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We obtain from the consistency of the existence of a measurable cardinal the consistency
of “small” upper bounds on the cardinality of a large class of Lindelöf spaces whose
singletons are Gδ sets.
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Call a topological space in which each singleton is a Gδ set a points Gδ space. A.V. Arhangel’skii proved that any points
Gδ Lindelöf space must have cardinality less than the least measurable cardinal and asked whether for T2 spaces this
cardinality upper bound could be improved. I. Juhasz constructed examples showing that for T1 spaces this upper bound is
sharp. F.D. Tall, investigating Arhangel’skii’s problem, defined the class of indestructibly Lindelöf spaces. A Lindelöf space is
indestructible if it remains Lindelöf after forcing with a countably closed forcing notion. He proved:

Theorem 1. (F.D. Tall [15]) If it is consistent that there is a supercompact cardinal, then it is consistent that 2ℵ0 = ℵ1 , and every points
Gδ indestructibly Lindelöf space has cardinality � ℵ1 .

In this paper we show that the hypothesis that there is a supercompact cardinal can be weakened to the hypothesis that
there exists a measurable cardinal. Our technique permits flexibility on the cardinality of the continuum.

In Section 1 we review relevant information about ideals and the weakly precipitous ideal game. The relevance of the
weakly precipitous ideal game to points Gδ spaces is given in Lemma 2. In Section 2 we consider the indestructibly Lin-
delöf spaces. A variation of the weakly precipitous ideal game is introduced. This variation is featured in the main result,
Theorem 4: a cardinality restriction is imposed on the indestructibly Lindelöf spaces with points Gδ . In Section 3 we give
the consistency strength of the hypothesis used in Theorem 4 and point out that mere existence of a precipitous ideal is
insufficient to derive a cardinality bound on the indestructibly Lindelöf points Gδ spaces. In Section 4 we describe models
of set theory in which the Continuum Hypothesis fails while there is a “small” upper bound on the cardinality of points Gδ

indestructibly Lindelöf spaces.
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Rothberger spaces are important examples of indestructibly Lindelöf spaces. A space X is a Rothberger space if for each
ω-sequence of open covers of X there is a sequence of open sets, then n-th belonging to the n-th cover, such that the terms
of the latter sequence form an open cover of X . Rothberger spaces are indestructibly Lindelöf (but not conversely). More
details about Rothberger spaces in this context can be found in [14].

1. Weakly precipitous ideals and points Gδ spaces

For κ an infinite cardinal, P (κ) denotes the powerset of κ . A set J ⊆ P (κ) is said to be a free ideal on κ if: (i) each
finite subset of κ is an element of J , (ii) κ is not an element of J , (iii) the union of any two elements of J is an element
of J , and (iv) if B ∈ J then P (B) ⊂ J . For a free ideal J the symbol J+ denotes {A ∈ P (κ): A /∈ J }.

Let λ � κ be a cardinal number. The free ideal J on κ is said to be λ-complete if: For each A ⊂ J , if |A| < λ then⋃
A ∈ J . A free ideal which is ω1-complete is said to be σ -complete.

Lemma 2. Let κ be a cardinal let J ⊂ P (κ) be a σ -complete free ideal on κ . Let X ⊇ κ be a topological space in which each point is
a Gδ . Then for each x ∈ X and each B ∈ J+ and each sequence (Un(x): n < ω) of neighborhoods of x with {x} = ⋂

n<ω Un(x), there is
a C ⊆ B with C ∈ J+ and an n such that Un(x) ∩ C ∈ J .

Proof. For each x in X fix a sequence (Un(x): n < ω) of open neighborhoods such that for each n we have Un+1(x) ⊆ Un(x),
and {x} = ⋂

n<ω Un(x).
Suppose that contrary to the claim of the lemma, there is an x ∈ X and a B ∈ J+ such that for each C ⊂ B with C ∈ J+

and for each n, Un(x) ∩ C ∈ J+ . Fix x and B . Note that for each n we have by hypothesis that Un(x) ∩ B ∈ J+ .
Then for each n we have B ∩(Un(x)\Un+1(x)) is in J . But then as the ideal J is σ -complete we find that B ∩U1(x)\{x} =⋃∞

