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1. Introduction

Cut formulas in propositional logic can speed up some proofs exponentially [5]
{a cut-free system is used as reference when we talk about speed-ups); it is hence
important to study proof systems with cut, types of cut formulas (atomic cuts versus
general cuts) and also relations between cut and techniques which may speed up
proofs. In Section 2, we try to explain the importance of atomic cut formulas. We
study the resolution principle [3] and analysis trees [4] with atomic cut and conjec-
ture that there are proofs by analysis trees with atomic cuts and refutations by
resolution, such that transferring them to cut-free proofs will cause exponential increase
of the proof length. We also study unit resolution and conclude that transferring
refutations by unit resolution to cut-free proofs does not cause exponential increase of
the proof length. In Section 3, we discuss using definitions in analysis trees and in
resolution. We conclude that it corresponds to using abbreviations in analysis trees and
to adding possibilities to use more complicated cut formulas in resolution.

2. Atomic cuts

We discuss atomic cuts in propositional analysis trees, in resolution and in unit
resolution. The following are some notations we are going to use in this section:
e d o A: dis a proof of 4 by cut-free analysis trees;
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e d—, A d C
® d—A—-F: dis a resolution tree which deduces F from the set 4;
e | d|: the number of nodes in the proof tree d.
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2.1. Analysis trees with atomic cuts

We first present a proof system called analysis trees [4]. Let ¢, ¢ be formulas
and A be a set of formulas; an analysis tree is a proof that uses the following

rules:
e Normal rules:
- A A, p,70 if @ is atomig;
Ao Ay
Al —
A, o A
A, ¢ 4.y
Vo ————— Vi ————.
A vy Y Aoviy
e Atomic cut:

A, ¢ A,
A

In this section, we only discuss atomic cuts. Contraction is implicitly used in the
system, since the premisses and the conclusion of a rule are considered as sets of

if ¢ 1s atomic.

formulas.

The cut-elimination theorem [4] tells us that eliminating atomic cuts may cause the
proof length to grow exponentially. We try to provide an example to match the upper
bound of cut elimination. Let I be

(M Py T100, P Qut V(P AQ) APy A0 ) |0Sism— 1,
0<j<m—1}.

We first prove I' by an analysis tree with O(m?) steps and show that eliminating
atomic cuts by some cut-elimination strategies leads to an exponential increase of
the proof length, and conjecture that transferring the proof to cut-free proofs
causes exponential increase of the proof length for all possible cut-elimination
strategies.

A proof by an analysis tree with atomic cuts

Let [ be {(PiA Q) A (T Piiy AT1Q;41)|0<i<m—1}. T is a subset of I".
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Definition 2.1. We define T;; (1 <i<m, 0<j<m—1) as parts of the analysis tree:

Poo1, Py 153,0;70; Pu,m Py Qjr1,71Q541
Fja—jpmfl,—]QjaPm—lAQj AP, AT105451. P Qg
I Poa P, Q50 Qg

® T, =ger

[ ] 7-[']' (lglém_l) = def

Tivy,j
Pi_{,m Py Q;70; I, P, P, 00541 Q41,1054
Pi*l/\ijﬁPi—l,ﬂQj rjst7ﬁPi/\_|Qj+1a——]stQj+l

Fj’me—'Pi—lﬂﬁQj’Qj+1

Proposition 2.2. 7);+1;, P, 1Py, 10, Q41 and | Ty ;]| =6m+1 for j=0,...,m—1.

By the definition, we obtain Tl PPy, 10;,Q41  with
| T:; | =6(m+1—i)+ 1. We obtain this proposition by replacing i with 1. In T;;, both
of the number of leaf nodes containing Q;,—1Q; and the number of leaf nodes
containing Q;.,, 1Q;4+, are m—i+ 1. This number will be useful in later discussions
of cut elimination.

Definition 2.3. We define S; (0<i<m—1) in terms of 77 ; (0<j<m—1):
® S =ger T10>
o S;(I<jsm—1) =y
Sj-1 T;
Too oo s Ti_ 1, Py, 1Py, 100, Q; I P, Py, 105,041
FoyeoonTjo 1. T3 Py 1 Py, T1Q0, Q41 ’

Proposition 2.4. S, -, and || S,,_ || =O(m?).

By the definition, we obtain S;t, oy, Tjo1, [jy Pro ™1 Po, —1Q0, Q44
with [[S;=6mj+6m+2j+1. We obtain this proposition by replacing j with
m—1.

