq ∝ a−3/4 in equilibrium patches. If 16cσ < 9, the field does 
not oscillate about the origin, thus avoiding its non-perturbative 
decay.7 This is the case of out-of-equilibrium patches. Keeping the 
first order in cσ in the expansion of γ , we find σout ∝ a−2cσ /3. 
This implies that the ratio σout/σeq grows with time during the 
matter-dominated epoch. In turn, this keeps the feasibility of the 
mechanism since Eq. (3), and consequently Eq. (14), continue to 
hold. Moreover, it is straightforward to see that the energy density 
of σ always remains subdominant; since the total energy density 
ρ ∝ H2 and ρσ � 1

2 cσ H2σ 2, it follows that ρσ /ρ ∝ a2γ , which al-
ways decreases with time.

An alternative, typical scenario is when σ starts performing fast 
oscillations about the origin of its potential some time after infla-
tion. Since the field oscillations may lead to the non-perturbative 

7 Note that the non-perturbative decay of σ entails the disappearance of 
k-patches, thus rendering idle the mechanism here described.
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Fig. 3. Available space for g and cσ , according to the constraints in Eqs. (29)
and (30), with N∗ = 60.

decay of σ , in [27] we examine this scenario assuming that σ
avoids such a decay.

4.1. Constraints and feasibility of the mechanism

In this section we constrain the model parameters using the 
condition that ζσ in Eq. (13) gives a sizable contribution to the to-
tal curvature perturbation. Since the ratio δσ/σ remains constant, 
as pointed out before, to use Eq. (13) we must compute the ratio 
(δσ/σ )end.

Since the generation of k-patches in the appropriate scales de-
mands that σ̄ (te) � σc , at the end of inflation σ has a typical value 
of order σend ∼ g−1 H∗ in out-of-equilibrium patches. On the other 
hand, the amplitude of the perturbation δσk at the end of inflation 
can be computed using Eq. (7) in the slow-roll limit. Denoting by 
N(k) the remaining number of e-foldings when k exits the horizon, 
we find that (δσ )end ∼ H∗

2π exp[−N(k)cσ /3]. Using these estimates, 
the contribution to the curvature perturbation becomes [27]

ζσ ∼ αqr

2π
g1−q

(
H∗
M

)q( T 2
rh

H∗mP

) 4qcσ
9

e−N(k)cσ /3, (28)

which also applies to the decay rate in Eq. (15) after taking q = 2, 
r = 1 and substituting M → √

qrλ−1mφ .
The parameters g and cσ are constrained as follows. An appro-

priate initial value σ∗ must be large enough so that gσ∗ > H∗ , 
but sufficiently small for σ to remain subdominant at the on-
set of slow-roll. Given cσ , these two conditions are satisfied for 
g � c1/2

σ (H∗/mP ). The available space must be further constrained 
by the condition σdec < M . From the assumed post-inflation evolu-
tion, this translates into M > g−1 H∗(Trh/V 1/4∗ )8cσ /9. Also imposing 
g � 1, the allowed range of cσ and g is determined by

0 ≤ cσ <
3

N∗
log

αqr

2πζσ
(29)

and

log
2πζσ

αqr
+ N∗

3
cσ < log g � 0, (30)

which is stronger than g � c1/2
σ (H∗/mP ) for q, r ∼ O(1) and ζσ ∼

10−5. The range of parameters allowed by the above constraints is 
depicted in Fig. 3 for the particular case q = 2, r = 1, which makes 
Fig. 4. Available space for cσ and M after imposing ζσ = 4.8 × 10−5 and the con-
straints in Eqs. (29) and (30).

the results applicable to the decay in Eq. (15) too. Fig. 4 depicts 
the range of cσ and M (or 

√
qrλ−1mφ equivalently) allowed by the 

same constraints and by the condition ζσ = 4.8 × 10−5. The range 
shown in the figure corresponds to a reheating temperature in 
the interval 105 GeV ≤ Trh ≤ 109 GeV. The plot demonstrates the 
existence of parameter space satisfying all the requirements, and 
therefore, the feasibility of the localized inhomogeneous reheating 
hypothesis to account for the Cold Spot for cσ �O(1), according to 
theoretical expectations, through an enhanced overdensity in the 
last scattering surface. After replacing M → √

qrλ−1mφ , the plot 
also demonstrates that anomalous hot spots can be accounted for 
through enhanced underdensities in the last scattering surface.

