
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 13, 318- -334 (1976)

Complexity Metatheorems for
Context-Free Grammar Problems

HARRY B. HUNT, I I I*

Center for Research in Computing Technology, Harvard University,
Cambridge, Massachusetts 02138

A N D

THOMAS G. SZYMANSKI t

Department of Electrical Engineering and Computer Science,
Princeton University, Princeton, New Jersey 08540

Received September 22, 1975; revised May 5, 1976

Metatheorems are presented which can be used to (i) establish undccidability
results about context-free grammar problems, and (ii) establish lower bounds on
certain decidable grammar problems. The main undecidability result is obtained
through the simulation of a Turing machine which always halts. This technique
promises to be applicable in many situations where conventional techniques for
proving undecidability do not succeed.

1.]NTRODUCTION

This paper is primarily concerned with the problem of establishing lower bounds
on the complexity of broad classes of predicates on the context-free grammars.

Section 1 contains an overview of the paper and sufficient background material
and definitions for the comprehension of the more technical results.

In Section 2 we develop a metatheorem which gives sufficient conditions for arbitrary
predicates on the context-free grammars to be undecidable. Although the idea of
such metatheorems is not new, all previous such results deal with predicates on
languages rather than predicates on grammars. Specifically, we show the undecidability
of any predicate which is true of all grammars which are simultaneously strong LL,
SLR, and BRC and false of all grammars which generate languages of unbounded
inherent ambiguity. 1 Many undecidability results which had previously be obtained

Work supported by NSF grant GJ-35570 and U.S. Army Contract DA-31-124-ARO-D-462o
* Work supported by NSF grants GJ-35570 and I)CR 74-21939.
1 A language is of unbounded inherent ambiguity if for any integer k and any grammar

generating the language, that grammar produces k distinct derivation trees for some string.

318
Copyright '~ 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CONTEXT-FREE GRAMMARS 319

by ad hoc constructions follow directly from this result. More importantly, the
proof of this result introduces a new technique for proving undecidability which
promises to be applicable in many situations where more conventional techniques
cannot be used. Simply put, the technique involves efficiently reducing the member-
ship problem for an arbitrary recursive set to the problem at hand. In this way we
can show that the problem is of nonrecursive complexity and must therefore be
undecidable. In many situations it is technically far easier to embed the computations
of a Turing machine which is known to eventually halt than it is to embed the com-
putations of machines not subject to this restriction.

In Section 3 we develop a subrecursive analog of this metatheorem and use it
to establish lower bounds for testing membership in certain parameterized hierarchies
of grammar classes. For example, any uniform algorithm which decides of a grammar
G and integer k whether that grammar is LR(k) requires nondeterministic exponential
time. This particular result had previously been shown in [9]. Here we present
a metatheorem which yields this result not only for the LR(k) hierarchy but also
for most other "natural" hierarchies of grammars.

We assume that the reader is familiar with the basic definitions and results con-
cerning context-free grammars and languages, otherwise see [1] or [I0]. The empty
string is denoted by A, the reversal of a string w is denoted by w rev, and the language
generated by a grammar G is denoted by L(G).

Moreover, we assume that the reader is acquainted with the basic results of parsing
theory as presented, for instance, in [1]. In particular, we assume familiarity with
the following parsing methods: strong LL, LL, SLR, LR, and BRC (bounded right
context). Throughout the paper we shall only parameterize the above class names
when we wish to denote a specific subclass. Under this convenition it would be
legitimate to say "It is undecidable whether a grammar is LR, but decidable whether
it is LR(k)."

We shall need a few additional definitions associated with grammars.

DEFINITION 1.1. Let G = (V, X, P, S) be a context-free grammar. The size
of G (denoted I G I) is defined to be the total number of occurrences of terminals
and nonterminals in all productions, more formally,

IGI= ~ IA~I.
A . o e~ r P

For any a ~ V* and nonnegative integer k, we define

FIRST~(~) = { x ~ X * [~ x f land]x[= k f o r s o m e 3 e V *
G

o r ~ * ~ xand Ix[< k } ,
G

320 H U N T I I I AND SZYMANSKI

FOLLOWk(~) == {x e 27* [S *~ ~,a/~ for some ~,, 13 e V*
G

and x e FIRSTk(fl)}. |

The concept of ambiguity arises in several places in this paper.