Cut elimination

We define a cut-elimination strategy for atomic cuts.
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Definition 2.5. Assume that dy, d, and d, are cut-free. t,(d) is the result of transferring
the proof tree d to the cut-free proof tree by the following strategy:

do
My, 9.9 Moo ( dy )
° reduces to
I, Iy, ¢ Iy, o
d, d, do
. ¢ dy Iy, Iy, o
Iy, Illy.7¢ 1,
———— reducesto —m—————
nlﬂn() nl’n()
dy d, dy dy d, do
Iy, Il ¢ dy m,e Ily,7e Ini.¢ Hy, 7o
Iy, o Ho, 710 Wi, 1.1,
° reduces to
nl#”O nlwno
dl dZ dZ dO
my I, e do d; Mi,e Mo, 7o
i, Iy, @ 1 1.1
° reduces to
H17n0 HI,HO
d, d; dy do
iy, o I do Lo Ig,e d,
Iy, Hy,710 Iy, 11, ]
° reduces to .
nlwno nlﬂnO

Lemma 2.6. Ifdy 11y, Aand d; o 11{.71 A, and k is the number of leaf nodes of the
Jorm (or containing) {A, 71 A} in the proof tree dy, we can construct d=qo Iy, I1; with
ld|l=ldoll+k-(|ld, || =1) by using the cut-elimination strategy t,.

The application of the strategy is as follows: (i) 1,(Sg) is So: (i) 1(S;) (for
j=1,....m—1) is the result of replacing all nodes of the form Q;, 71 Q;in 1,(S; ;) by
Ty ; and replacing Q; by {Q;., I;} in all nodes below T ; in ,(S;_,).

e The number of nodes of the form Q,,— Q, in 4,(Sy) is m. Hence, the number of

nodes in t;(S;) is 6m~+ 1 +(m*(6m+ 1) —m)=6m> + 6m+ 1.

e The number of nodes of the form Q,, —1Q, in 1,(S;) is m>. Hence, the number of

nodes in t,(S,) is 6m® +6m+ | 4+ (m? % (6m+1)—m?)=6m> + 6m? + 6m+ 1.

e Generally, the number of nodes of the form Q;, = Q; in #;(S;_ ) is m’ and the number
of nodes in 1(S;) is Om+l+mx(6Gm+)—m+ - +mix(Om+1)—m/=
6mi* L4 6m/+ .-+ 6m>+6m*+6m+1.
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Proposition 2.7. ||{(S,-)|=0(@m"™).

It shows that there is no k such that |j¢,(d) ] = O(|/d ||¥) for every proof tree d with
atomic cut formulas. An important aspect of this example is that in many subproofs
implicit contractions (a kind of resource sharing) have been carried out at the same
time as the conjunction rule is applied. It is important because a condition to take
advantage of atomic cut formulas and obtain short proofs is that both of the
eliminated literals come from different subtrees of the proof.

The strategy moves the right branch of proofs to the left branch. An alternative
strategy is to move the left branch of proofs to the right branch.

Definition 2.8. Assume that d,, d; and d, are cut-free. t,(d) is the result of transferring
the proof tree d to the cut-free proof tree by the following strategy:

do
flo.o My, 0,79 reduces to < do )
HI*HO’(»D Hl’HO’(p
dl dO dl
do Ty, ¢ Iy, M, e
My, n,, Iy, I
Ho. 19 M- 9 duces to ———r 0
nl’no HlsHO
dy d; do d, do d,
dO (1an n/llv(P HO’__I(P H!l,(P no,ﬂq’ ll/’(p
° o, ¢ . ¢ reduces to 11T 1. T
nl’no n1~no
d d, do d;
do T N0 di Iy,71@ i, ¢
™ Mo, 79 .o reduces to Iy i, ITo
HlsHO Hla”()
dy 4, do dy
do Iy, ¢ II7 Ho,m¢o I, ¢ d,
° o, 719 . ¢ reduces to 1, Mo Hl.
1y, I, I, i,

Lemma 2.9. If dotoIly, A and d, oI, A, and k is the number of leaf nodes of
the form (or containing) {A, 1 A} in the proof tree d, we can construct dt=y 11y, I1,
with |d || =|dy | +k-(lldo{l —1) by using the cut-elimination strategy t,.

The application of the strategy is as follows: (i) .(So) is So; (i) t.(S;) (for
Jj=1,...,m—1) is the result of replacing all nodes of the form Q;,—Q; in Ty; by
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t:(S;- 1) and replacing Q; by {Qo, Iy, I'i..... I;_; | in all nodes below ¢,(S;-)in T} ;.

e The number of nodes of the form Q,, =1 Q, in T}, is m. Hence, the number of nodes
in £,(S)is 6m+1+(m=*(6m+1)—m)=6m>+6m+1.

