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1. Introduction 

Cut formulas in propositional logic can speed up some proofs exponentially [S] 

(a cut-free system is used as reference when we talk about speed-ups); it is hence 

important to study proof systems with cut, types of cut formulas (atomic cuts versus 

general cuts) and also relations between cut and techniques which may speed up 

proofs. in Section 2, we try to explain the importance of atomic cut formulas. We 

study the resolution principle [3] and analysis trees [4] with atomic cut and conjec- 

ture that there are proofs by analysis trees with atomic cuts and refutations by 

resolution, such that transferring them to cut-free proofs will cause exponential increase 

of the proof length. We also study unit resolution and conclude that transferring 

refutations by unit resolution to cut-free proofs does not cause exponential increase of 

the proof length. In Section 3, we discuss using definitions in analysis trees and in 

resolution. We conclude that it corresponds to using abbreviations in analysis trees and 

to adding possibilities to use more complicated cut formulas in resolution. 

2. Atomic cuts 

We discuss atomic cuts in propositional analysis trees, in resolution and in unit 

resolution. The following are some notations we are going to use in this section: 

l d t, A: d is a proof of d by cut-free analysis trees; 
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l d t, d: d is a proof of d by analysis trees with atomic cuts; 

l d t- A+F: d is a resolution tree which deduces F from the set d; 

l 11 d 11: the number of nodes in the proof tree d. 

2.1. Analysis trees ,t,ith utomic cuts 

We first presenl a proof system called analysis trees 141. Let cp, $ be formulas 

and d be a set of formulas; an analysis tree is a proof that uses the following 

rules: 

l Normal rules: 

~ A : A, cp, 7 cp if cp is atomic; 

- A: 
A,cp A,$. 

A,vA$ ’ 

At v A,+ 
- “O: m “l: d,’ 

l Atomic cut: 

A,cp A,lcp 
A 

if cp is atomic. 

In this section, we only discuss atomic cuts. Contraction is implicitly used in the 

system, since the premisses and the conclusion of a rule are considered as sets of 

formulas. 

The cut-elimination theorem [4] tells us that eliminating atomic cuts may cause the 

proof length to grow exponentially. We try to provide an example to match the upper 

bound of cut elimination. Let r be 

We first prove r by an analysis tree with O(m’) steps and show that eliminating 

atomic cuts by some cut-elimination strategies leads to an exponential increase of 

the proof length, and conjecture that transferring the proof to cut-free proofs 

causes exponential increase of the proof length for all possible cut-elimination 

strategies. 

A proqf by an analysis tree with atomic cuts 
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Definition 2.1. We define Tij (1 <i<m, 06 j<m- 1) as parts of the analysis tree: 

0 Tmj =def 
rj,lP~~1>lQj>Pm-,~Qj 

rj, Pm31 pm- 

0 Tj (1 <i<m-1) =de, 

Ti+l,j 

Pi-l$lPi-I Qj>lQj rj,P,,,,lPi,lQj,Qj+~ Qj+l,lQj+l 

Pi-1 A Qj,lPi-l>lQj rj, P,,lPi ~lQj+~,lQj, Qj+l 

Proposition2.2. T,jt,rj,P,,lP,,lQj,Qj+l and l(T,j/I=6m+lforj=O,...,m-1. 

BY the definition, we obtain Tijt,rj,P,,lPi-,,lQj,Qj+l with 

11 Tij II= 6(m+ 1 -i)+ 1. We obtain this proposition by replacing i with 1. In Tj, both 

of the number of leaf nodes containing Qj, 1 Qj and the number of leaf nodes 

containing Qj+ r, 1 Qj+ , are m-i + 1. This number will be useful in later discussions 

of cut elimination. 

Definition 2.3. We define Si (0 < i<m- 1) in terms of T, j (06 j<m- 1): 

. &I =def 7-10, 

l sj (1 dj<m-1) =def 

sj-l Tlj 

r o,...,rj-1,P,,lP,,lQ,,Qj rj~Pm>lP~,lQj~Qj+~ 
r o,... 3 & I 3 5, Pm, 1 Po, 1 Qo, Qj+ I 

Proposition 2.4. S,_ 1 El r and 11 S,_ 1 11 = O(m2). 