n=1 B ∩ (Un(x) \ Un+1(x)) ∈ J , whence for each n, B ∩ Un(x) ∈ J , a contradiction. �
Lemma 2 is true for not only for points that are Gδ sets, but more generally for each element of J which is a Gδ subset

of X .
For a free ideal J on κ Galvin et al. [3] investigated the game G( J ) of length ω, defined as follows: Two players, ONE

and TWO, play an inning per finite ordinal n. In inning n ONE first chooses O n ∈ J+ . TWO responds with Tn ∈ J+ . The
players obey the rule that for each n, O n+1 ⊂ Tn ⊂ O n . TWO wins a play

O 1, T1, O 2, T2, . . . , O n, Tn, . . .

if
⋂

n<ω Tn 	= ∅; else, ONE wins.
It is easy to see that if J is not σ -complete, then ONE has a winning strategy in G( J ). It was shown in Theorem 2 of [3]

that J ⊆ P (κ) is a weakly precipitous ideal if, and only if, ONE has no winning strategy in the game G( J ). We shall take this
characterization of weak precipitousness as the definition.

Thus Lemma 2 applies to weakly precipitous ideals. In an earlier version of this paper I proved Lemma 2 under the
hypothesis that the ideal J is weakly precipitous. M. Magidor observed that it is sufficient to assume that the ideal is
σ -complete.

An ideal J on P (κ) is said to be precipitous if it is weakly precipitous and κ-complete. This distinction was not made in
the earlier literature such as [3] and [7]. The κ-completeness requirement appears to have emerged in [8], and the “weakly
precipitous” terminology for the σ -complete case seems to have been coined in [11].

2. The cardinality of points Gδ indestructibly Lindelöf spaces

For a space X define the game Gω1
1 (O, O) as follows: Players ONE and TWO play an inning for each γ < ω1. In inning

γ ONE first chooses an open cover Oγ of X , and then TWO chooses Tγ ∈ Oγ . A play

O 0, T0, . . . , Oγ , Tγ , . . .

is won by TWO if {Tγ : γ < ω1} is a cover of X . Else, ONE wins.
In [14] we proved the following characterization of being indestructibly Lindelöf:

Theorem 3. ([14], Theorem 1) A Lindelöf space X is indestructibly Lindelöf if, and only if, ONE has no winning strategy in the game
Gω1

1 (O, O).

Of several natural variations on G( J ) we now need the following one: The game G+( J ) proceeds like G( J ), but TWO
wins a play only when

⋂
n<ω Tn ∈ J+; else, ONE wins. Evidently, if TWO has a winning strategy in G+( J ) then TWO has a

winning strategy in G( J ). Similarly, if ONE has no winning strategy in G+( J ), then ONE has no winning strategy in G( J ).
A winning strategy in G+( J ) for TWO which depends on only the most recent move of ONE is said to be a winning tactic.
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Theorem 4. Assume there is a free, σ -complete ideal J on κ such that TWO has a winning tactic in G+( J ). Then each points Gδ

indestructibly Lindelöf space has cardinality less than κ .

Proof. Let X be a points Gδ Lindelöf space with |X | � κ . Let Y be a subset of X of cardinality κ and let J ⊂ P (Y ) be a free
ideal such that TWO has a winning tactic σ in G+( J ). We define a winning strategy F for ONE of the game Gω1

1 (O, O) and
then cite Theorem 1 of [14]:

For each x ∈ X fix a sequence of neighborhoods (Un(x): n < ∞) such that for m < n we have Um(x) ⊃ Un(x), and
{x} = ⋂

n<ω Un(x). First, ONE does the following: For each x ∈ X : Choose Dx ⊆ Y and n so that Dx /∈ J , Un(x) ∩ Dx ∈ J and
set C(x) = σ(Dx). Choose n(C(x), x) < ω such that C(x) ∩ Un(C(x),x) ∈ J . ONE’s first move in Gω1

1 (O, O) is

F (∅) = {
Un(C(x),x)(x): x ∈ X

}
.