® The number of nodes of the form Q,, =1 Q, in T}, is m. Hence, the number of nodes
in £,(S,) is 6m+14(m*(6m*+6m+1)—m)=6m>+6m>+6m+ 1.

e Generally, the number of nodes in t,(S;) is 6m’* 1 +-6m/ + ... +-6m> + 6m? +- 6m + 1.

Proposition 2.10. |it.(S,.- ) || =O(m™).

Both the strategies are deterministic and lead to an exponential increase of the
proof length. By combining the reduction steps in these two strategies and removing
the assumption in the definition of the reduction steps, we obtain a nondeterministic
strategy. It is possible to produce a cut-free proof tree with the number of nodes less
than O(m™). But it seems that the increase will still be exponential. For instance, if we
use a mixed strategy {r,L,r,L1,r,,1Lr,...> which eliminates the topmost cut for-
mula by ¢,, eliminates the second cut formula by ¢, and so on, the numbers of nodes in
the subtrees produced by the first steps of cut elimination are
® bm+1+6m-m,
® m+1+6m-m-2,
® 6m+1+6m-m-(2m+1),
® m+1+6m -m-(2m+2),

e 6m+1+6m-m-(3m+2),

® 6m+146m-m-(3m*>+2m+1).

We obtain 6m+ 14+6m-m-¥:_,(i-m'~?) as the number of nodes in the cut free proof
tree if m=n(n+ 1)/2. This number is also exponential.

Conjecture 2.11. There are analysis trees with atomic cuts such that transferring them to
cut free proofs causes exponential increase of the proof length.

2.2. Resolution

The resolution rule looks like a rule with atomic cut. In first-order logic, resolution
may speed up proofs double exponentially [ 1]. We study it in propositional logic here.
Formulas to be falsified by resolution are a conjunction (of a set) of clauses (a clause is
a disjunction of literals). The resolution rule is

AvF —14vG
FvG

E}

where A4 is atomic and F, G are clauses (could be empty). F v G is called the resolvent
of the rule. The input set of clauses is not satisfiable if the empty clause is deducible.
We show that transferring a refutation to a cut-free proof may increase the proof
length exponentially. We use the example of the previous subsection and construct
a similar proof by resolution. Let A4 be the negated set of I" of the previous section.
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We obtain
A={Py, Q0.1 Py 1 Qp} U{TI P,v1Q; v Py v Q4 |0<ism—1,
o<j<m—1}.

We first falsify 4 by resolution with O(m?) steps and then conjecture that transfer-
ring the refutation to cut-free proofs causes exponential increase of the proof length.

Definition 2.12. We define T;;(1 <i<m, 0<j<m—1) as parts of the refutation tree:
=P, AP, vTQ;v PV Qi

_|Pm_1V—.1QjVQj+1

,
® T =aer

’
i+1,j
Pvg;vQi P vTIQ;vEvOig

TPy vTIQ; v Qi

o TH(l<is<m—1) =4y

Proposition 2.13. 7, A—>"1 P, v1Q;v Q; and | T ;| =2m+1.

By the definition, we obtain TjFA-"1P_ v 1Q;v Q@ with |[Tyl=
2(m—i+ 1)+ 1. We obtain this proposition by replacing i with 1.

Definition 2.14. We define S; (0<i<m—1)in terms of T7; (0<j<m—1).
® S0 =qer T'10;

/. T,-
i-1 1j
PovQyvQ; APyvQ;vEi
jP0V—1Q0VQj+1

o Si(forj=1,...,m—1) =y

Proposition 2.15. S,,_ - A4—>—"1P,v Qo Vv Q@ and || S, | =0(m?).

By the definition, we obtain S;F4->—"1Pov—1Qqv Q;y; with |[5}]=
2mj+2j+2m+ 1. We obtain this proposition by replacing j with m—1.

Since Py, Qq,10,, are in A, the rest of the refutation is of constant length.
To eliminate the cut formulas, we first transfer this refutation to a proof of I' (which
is the negation of A) by an analysis tree with atomic cut formulas and then per-
form cut elimination on it. Recall that T;;FA4-—P_;v—Q;vQ;,; and
Tijbol ', Pi21,711Q;, Q4 (I'" is some subset of I'). T}; corresponds to T;;, since
the applications of the resolution rule can be transferred to some applications of the
conjunction rule of analysis trees. S corresponds also to S; (for transferring procedure
from resolution to analysis trees, the reader may refer to [6]). On the basis of this
transformation and the discussion in the previous subsection, we state the following
conjecture.
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Conjecture 2.16. There are refutations by resolution such that transferring them to
cut-free proofs causes exponential increase of the proof length.