By the definition, we obtain Sj~~To,...,Tj_~,Tj,P~,lPo,lQo,Qj+~ 

with // Sj /I = 6mj+6m+2j+ 1. We obtain this proposition by replacing j with 

m- 1. 

Cut elimination 

We define a cut-elimination strategy for atomic cuts. 



Definition 2.5. Assume that do. dI and d2 are cut-free. t,(d) is the result of transferring 

the proof tree d to the cut-free proof tree by the following strategy: 

n, 2 % --, q no, q 
l 

reduces to 

nl’cp n”‘lcp reduces to n;, no 
0 

n,, no n,, no 

d, d, d, do d, do 

n;d n;d do n;,q no,l(p n;d no,-P 

nl’ ’ no’1 reduces to n;, no n;, no 
l 

n,, no n,, no 

d, u’, d, do 

n; n;, cp do d, n;4 no,7cp 
n14 nod 

l 

n,, no 
reduces to 

n; n;,n, 

n,, no 

d, dz 
nh n; do 

dl do 

n;d no,7 d2 

nl’ ’ no’1 ’ reduces to 
n;,n, n; 0 

nl, no nl, no 

Lemma 2.6. Jf‘d, to I7,, A and dI E. ll,. 1 A, and k is the number qfleaf nodes of the 

.fbrm (or containing) {A, 1 Ai in the proof tree do, we can construct d F. no, n, with 

11 d 11 = 11 do 11 + k.( 11 d, 11 - 1) hq’ using the cut-elimination strategy t,. 

The application of the strategy is as follows: (i) t,(S,) is So; (ii) t,(Sj) (for 

j=l 3 ... 9 m- 1) is the result of replacing all nodes of the form Qj, 1 Qj in t,(Sj~ 1) by 

r, ; and replacmg Qi by (Qi+ 1, rj} in all nodes below rI i in t,(Sj- 1). 
The number of nbdes of-the f&m Q1, 1 Q, in t,(S,) is m. Hence, the number of 

nodes in t,(S,) is 6m+ 1 +(m*(6m+ I)-m)=6mZ+6m+ 1. 

The number of nodes of the form Q2, 1 Q2 in t,(S,) is m2, Hence, the number of 

nodes in t,(S,) is 6m2+6m+ 1 +(mZ*(6m+1)-m2)=6m3+6m2+6m+1. 

Generally, the number of nodes of the form Qj, 1 Qj in t,(S,- 1) is &and the number 

of nodes in t,(sj) is 6nz+ 1 +m*(6m+ 1)-m+ ... +mj*(6m+ 1)-m’= 
fjmj+ 1 +6mj+ ... + 6m3 +6m2 + 6m + I. 
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Proposition 2.7. (1 t,(S,- i) I/ = O(mm). 

It shows that there is no k such that (/ t,(d) jl = 0( 11 d Ilk) for every proof tree d with 

atomic cut formulas. An important aspect of this example is that in many subproofs 

implicit contractions (a kind of resource sharing) have been carried out at the same 

time as the conjunction rule is applied. It is important because a condition to take 

advantage of atomic cut formulas and obtain short proofs is that both of the 

eliminated literals come from different subtrees of the proof. 

The strategy moves the right branch of proofs to the left branch. An alternative 

strategy is to move the left branch of proofs to the right branch. 