When TWO chooses T0 ∈ F (∅), fix x0 with T0 = Un(C(x0),x0)(x0). Define C0 = C(x0), D0 = Dx0 . Since C0 ∈ J+ we choose
by Lemma 2 for each x ∈ X a Dx0,x and an n with:

(1) Dx0,x ∈ J+ and Dx0,x ⊂ C(x0) and
(2) Un(x) ∩ Dx0,x ∈ J .

Put C(x0, x) = σ(Dx0,x), and choose n(C(x0, x), x) with C(x0, x) ∩ Un(C(x0,x),x)(x) ∈ J . ONE plays

F (T0) = {
Un(C(x0,x),x)(x): x ∈ X

}
.

When TWO plays T1 ∈ F (T0), fix x1 so that T1 = Un(C(x0,x1),x1)(x1). Define C1 = C(x0, x1) and D1 = Dx0,x1 . Since C1 ∈ J+ we
choose by Lemma 2 for each x ∈ X a Dx0,x1,x and an n with:

(1) Dx0,x1,x ∈ J+ and Dx0,x1,x ⊂ C(x0, x1) and
(2) Un(x) ∩ Dx0,x1,x ∈ J .

Put C(x0, x1, x) = σ(Dx0,x1,x) and choose n(C(x0, x1, x), x) with C(x0, x1, x) ∩ Un(C(x0,x1,x),x)(x) ∈ J . ONE plays

F (T0, T1) = {
Un(C(x0,x1,x),x)(x): x ∈ X

}
,

and so on.
At a limit stage α < ω1 we have descending sequences (Cγ : γ < α) and (Dγ : γ < α) of elements of J+ as well as a

sequence (xγ : γ < α) of elements of X such that:

(1) For each γ , Cγ = C(xν : ν � γ ) and Dγ = D(xν : ν�γ );
(2) For each γ , Dγ +1 ⊂ Cγ = σ(Dγ );
(3) Tγ = Un(Cγ ,xγ )(xγ ).

Since α is countable choose a cofinal subset (γn: n < ω) of ordinals increasing to α. Then as for each n we have Cγn =
σ(Dγn ) we see that (Cγn : n < ω) are moves by TWO, using the winning tactic σ , in G+( J ). Thus we have

⋂
γ <α Cγ =

⋂
n<ω Cγn ∈ J+ .
Then by Lemma 2 choose for each x ∈ X a D(xν : ν�γ )
(x) and n such that

(1) D(xν : ν�γ )
(x) ∈ J+ and D(xν : ν�γ )
(x) ⊂ ⋂
γ <α Cγ and

(2) D(xν : ν�γ )
(x) ∩ Un(x) ∈ J .

Put

C
(
(xν : ν < α) 
 (x)

) = σ(D((xν : ν<α)
(x)))

and choose n(C((xν : ν < α) 
 x), x) such that: C((xν : ν < α) 
 x) ∩ Un(C((xν : ν<α)
x)(x) ∈ J .
Then ONE plays

F (Tγ : γ < α) = {
Un(C((xν : ν<α)
x),x)(x): x ∈ X

}
.

This defines a strategy for ONE of the game Gω1
1 (O, O). To see that it is winning, suppose that on the contrary there is an

F -play won by TWO, say

O 0, T0, . . . , Oγ , Tγ , . . . , γ < ω1,

where O 0 = F (∅) and for each γ > 0, Oγ = F (Tβ : β < γ ). Since TWO wins Gω1
1 (O, O), X = ⋃

γ <ω1
Tγ . But X is Lindelöf,

and so we find a β < ω1 with X = ⋃
γ <β Tγ . But then Cα = C(xν : ν < α), α < β occurring in the definition of F are in J+
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and satisfy for α < β that Cβ ⊂ Cα . It follows that for each γ < β we have Tγ ∩ Cβ ∈ J , and as J is σ -complete it follows
that the Tγ do not cover Cβ ⊂ X , a contradiction. �

At one point in the above proof we made use of the fact that TWO has a winning tactic in G+( J ). Masaru Kada informed
me that in fact, by known results of Foreman and of Velickovic the conclusion of the theorem can be deduced from simply
assuming that TWO has a winning strategy in G+( J ). I thank Kada for his kind permission to include the relevant remarks
here. For notation and more information, see [6]: If TWO has a winning strategy in G+( J ), the partially ordered set ( J+,⊆)

is ω + 1-strategically closed, and thus (see Corollary 3.2 in [6]) is strongly ω1-strategically closed. In the proof of Theorem 4
use TWO’s winning strategy in the game GI

ω1
( J+) instead of a winning tactic in G+( J ).