Contraction in resolution is also important. In the example (we used 1 P; v
Qv Orrrand VP vTIQ v P v Q. to deduce 1Py vT10Qrv Qiyy) an
implicit contraction had been carried out at the same time as the resolution rule is
applied. @, ., and — Q, which were eliminated in later steps in the resolution tree
come from both of their premisses.

2.3. Unit resolution

Here we consider a restricted resolution called unit resolution. It restricts the
resolution such that one of the parent clauses of a resolvent has to be a unit clause (i.e.
a literal). In first-order logic, unit resolution may speed up some proof exponentially
[6]. We study it in propositional logic in this section. To compare proofs by unit
resolution with cut-free proofs, we need a cut-free proof method as reference. Cut-free
analysis trees could be used, but we construct a special cut-free proof system in order
to make the comparison easier. The system contains the following rules:

o Ax: I'A,—1 A+ if 4 1s atomic;
rA- I A
e R:
I AvytE

We can assume that in unit resolution only unit clauses can be used more than once,
because if a clause other than a unit clause is used more than once, we can find
a shorter refutation. Since all clauses other than a unit clause will only be used once,
we can arrange the literals in a clause in such an order that they are to be removed
(resolved with a unit clause) in the same order. We compare unit resolution and
cut-free proofs by transferring a refutation by unit resolution to a proof by the cut-free
system.

if A4 is a literal.

Proposition 2.17. Ifthere is a refutation of I' by unit resolution with k steps, we can find
a cut-free d such that d is a proof of I' = and 'd | =O(k).

This proposition is justified by the following strategy of transferring a proof by unit
resolution to a proof by the two rules Ax and R.
e A unit resolution step

dy do
A AV AV v A
AIV"'VAk

e transfers to

I' A AF ' A A, v v A+
' A, 7AvA v v A -
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e I contains the set of the original formulas and the deduced formulas. d, and d,
were used to produce 4 and 114 v A, Vv -+ v A, in the conclusion of the second
proof tree, if they are not already in I"". The proof continues from the right branch.

e The last step in the resolution which deduces the empty clause corresponds to an
axiom.

It shows that a step in unit resolution corresponds to using an axiom in cut-free
proofs and the order of proof length by unit resolution corresponds to that of
a cut-free proof. In unit resolution there is no contraction of literals in resolvents, since
one of their parent clauses is a unit clause. Eliminating atomic cuts in such proofs will
not duplicate subproofs.

3. Definitions in proofs

It has been shown that (i) the length of refutations of the pigeonhole example by
resolution is exponential and, by extending resolution with definitions, the order of
the proof length can be reduced to polynomial [2] and (ii) by extending the Frege
system with definitions, we cannot reduce proof length very much [1]. In this section,
we discuss using definitions in resolution and analysis trees with general cuts and the
relation between definition and cut.

3.1. Definitions in analysis trees

Using new symbols which do not occur in the conclusion (the last formula of
a proof) does not have any advantage with respect to proof length. In that case, the
new symbols must be eliminated by applications of the cut rule. Introducing defini-
tions is different. Let 4 be the original set of formulas to be proved. Let I be the set of
definitions to be used in the proof. We first consider this using definitions in a proof of
A as a proof of I'— 4 (i.e. the union of 4 and the negated set of I'). In this case, the new
symbols appear in the conclusion.

To obtain 4, we apply a theory which says that adding definitions of new symbols
does not affect the validity of the original statement, in order to remove the definitions
represented by I' from the conclusion I'— A. This is not a step of a proof by an analysis
tree. To transfer such a proof to an ordinary proof by an analysis tree, we first replace
all defined symbols with their definition. There remain two problems after the
replacement: (1) Some of the leaf nodes may be II, F, 1 F, where F is not atomic.
(2) We must prove I'" (which is I' with the defined symbols replaced by their
definition), and use the cut rule to eliminate I’ from I'' > 4.

If we only accept IT, F,—1 F as an axiom if F is atomic, we need to add some trivial
proofs of formulas of the form F, —1 F. But if we do not require F to be atomic, we need
only to prove I'’, and the length of the proof corresponds to the number of definitions
in I'. We summarize our discussion as follows: introducing definitions corresponds to
using generalized axioms (of the form I', F, —1 F, without restriction on F) and it also
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corresponds to using abbreviations. The conclusion is the same if we allow proofs with
definitions in a less formal way, i.e. we allow substituting A for B without using any
proof rules, if the symbol A is defined as the formula B.

Proposition 3.1. Using definitions in analysis trees corresponds to providing possibilities
to use abbreviations.