Definition 2.8. Assume that d,,, d, and d2 are cut-free. t,(d) is the result of transferring 

the proof tree d to the cut-free proof tree by the following strategy: 

do 
. no,cp nl~4blcP 

HI, no, cp 
reduces to 

(l72,; .) 

dl do dl 
do n;,cp no,7 n;d 

. no,7 n14 
reduces to 

n;, no 
n,, no nl, no 

dl dz do dl do 4 
do n;,cp n;,cp no,70 n;d no,7 nl;d 

no,19 n,d n;, no n;, no 
l n,, no 

reduces to 
nl, no 

di dz do dz 

do n; n;,cp d, no,7 nl;,cp 

no,7 n7,, CP 
reduces to 

n; n;,n, 
l 

nl,no nit no 

d, 4 do d, 

do n;,cp n; no,7 n;,cp 4 

no,19 a 4, CP 

n,, no 
reduces to 

n;,n, n; 
n,,n, 

Lemma 2.9. If do FOLIO, A and dl t-oI71, 1 A, and k is the number of leaf nodes of 

the form (or containing) {A, 1 A} in the proof tree d,, we can construct d E. I7,, J7, 

with Ild II = II4 II +k.( IId II - 1) by using the cut-elimination strategy t,. 

The application of the strategy is as follows: (i) t,(so) is So; (ii) t,(Sj) (for 

j=l,..., m - 1) is the result of replacing all nodes of the form Qj, 1 Qj in T1 j by 
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t,(Sj-,)andreplacingQjby{Q,,T,,T,,....Ti~,, ’ in all nodes below t,(Sj_ i) in Ti j. 

l The number of nodes of the form Q1, 1 Q1 in T, 1 is m. Hence, the number of nodes 

in t,(S,)is 6m+l+(m*(6m+l)-m)=6m2+6m+1. 

l The number of nodes of the form Qz, 1 Q2 in T12 is m. Hence, the number of nodes 

in t,(S,) is 6m+1+(m*(6m2+6m+1)-m)=6m3+6m2+6m+1. 

l Generally, the number of nodes in t,(Si) is 6mj+’ +6mj+...+6m3+6m2+6m+ 1. 

Proposition 2.10. I/ r,(S,_ i) /I = O(mm). 

Both the strategies are deterministic and lead to an exponential increase of the 

proof length. By combining the reduction steps in these two strategies and removing 

the assumption in the definition of the reduction steps, we obtain a nondeterministic 

strategy. It is possible to produce a cut-free proof tree with the number of nodes less 

than O(m”‘). But it seems that the increase will still be exponential. For instance, if we 

use a mixed strategy (r, I, r, I, I, r, I, I, I, r, . .) which eliminates the topmost cut for- 

mula by t,, eliminates the second cut formula by t, and so on, the numbers of nodes in 

the subtrees produced by the first steps of cut elimination are 

l 6m+ 1+6m.m, 

l 6m+ 1+6m.m.2, 

l 6m+ 1+6m.m.(2m+ I), 

l 6m+ 1+6m.m.(2m+2), 

l 6m+ 1+6m.m.(3m+2), 

l 6m+ 1 +6m.m.(3m2+2m+ 1). 

We obtain 6m+ 1 +6m.m.C~=2(i.mi~2 ) as the number of nodes in the cut free proof 

tree if m=n(n+ 1):2. This number is also exponential. 

Conjecture 2.11. There are analysis trees with atomic cuts such that trunsferriny them to 

cut free proojh causes e.uponential increuse of the proqf length. 

2.2. Resolution 

The resolution rule looks like a rule with atomic cut. In first-order logic, resolution 

may speed up proofs double exponentially [l]. We study it in propositional logic here. 

Formulas to be falsified by resolution are a conjunction (of a set) of clauses (a clause is 

a disjunction of literals). The resolution rule is 

AvF 1AvG 

FvG ’ 

where A is atomic and F, G are clauses (could be empty). F v G is called the resolvent 

of the rule. The input set of clauses is not satisfiable if the empty clause is deducible. 

We show that transferring a refutation to a cut-free proof may increase the proof 

length exponentially. We use the example of the previous subsection and construct 

a similar proof by resolution. Let A be the negated set of r of the previous section. 
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O<j<m- 1). 

We first falsify d by resolution with O(m’) steps and then conjecture that transfer- 

ring the refutation to cut-free proofs causes exponential increase of the proof length. 