Finally, we remark that, owing to large mass correction con-
sidered in Eq. (4), the contribution ζσ to the curvature perturba-
tion may feature a scale-dependent behavior. However, this may 
be difficult to detect since, as discussed in Section 3.2, the con-
tributed ζσ has a chance to affect observations on scales close to 
kout only (see Fig. 2). In this sense, it is worth mentioning that 
when kout matches the Cold Spot scale, the range of scales where 
observational consequences are expected, according to Fig. 2, has 
an important overlapping with the corresponding to the multipoles 
20 � � � 40, where WMAP and Planck report an unusual shape of 
the spectrum [1,45]. It is thus tempting to suggest that such an un-
usual shape can be related to the emergence of k-patches in the 
CMB.

5. Conclusions

In this Letter we have studied a system of two interacting, 
massive fields, σ and χ , coupled to each other through the inter-
action g2σ 2χ2. We allow both fields to receive corrections to their 
masses of order the Hubble scale, but such that this correction, 
by itself, does not keep the fields from being produced from their 
vacuum fluctuation during inflation. In this simple setting, a mech-
anism arises whereby the expectation value of σ features a spatial 
modulation by the end of inflation. Such a modulation arises dur-
ing the last phase of slow-roll (here assumed to last 60 e-foldings) 
only if σ begins this phase with an expectation value sufficiently 
above the Hubble scale so that χ becomes a heavy field. This con-
dition, however, poses a difficulty for the mechanism. The reason 
is that fields with masses in the Hubble scale typically have ex-
pectation values of order H (see Eq. (17)), which then turns the 
required initial condition into an unnatural one. Nevertheless, we 
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demonstrate that if the Universe undergoes a non-slow-roll phase 
of inflation, the typical value of σ indeed grows above the Hubble 
scale (see Eq. (10)).

In order to convert the spatial modulation of σ into a curvature 
perturbation, we develop a localized version of the inhomogeneous 
reheating hypothesis. In this, the contribution to the curvature per-
turbation ζσ in out-of-equilibrium patches manages to affect the 
one imprinted by the inflaton. On the contrary, in equilibrium re-
gions where σ is trapped, the contributed curvature perturbation 
ζσ is negligible (see Eq. (14)). Consequently, the distribution of 
out-of-equilibrium patches attending to their typical size is an as-
pect of utmost importance to the localization mechanism. Using 
simple assumptions, we estimate the number density of k-patches 
(spatial regions of size k−1 where σ has an out-of-equilibrium 
value) at the end of inflation, Eq. (22). The strong scale depen-
dence of n(k) is an expected result, since scales with larger k exit 
the horizon later, when the typical value of σ is larger. After esti-
mating the probability of intersection between a k-patch and the 
last scattering surface, Eq. (23), we obtain an estimate for the num-
ber density of k-patches in the CMB, Eq. (24).