DEFINITION 1.2. A context-free grammar G is said to be:

(i) unboundedly ambiguous if for any positive integer k there exists some string
in L(G) having k or more distinct leftmost derivations according to G,

(ii) ambiguous of degree k if some string in L(G) has k distinct leftmost deriva-
tions, but no string in L(G) has more than k leftmost derivations according to G,

(iii) unambiguous if it is ambiguous of degree l, that is, every string in L(G)
has a unique leftmost derivation in G,

(iv) ambiguous if it is not unambiguous. |

DEFINITION 1.3. A context-free language L is said to be:

(i) of unbounded inherent ambiguity if every grammar generating L is un-
boundedly ambiguous,

(ii) inherently ambiguous of degree k if L is generated by some grammar which
is ambiguous of degree k but by no grammar which is ambiguous of degree less
than k,

(iii) inherently unambiguous if L is generated by a grammar which is un-
ambiguous,

(iv) inherently ambiguous if every grammar generating L is ambiguous. |

It has been shown [13] that there are context-free languages of unbounded inherent
ambiguity and of inherent ambiguity k for every k >~ 1. We shall often apply these
terms directly to grammars. Thus the statement "G is inherently ambiguous" means
"L(G) is inherently ambiguous."

We shall also need some basic notions concerning computational complexity.

DEFINITION 1.4. A function f(n) is said to be polynomially bounded (exponentially
bounded) if there exists a polynomial p(n) and integer n' such thatf(n) ~< p(n) (f(n) <~
2 v(n)) for all n > n'. P, NP, E, and NE are the classes of languages accepted by
deterministic and nondeterministic, polynomially and exponentially, time bounded
Turing machines, respectively. |

It is not currently known whether P = NP or E = NE. Nevertheless certain
languages called complete languages reflect the complexity of each entire class.

CONTEXT-FREE GRAMMARS 321

DEFINITION 1.5. A language L 0 is said to be NP-hard (NE-hard) if the following
condition is true: Given a deterministic polynomially (exponentially) time bounded
Turing machine to recognize L 0 and a language L in NP (lYE), we can effectively
find a deterministic polynomially (exponentially) time bounded Turing machine
to recognize L, I f in addition, L o is a member of NP (NE) then L o is said to be NP-
complete (NE-complete). |

We shall occasionally deal with various types of transformations between languages.

DEFINITION 1.6. Let Z and A be finite alphabets. A function f : 2:* -+ A * is said
to be log space computable if there exists a deterministic Turing machine M such that

(1) M has a two-way read-only input tape,

(2) M has a one-way write-only output tape,

(3) M has one or more two-way read-write work tapes,

(4) M when started with x on its input tape produces f(x) on its output tape,

(5) M never uses more than 0(log [x l) tape cells on its work tapes. |

We may now define various types of transformations.

DEFINITION 1.7. A language L is transformable to a language L ' (written L ~ L ')
if there exists a function f such that x e L if and only if f (x)~L ' . Iff is computable
by a polynomially t ime bounded deterministic Turing machine then we say that L
is polynomially transformable to L ' (written L ~ - t i m e L'). Iff is log space computable
we say L is log space transformable to L ' (written L ~log L') . I f in addition [f(x)l ----
0(] x I) we say that L is log-lin space transformable to L' (written L ~log-un L') . |

Notice that L ~-log-lin L' implies L ~log L' implies L ~.~p-time L'. I f every language
in a set of languages S is transformable to some language L 0 , we shall write S ~ L 0 ,
subscripting the ~ if necessary to indicate a particular kind of transformabillty.

We shall need one technical lemma concerning inherent ambiguity.

LEMMA 1.8. Let L be a context-free language and h be a homomorphism. Then
the degree of inherent ambiguity of h-l(L) is less than or equal to the degree of inherent
ambiguity of L.