Definition 2.12. We define T;,(l <i<m, O<j<m- 1) as parts of the refutation tree: 

0 TLj =def 
1 pm lP,,-1LlQjvPmVQj+l 

lP,,-1 vlQjVQj+l ’ 

0 Tjj(l <i<m- 1) =der 
lPivlQjvQj+l lPi-1VlQjVPiVQj+l 

lpi-1 vlQjvQj+l 

Proposition2.13. T’~j~A~lP,vlQjvQj+, and IIT;jlI=2m+l. 

By the definition, we obtain Tfjb A +l Pi- 1 v 1 Qj v Qj+ r with I/ T;jIl= 

2(m--i+ l)+ 1. We obtain this proposition by replacing i with 1. 

Definition 2.14. We define S; (O<i<m-1) in terms of T;j (OdjGm-1): 

. Sb =def T’ro; 

0 S;(forj=l,...,m-l)=,,r 
1PovlQovQj lf'ovlQjVQj+l 

lP~vlQovQj+~ 

Proposition 2.15. Sa_, F A-+1 PO v 1 Q. v Q,,, and 11 Sk_, jl =O(m’). 

By the definition, we obtain S>F A-+1 PO v 1 Q. v Qj+ I with IIS) II= 

2mj+2j+2m + 1. We obtain this proposition by replacing j with m- 1. 

Since PO, Qo,lQm are in A, the rest of the refutation is of constant length. 

To eliminate the cut formulas, we first transfer this refutation to a proof of T (which 

is the negation of A) by an analysis tree with atomic cut formulas and then per- 

form cut elimination on it. Recall that TijF A-+1 Pi-l v 1 Qj v Qj+l and 

Tj t--o T’, 1 Pi- 1, 1 Qj, Qj+ 1 (r’ is some subset of T). Tij corresponds to T,j, since 

the applications of the resolution rule can be transferred to some applications of the 

conjunction rule of analysis trees. S; corresponds also to Sj (for transferring procedure 

from resolution to analysis trees, the reader may refer to [6]). On the basis of this 

transformation and the discussion in the previous subsection, we state the following 

conjecture. 
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Conjecture 2.16. There are rqfitations by resolution such that transferring them to 

cutjiree pro@ causes exponential increase of‘ the proof length. 

Contraction in resolution is also important. In the example (we used 1 Pi v 

lQk~Qk+i and ll’-i vlQkvPivQk+l to deduce lpi-1 VTQ~VQ~+~) an 

implicit contraction had been carried out at the same time as the resolution rule is 

applied. Qk+, and 1 Qk which were eliminated in later steps in the resolution tree 

come from both of their premisses. 

2.3. Unit resolution 

Here we consider a restricted resolution called unit resolution. It restricts the 

resolution such that one of the parent clauses of a resolvent has to be a unit clause (i.e. 

a literal). In first-order logic, unit resolution may speed up some proof exponentially 

[6]. We study it in propositional logic in this section. To compare proofs by unit 

resolution with cut-free proofs, we need a cut-free proof method as reference. Cut-free 

analysis trees could be used, but we construct a special cut-free proof system in order 

to make the comparison easier. The system contains the following rules: 

l Ax: r, A, 1 A F if A is atomic; 

l R: 
I-, A F 

” ” if A is a literal. 
r,Av$F 

We can assume that in unit resolution only unit clauses can be used more than once, 

because if a clause other than a unit clause is used more than once, we can find 

a shorter refutation. Since all clauses other than a unit clause will only be used once, 

we can arrange the literals in a clause in such an order that they are to be removed 

(resolved with a unit clause) in the same order. We compare unit resolution and 

cut-free proofs by transferring a refutation by unit resolution to a proof by the cut-free 

system. 

Proposition 2.17. lf’there is u rqfutation of r by unit resolution with k steps, we cunfind 

u cut-free d such that d is a proof’ef’r t and 11 d 11=0(k). 