Problem 1. Let J be a σ -complete free ideal on κ such that TWO has a winning strategy in G+( J ). Does it follow that TWO
has a winning tactic in G+( J )?

Note that by Theorem 7 of [4], if TWO has a winning strategy in G+( J ), then TWO has a winning strategy σ such that
T1 = σ(κ, O 1), and for each n, Tn+1 = σ(Tn, O n+1). It is not known if the conclusion of Theorem 4 follows simply from
assuming that TWO has a winning strategy in G( J ).

Problem 2. Let J be a σ -complete free ideal on κ such that TWO has a winning strategy in G( J ). Does it follow that TWO
has a winning strategy in G+( J )?

3. The hypothesis “TWO has a winning tactic in G+( J )”

We now consider the strength of the hypothesis that TWO has a winning tactic in G+( J ). First recall some concepts. Let
J ⊂ P (κ) be a σ -complete ideal and let λ � κ be an initial ordinal. For subsets X and Y of κ write X ≡ Y mod J if the
symmetric difference of X and Y is in J . Then P (κ)/ J denotes the set of equivalence classes for this relation, and [X] J

denotes the equivalence class of X .
A subset D of the Boolean algebra P (κ)/ J is said to be dense if there is for each b ∈ P (κ)/ J a d ∈ D with d < b. A dense

set D ⊂ P (κ)/ J is said to be λ-dense if for each β < λ, for each β-sequence b0 > b1 > · · · > bγ > · · · , γ < β < λ of elements
of D there is a d ∈ D such that for all γ < β , d < bγ .

The Dense Ideal Hypothesis for κ � λ, denoted DIH(κ,λ), is the statement:

There is a σ -complete free ideal J ⊂ P (κ) such that the Boolean algebra P (κ)/ J has a λ-dense subset.

Note that if μ < λ then DIH(κ,λ) ⇒ DIH(κ,μ).
Consider the following five statements:

I There exists a measurable cardinal.
II There is an ω1 dense free ideal J on an infinite set S .

III There is a free ideal J on a set S such that TWO has a winning tactic in G+( J ).
IV There is a free ideal J on a set S such that TWO has a winning strategy in G+( J ).
V There is a precipitous1 ideal J on an infinite set S .

Then I ⇒ II (let J be the dual ideal of the ultrafilter witnessing measurability), II ⇒ III (see remarks (1), (3) and (4) on
page 292 of [3]), and evidently III ⇒ IV and IV ⇒ V.

In ZFC, for a statement P, let CON(P) denote “P is consistent”. Then we have CON(I) if, and only if, CON(V):

Proposition 5. The existence of a free ideal J on an uncountable cardinal such that TWO has a winning tactic (or strategy) in G+( J )
is equiconsistent with the existence of a measurable cardinal.

Proof. When TWO has a winning tactic in G+( J ), then TWO has a winning strategy in G( J ), and thus ONE has no winning
strategy in G( J ). It follows that J is a weakly precipitous ideal. Jech et al. [7] show that the existence of a weakly precipitous
ideal is equiconsistent with the existence of a measurable cardinal. This shows that consistency of the existence of a free
ideal J on an uncountable set, such that TWO has a winning tactic in G+( J ) implies the consistency of the existence of a
measurable cardinal.

1 Indeed, weakly precipitous works here.
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For the other direction: The argument in Section 4 of [3] can be adapted to show that if it is consistent that there is a
measurable cardinal κ , then for any infinite cardinal λ < κ it is consistent that DIH(λ++, λ+) holds.2 A free ideal J on λ++
witnessing DIH(λ++, λ+) is a free σ -complete ideal such that TWO has a winning tactic in G+( J ). �

Theorem 4 cannot be proved from the equiconsistent but formally weaker hypothesis that the ideal in question is
(weakly) precipitous. This can be seen as follows: Property V is preserved when adding ℵ1 or more Cohen reals. This
follows from the following result, Theorem 2.1 of [13]:

Lemma 6. (M. Magidor [13]) Let (P,<) be a countable chain condition partially ordered set. If J is a precipitous3 ideal on a set S, then

‖−P “ J is a precipitous ideal on S”.