In Fig. 1, we show that a reasonable choice of parameters suf-
fices to obtain N (k) ∼ O(1) around the Cold Spot scale at the 
end of inflation. The case illustrated corresponds to cσ = 0.15, 
for which the initial condition gσ∗ � 60H∗ , necessary to have 
k-patches of the appropriate size, can be justified after around 
20 e-foldings of inflation (for g in the range 0.1 ≤ g ≤ 1) with 
ε = 0.3. Also, the Hubble scale at the onset of the non-slow-roll 
phase varies in the range 2.4 × 1017 GeV ≥ H0 ≥ 3.4 × 1016 GeV, 
thus setting the beginning of inflation close to the Planck scale, 
as expected on theoretical grounds. Since the initial condition for 
the emergence of the Cold Spot is set by the background dy-
namics previous to slow-roll inflation, our approach suggests to 
use the Cold Spot as a tool to probe the earliest phase of infla-
tion, before our observable Universe exits the horizon. Moreover, 
our approach leads us to interpret the Cold Spot as the signal of 
an out-of-equilibrium remnant of an isocurvature field, which man-
aged to survive thanks to the conjunction of two facts. First, the 
large expectation value obtained by the isocurvature field σ dur-
ing the non-slow-roll phase, and second, the relatively short phase 
of slow-roll inflation that follows and during which fields with 
masses on the Hubble scale relax to their equilibrium values.

Regarding the scale dependence of N (k), remarkably, this is 
consistent with the generation of several other anomalous spots, 
already identified in the CMB on a slightly smaller scale. However, 
in spite of this appealing feature, the scale dependence of N (k)

raises the concern that the effect of k-patches should be notice-
able on scales smaller than the Cold Spot, which would possibly 
ruin the adiabaticity, scale-invariance and Gaussianity of the ob-
served curvature perturbation. Nevertheless, as demonstrated in 
Fig. 2 (see also Eq. (25)), N (k) grows slower than the total num-
ber of patches of size k−1 in the CMB. And the same conclusion 
applies to the number of k-patches in the observable Universe [cf. 
Eqs. (22) and (24)]. As a result, the effect of k-patches on smaller 
scales becomes suppressed simply because they are outnumbered 
by the patches of the same size where the inflaton imprints its 
adiabatic, nearly scale-invariant, Gaussian curvature perturbation. 
Interestingly, Fig. 2 evidences the existence of a scale kout, deter-
mined by particle physics and inflationary parameters (see Eqs. (2), 
(19)–(21) and (26)), around which the existence of isocurvature 
k-patches can have observational consequences.

Apart from imposing N (k) ∼ O(1) around the Cold Spot scale, 
the model parameters must be constrained so that the curvature 
perturbation ζσ (see Eq. (28)) contributed by inhomogeneous re-
heating is of order 10−5. Fig. 3 shows the range of g and cσ

compatible with the mechanism (see Eqs. (29) and (30)), whereas 
Fig. 4 shows the allowed range for M (see Eq. (12)), or 
√

qrλ−1mφ

equivalently (see Eq. (15)), after imposing ζσ = 4.8 × 10−5 and 
the constraints in Eqs. (29) and (30). Also, to build Fig. 4 we al-
low the reheating temperature to take on values in the interval 
105 GeV ≤ Trh ≤ 109 GeV. The plot demonstrates that the localized 
inhomogeneous reheating hypothesis can indeed account for the 
Cold Spot, provided the latter is due to an enhanced overdensity in 
the last scattering surface, using reasonable values of the particle 
physics and inflationary parameters. Since the Cold Spot consti-
tutes the most significant deviation from Gaussianity, the scenario 
here presented provides a physical mechanism to generate a local-
ized non-Gaussian signal in the CMB. Moreover, Fig. 4 also demon-
strates that anomalous hot spots in the CMB can be accounted for 
through enhanced underdensities in the last scattering surface.

To conclude, the setting presented in this Letter provides 
a physical mechanism to generate the Cold Spot anomaly in the 
CMB through the enhancement of an overdensity in the last 
scattering surface. We argue that if the Cold Spot is caused by 
a recently discovered supervoid, the localized inhomogeneous re-
heating, along with the appropriate decay rate (see Eq. (12)), may 
help resolve the question of its rarity, as it results in enhanced un-
derdensities. Furthermore, the localization mechanism predicts the 
generation of several other anomalous spots on a slightly smaller 
scale, which, on the other hand, have already been identified in 
both the WMAP and Planck data. Therefore, having a number of 
interesting avenues to investigate, this work offers new ground to 
explore the origin of the recently confirmed CMB anomalies.
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