This proposition is justified by the following strategy of transferring a proof by unit 

resolution to a proof by the two rules Ax and R. 

l A unit resolution step 

d, do 
A 1 A v A, v ... v A, 

A, v ... v A, 

0 transfers to 

I-‘, A,1 A t r’, A, Al v ... v Akt 

r’,A,lAvA,v...v Akt 



Cut formulas in propositional logic 165 

l r’ contains the set of the original formulas and the deduced formulas. di and do 

were used to produce A and 1 A v A, v ... v A, in the conclusion of the second 

proof tree, if they are not already in r’. The proof continues from the right branch. 

l The last step in the resolution which deduces the empty clause corresponds to an 

axiom. 

It shows that a step in unit resolution corresponds to using an axiom in cut-free 

proofs and the order of proof length by unit resolution corresponds to that of 

a cut-free proof. In unit resolution there is no contraction of literals in resolvents, since 

one of their parent clauses is a unit clause. Eliminating atomic cuts in such proofs will 

not duplicate subproofs. 

3. Definitions in proofs 

It has been shown that (i) the length of refutations of the pigeonhole example by 

resolution is exponential and, by extending resolution with definitions, the order of 

the proof length can be reduced to polynomial [2] and (ii) by extending the Frege 

system with definitions, we cannot reduce proof length very much [l]. In this section, 

we discuss using definitions in resolution and analysis trees with general cuts and the 

relation between definition and cut. 

3.1. Definitions in analysis trees 

Using new symbols which do not occur in the conclusion (the last formula of 

a proof) does not have any advantage with respect to proof length. In that case, the 

new symbols must be eliminated by applications of the cut rule. Introducing defini- 

tions is different. Let A be the original set of formulas to be proved. Let r be the set of 

definitions to be used in the proof. We first consider this using definitions in a proof of 

d as a proof of T-+A (i.e. the union of A and the negated set of r). In this case, the new 

symbols appear in the conclusion. 

To obtain A, we apply a theory which says that adding definitions of new symbols 

does not affect the validity of the original statement, in order to remove the definitions 

represented by r from the conclusion r + A. This is not a step of a proof by an analysis 

tree. To transfer such a proof to an ordinary proof by an analysis tree, we first replace 

all defined symbols with their definition. There remain two problems after the 

replacement: (1) Some of the leaf nodes may be II, F, 1 F, where F is not atomic. 

(2) We must prove r’ (which is r with the defined symbols replaced by their 

definition), and use the cut rule to eliminate r’ from T’+A. 

If we only accept II, F, 1 F as an axiom if F is atomic, we need to add some trivial 

proofs of formulas of the form F, 1 F. But if we do not require F to be atomic, we need 

only to prove r’, and the length of the proof corresponds to the number of definitions 

in r. We summarize our discussion as follows: introducing definitions corresponds to 

using generalized axioms (of the form r, F, 1 F, without restriction on F) and it also 
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corresponds to using abbreviations. The conclusion is the same if we allow proofs with 

definitions in a less formal way, i.e. we allow substituting A for B without using any 

proof rules, if the symbol A is defined as the formula B. 

Proposition 3.1. Using dejinitions in analysis trees corresponds to providing possibilities 

to use abbreviations. 

Although using abbreviations cannot reduce the proof length very much, if the 

proof system allows generalized axioms, but it can make a formula shorter, and can 

therefore be important with respect to mechanical proof checks. Sometimes, if we 

remove intermediate definitions, the number of symbols in a definition can grow 

exponentially. 

3.2. Dtfinitions in resolution 

We first present the pigeonhole example. The pigeonhole principle can be under- 

stood as that there is no injective mapping from a set with n + 1 elements to a set with 

n elements [I]. We use Pij to represent that the ith element in the first set maps to the 

jth element in the second set. 

Let~,bethesetofformulas~Pi,vPi,v~~~~Pi,(i=1,...,n+1}andd,betheset 

of formulas { Pik A Pjk 1 k = 1, . , n and 1 <i <j < n + 1). The pigeonhole principle can 

then be represented by T,+d,. 