Now I. Juhász has proven that for each infinite cardinal κ less than the first measurable cardinal there is a points Gδ

Lindelöf space X with κ < |X | (see [9] and [15] for details). But adding ℵ1 Cohen reals converts each such groundmodel
space to a Rothberger space (and thus indestructibly Lindelöf space) in the generic extension (see [14]). Thus if it is consis-
tent that there is a weakly precipitous ideal on a cardinal μ less than the first measurable cardinal then it is consistent that
there is a (weakly) precipitous ideal on μ, and yet there is an indestructibly Lindelöf points Gδ space of cardinality larger
than μ.

In Problem 1 it is asked if the existence of a winning strategy for TWO in G+( J ) is equivalent to the existence of a
winning tactic for TWO. Some partial positive information is available. If the Boolean algebra P (κ)/ J has a dense subset
of cardinality at most 2ℵ0 and if TWO has a winning strategy in G+( J ), then P (κ)/ J has a countably closed dense subset:
See [16] Corollary 1.3 and [2]. But then TWO has a winning tactic in G+( J ): TWO plays from the countably closed dense
set, and only consults ONE’s most recent move to decide which element to play. It is not clear if the restriction on the
cardinality of a dense subset of P (κ)/ J is necessary.

4. The continuum and the cardinality of points Gδ indestructibly Lindelöf spaces

The first consequence of the work above is that the hypothesis of the consistency of the existence of a supercompact
cardinal in Theorem 1 can be reduced to the hypothesis of the consistency of the existence of a measurable cardinal:

Corollary 7. If it is consistent that there is a measurable cardinal, then it is consistent that 2ℵ0 = ℵ1 and all points Gδ indestructibly
Lindelöf spaces are of cardinality � ℵ1 .

In what follows we demonstrate that a bound on the cardinality of points Gδ indestructibly Lindelöf spaces does not
have a strong influence on the cardinality of the real line. Since separable metric spaces are points Gδ indestructibly Lindelöf
spaces, there are always points Gδ indestructibly Lindelöf spaces of each cardinality less than or equal to 2ℵ0 .

Corollary 8. If it is consistent that there is a measurable cardinal κ , then for each infinite cardinal ℵα with κ > ℵα > ℵ0 it is consistent
that 2ℵ0 = ℵα+1 and there are no points Gδ indestructibly Lindelöf spaces of cardinality > 2ℵ0 .

Proof. First raise the continuum to ℵα+1 by adding reals. Next Lévy collapse the measurable cardinal to ℵα+2. In the
resulting model 2ℵ0 = ℵα+1 and DIH(ℵα+2,ℵα+1) holds. By Theorem 1 each indestructibly Lindelöf space with points Gδ

has cardinality � ℵα+1 in this generic extension. �
Corollary 9. If it is consistent that there is a measurable cardinal κ , then for each pair of regular cardinals ℵα < ℵβ < κ with ℵℵ1

β = ℵβ

it is consistent that 2ℵ0 = ℵα and 2ℵ1 = ℵβ and there is a points Gδ indestructibly Lindelöf space of cardinality ℵβ , but there are no
points Gδ indestructible Lindelöf spaces of cardinality > 2ℵ1 .

Proof. We may assume the ground model is L[U ] where U is a normal ultrafilter witnessing measurability. GCH holds in
L[U ]. First use Gorelic’s cardinal- and cofinality-preserving forcing to raise 2ℵ1 to ℵβ while maintaining CH. This gives a
points Gδ Lindelöf T3-space X of cardinality 2ℵ1 . Tall shows in [15] that this space X is indestructibly Lindelöf. Then add
ℵα Cohen reals to get 2ℵ0 = ℵα . In this extension the space X from the first step still is a points Gδ indestructibly Lindelöf
T3-space since all these properties are preserved by Cohen reals [14]. The cardinal κ is, in this generic extension, still
measurable [12]. Finally, Levy collapse the measurable cardinal to ℵβ+1. This forcing is countably closed (and more) and
thus preserves indestructibly Lindelöf spaces from the ground model. The resulting model is the one for the corollary. �

2 The model in [3] is obtained as follows: For κ a measurable in the ground model, collapse all cardinals below κ to ℵ1 using the Levy collapse. One
can show that with μ < κ an uncountable regular cardinal, collapsing all cardinals below κ to μ produces a model of DIH(μ+,μ), by verifying that
Lemmas 1, 2 and 3 and the subsequent claims in [3] apply mutatis mutandis.