Although using abbreviations cannot reduce the proof length very much, if the
proof system allows generalized axioms, but it can make a formula shorter, and can
therefore be important with respect to mechanical proof checks. Sometimes, if we
remove intermediate definitions, the number of symbols in a definition can grow
exponentially.

3.2. Definitions in resolution

We first present the pigeonhole example. The pigeonhole principle can be under-
stood as that there is no injective mapping from a set with n+ 1 elements to a set with
nelements [1]. We use P;; to represent that the ith element in the first set maps to the
jth element in the second set.

Let I, be the set of formulas {P;; v P, v --- v P, |i=1,...,n+1} and 4, be the set
of formulas { Py A Py |k=1,...,nand 1 <i<j<n+1]. The pigeonhole principle can
then be represented by I',— 4,.

By resolution, a proof of I',— 4, is a derivation of the empty clause from the union
of I, and the negated set of 4,. We want to deduce the empty clause from the
following set of formulas:

{PaVv Pyv v P,li=l,....,n+1} and

{7 P v Pylk=1,....nand I<i<j<n+1}.

Let us call the union of these two sets for 2,. The idea is to derive #,_:

{Pihav Piyv---v P, yli=1,..,n}and

(T Ph v Pylk=1,....,n—1and 1<i<j<n}

from 2, by resolution with polynomial length.

To succeed, we need appropriate definitions to connect these two sets of symbols
together. The set of definitions needed is as follows: Pj;<> P;; v (P, , A P,y ;) for
i=l,...,n—1landj=1,...,n[1].

The same strategy can be applied to &, ;, Z,_, until 2, is deduced. The empty
clause can be deduced from 2, by constant length.

Compared with the Frege systems in which using definitions does not affect the
number of lines very much (but may affect the number of symbols used) [1], using
definitions in resolution is more important with respect to the number of proof lines.

Consider again the pigeonhole example. The actual formulas involved in the
refutation by extended resolution are the clauses in 2, and the clauses which represent
the definitions. The latter can be removed without affecting the validity. If we replace
all new symbols with their definition, the proof is still sound. But the proof is not an
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ordinary proof by resolution, because the resolution rule is applied to eliminating
formulas with various length. In fact, the number of symbols in the definitions grows
exponentially. We conclude with the following proposition.

Proposition 3.2. Using definitions in resolution corresponds to providing possibilities to
use more complicated cut formulas.

In the discussion about using definitions in resolution, if I' is the set of definitions
and 4 is the original set of the clauses, resolution has to be carried out on the set I'u 4.
It is very complicated with informal substitutions, since if 4 is defined as A, v 4,,
then we have to combine two clauses to produce 1 4 which is 114, A 71 4,.

4, Summary

We provided a proof of a formula such that eliminating atomic cuts in the proof by
some deterministic cut-elimination strategies leads to an exponential increase of the
proof length, and we conjecture that transferring the proof to cut-free proofs causes
exponential increase of the proof length for all possible cut-elimination strategies. The
result applies also to general resolution. Unit resolution does not have much advant-
age over cut-free systems. A step in unit resolution corresponds to using an axiom in
a cut-free proof.

We also discussed the role of allowing definitions in analysis trees and in resolution.
We conclude that allowing definitions in an analysis tree corresponds to extending the
analysis tree with generalized axioms of the form I', 4, 71 A without restriction on A4,
and allowing definitions in resolution corresponds to providing possibilities to use
more complicated cut formulas. Allowing definitions means more to resolution than
to analysis trees, because resolution has only limited possibilities to use cut.

We tried to explain the importance of atomic cuts. It needs more research in order
to confirm or falsify the conjecture. It also needs more research in order to clarify the
relation between atomic cuts and general cuts. From a study in first-order logic [7] we
can (with some refinements) conclude that in propositional logic, eliminating general
cut formulas may cause double exponential increase of the proof length. The cut-
elimination theorem only states that if a formula is first proved with cut formulas, and
if we eliminate them by cut-elimination strategies, the proof length may increase. Since
every propositional formula can be proved by exponential length, there cannot be any
real double exponential speed-up. Whether there is a proof of some propositional
formula with cut such that all possible cut-elimination strategies will lead to a double
exponential increase of the proof length is an open question.

From the viewpoint of mechanical proof search, there are problems with cuts. As
a referee has pointed out, introducing cuts makes a method more efficient because
proofs may be smaller in some cases, but it also makes it less efficient because it is
much more important how to apply the rules in each situation. The balance between
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these two aspects needs to be studied in order to develop more efficient proof methods
with cuts.
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