By resolution, a proof of T,,-+d, is a derivation of the empty clause from the union 

of P,, and the negated set of d,. We want to deduce the empty clause from the 

following set of formulas: 

i pil v pi2 ~...vPi,Ii=l,...,n+l}and 

{TPik vlPjkIk=l,...,n and l<i<j<n+l}. 

Let us call the union of these two sets for 9”. The idea is to derive 9’- ,: 

{PiI v PI2 v...v Pf,O-IIi=l,...,n] and 

(lP~,vlPJkIk=l,...,n-l and l<i<j<n) 

from Yn by resolution with polynomial length. 

To succeed, we need appropriate definitions to connect these two sets of symbols 

together. The set of definitions needed is as follows: Pljo Pij v (Pi,, A P,,+ I,j) for 

i=l ,..., n-l andj=l,..., n [l]. 

The same strategy can be applied to Y_ 1, .Y’,- 2 until 9r is deduced. The empty 

clause can be deduced from 9+r by constant length. 

Compared with the Frege systems in which using definitions does not affect the 

number of lines very much (but may affect the number of symbols used) [l], using 

definitions in resolution is more important with respect to the number of proof lines. 

Consider again the pigeonhole example. The actual formulas involved in the 

refutation by extended resolution are the clauses in 9, and the clauses which represent 

the definitions. The latter can be removed without affecting the validity. If we replace 

all new symbols with their definition, the proof is still sound. But the proof is not an 
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ordinary proof by resolution, because the resolution rule is applied to eliminating 

formulas with various length. In fact, the number of symbols in the definitions grows 

exponentially. We conclude with the following proposition. 

Proposition 3.2. Using definitions in resolution corresponds to providing possibilities to 

use more complicated cut formulas. 

In the discussion about using definitions in resolution, if r is the set of definitions 

and d is the original set of the clauses, resolution has to be carried out on the set r u d. 

It is very complicated with informal substitutions, since if A is defined as Al v A,, 

then we have to combine two clauses to produce 1 A which is 1 Al A 1 A,. 

4. Summary 

We provided a proof of a formula such that eliminating atomic cuts in the proof by 

some deterministic cut-elimination strategies leads to an exponential increase of the 

proof length, and we conjecture that transferring the proof to cut-free proofs causes 

exponential increase of the proof length for all possible cut-elimination strategies. The 

result applies also to general resolution. Unit resolution does not have much advant- 

age over cut-free systems. A step in unit resolution corresponds to using an axiom in 

a cut-free proof. 

We also discussed the role of allowing definitions in analysis trees and in resolution. 

We conclude that allowing definitions in an analysis tree corresponds to extending the 

analysis tree with generalized axioms of the form r, A, 1 A without restriction on A, 

and allowing definitions in resolution corresponds to providing possibilities to use 

more complicated cut formulas. Allowing definitions means more to resolution than 

to analysis trees, because resolution has only limited possibilities to use cut. 

We tried to explain the importance of atomic cuts. It needs more research in order 

to confirm or falsify the conjecture. It also needs more research in order to clarify the 

relation between atomic cuts and general cuts. From a study in first-order logic [7] we 

can (with some refinements) conclude that in propositional logic, eliminating general 

cut formulas may cause double exponential increase of the proof length. The cut- 

elimination theorem only states that if a formula is first proved with cut formulas, and 

if we eliminate them by cut-elimination strategies, the proof length may increase. Since 

every propositional formula can be proved by exponential length, there cannot be any 

real double exponential speed-up. Whether there is a proof of some propositional 

formula with cut such that all possible cut-elimination strategies will lead to a double 

exponential increase of the proof length is an open question. 

From the viewpoint of mechanical proof search, there are problems with cuts. As 

a referee has pointed out, introducing cuts makes a method more efficient because 

proofs may be smaller in some cases, but it also makes it less efficient because it is 

much more important how to apply the rules in each situation. The balance between 
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these two aspects needs to be studied in order to develop more efficient proof methods 

with cuts. 
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