3 An examination of Magidor’s proof reveals that “weakly precipitous” suffices.
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5. Regarding a problem of Hajnal and Juhász

Hajnal and Juhász asked if an uncountable T2-Lindelöf space must contain a Lindelöf subspace of cardinality ℵ1. Baum-
gartner and Tall showed in [1] that there are ZFC examples of uncountable T1 Lindelöf spaces with points Gδ which have no
Lindelöf subspaces of cardinality ℵ1. In [10], Section 3, Koszmider and Tall showed that the answer to Hajnal and Juhász’s
question is “no”. They also show that the existence of their example is independent of ZFC. Recall that a topological space
is said to be a P -space if each Gδ-subset is open. It is known that Lindelöf P -spaces are Rothberger spaces [14]. They show
in [10], Theorem 4, that:

Theorem 10 (Koszmider–Tall). The following is consistent relative to the consistency of ZFC: CH holds, 2ℵ1 > ℵ2 and every T2 Lindelöf
P -space of cardinality ℵ2 contains a convergent ω1-sequence (thus a Rothberger subspace of cardinality ℵ1).

And then in Section 3 of [10] they obtain their (consistent) example:

Theorem 11 (Koszmider–Tall). It is consistent, relative to the consistency of ZFC, that CH holds and there is an uncountable T3-Lindelöf
P -space which has no Lindelöf subspace of cardinality ℵ1 .

One may ask if the problem of Hajnal and Juhász has a solution in certain subclasses of the class of Lindelöf spaces.
Koszmider and Tall’s results show that even in the class of Rothberger spaces the Hajnal–Juhász problem has answer “no”.
In the class of Rothberger spaces with small character the following is known [14]:

Theorem 12. If it is consistent that there is a supercompact cardinal, then it is consistent that 2ℵ0 = ℵ1 , and every uncountable
Rothberger space of character � ℵ1 has a Rothberger subspace of cardinality ℵ1 .

F.D. Tall communicated to me that the techniques of this paper can also be used to reduce the strength of the hypothesis
in Theorem 12 from supercompact to measurable. A small additional observation converts Tall’s remark to the following.

Theorem 13. Assume there is a free ideal J on ω2 such that TWO has a winning tactic in G+( J ). Then every indestructibly Lindelöf
space of cardinality larger than ℵ1 and of character � ℵ1 has a Rothberger subspace of cardinality ℵ1 .

Proof. If an indestructibly Lindelöf space has cardinality larger than ℵ1 then Theorem 4 implies it has a point that is not Gδ .
Hajnal and Juhász proved that if a Lindelöf space has character � ℵ1 and if some element is not a Gδ-point, then the space
has a convergent ω1-sequence (see Theorem 7 in [1]). Such a sequence together with its limit is a Rothberger subspace. �
6. Remarks

If in a ground model V we have an ideal J on an ordinal α, then in generic extensions of V let J∗ denote the ideal on
α generated by J . It is of interest to know which forcings increase 2ℵ1 but preserve for example the statement: “There is a
σ -complete free ideal J on ω2 such that TWO has a winning strategy in G+( J∗)”. Not all ω1-complete ω2-chain condition
partial orders preserve this statement: In [5] Gorelic shows that for each cardinal number κ > ℵ1 it is consistent that CH
holds, that 2ℵ1 > κ , and there is a T3 points Gδ Lindelöf space X of cardinality 2ℵ1 . Tall showed in [15] that Gorelic’s
space is indestructibly Lindelöf. Since the model in Section 4 of [3] is a suitable ground model for Gorelic’s construction,
Theorem 4 implies that in the model obtained by applying Gorelic’s extension to the model from [3], there is no free ideal
J on ω2 such that TWO has a winning strategy in G+( J ).
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