Proof. We give a proof modeled after one appearing on [10, p. 172]. Let P be
any pushdown automaton (PDA) which accepts L. Construct a PDA P' for h-l(L)
as follows: P', on input x, applies h to x one character at a time, buffering the result
in its finite control and simulating P on the result. Thus P' accepts x if and only
if P accepts h(x). Hence P' accepts exactly h-l(L). Moreover, the number of distinct
ways in which P' accepts x is no greater than the number of ways in which P accepts

322 HUNT llI AND SZYMANSKI

h(x). Thus, the degree of ambiguity of P ' is no greater than the degree of ambiguity
of P. Rephrasing this in terms of languages and inherent ambiguity, we have our
result. |

2. UNDECIDABILITY METATHEOREMS FOR CONTEXT-FREE GRAMMAR PROBLEMS

Several powerful metatheorems for proving the undecidability of arbitrary predicates
on the context-free languages have appeared in the literature [5, 7]. The haain result
of this section is a metatheorem which is applicable to predicates defined on grammars
rather than languages.

The reader would be well advised to pause at this point and reflect upon the distinc-
tion between language and grammar problems. Decidability questions involving
languages must always involve a level of "indirection" as exemplified by "given
a grammar G, isL(G) empty ?" This indirection is required by the fact that languages
are in general infinite objects and as such must always be defined by some sort of
finite descriptor. This indirection is not needed in typical grammar questions such
as "given a grammar G, is G ambiguous ?"

To further clarify this distinction let us contrast the class of recursively enumerable
sets, for which no nontrivial predicate is decidable, with the class of type 0 grammars,
for which many nontrivial predicates are decidable.

The statement and proof of our metatheorem depend on the following lemma.

LEMMA 2.1. Let M be a deterministic or nondeterministic
T(n) be a strictly increasing recursive function such that:

(i)
(ii)

(iii)

(iv)
portion of

(v)

Turing machine and

M has one semi-infinite tape on which the input is placed left-justified;

M never "falls of f" the left end of its tape;

M never performs more than T(n) steps on any input of length n;

M only enters an accepting state when at the extreme right end of the utilized
its tape;

M can make no move out of an accepting state. ~

Let v be the input alphabet of M. Let x ~ Z* and let k~ be at least 2 �9 T(I x 1) 2 +
6 �9 T([x]) + 5. Then there exists a grammar GM.~ and constants q , c 2 , and c 3 ,
depending only on M such that:

(1) G i . ~ i s o f s i z e c l + J x l ;

(2) GM,z may be constructed from x in deterministic time c 2 �9 I x l + ca, on a
multi-tape Turing machine;

Conditions (i) through (v) may be assumed without loss of generality for any Turing machine
which accepts a recursive set, although the running time T(n) may have to be increased.

(3)
(a)

(b)

(c)

(d)

(e)

Proof.

CONTEXT-FREE GRAMMARS

the following are equivalent:

M accepts x,

GM. ~ is of unbounded inherent ambiguity,

G,~t.~ is not strong LL(k~),

GM, x is not SLR(k~),

G~.~ is not BRC(k~, k~). |

323

Let Q, Qt , and / " be respectively the sets of states, final accepting states,
and tape symbols of M. Let qo be the start state of M. Let $, r # , a, b, and c be new
symbols.

The grammar GM.~ includes the following productions

S ~ A B C S [A B C S [r

A - + S ,
.,~---, $,

B--+ qox # D,

plus many additional productions which depend only on M. The complete construction
of GM.~ is presented in Appendix I. It should be clear that CaM. x is of size q .'--] x [
and may be constructed in time co-. ix I - - c3 for appropriate constants q , co, c3
depending only on M.

Any string derived from B is of the form

such that

wl # wo- # . ' - # w~ #

t is a positive integer,

W 1 --= qo x ,

w i ~ Z ' * - (Q - Q 1) . 2 ~ * for 1 < i < 2 t ,

w2e ~ Qt �9 ~*,
rev for I ~ i < t. ~/32i :-: W21+l

Any string derived from/~ is of the form

w~ # w,, # . . . # w2~ #

such that
t is a positive integer,

w i c X * Q X * for 1 < i < ~ 2 t ,

rev for 1 ~ / i ~ t. W2i--1 ~ W2i

571t't3f3-6

324 H U N T I I I AND SZYMANSKI

The nonterminal C derives

{ aibjcz I i, j, l >~ 1 and i : j},

whereas the nonterminal C derives

{aib~c I [i , j , l ~ 1 and i = l}.

We must now show the equivalence of statements (a) through (e). Suppose first
that M accepts x. Then for some m ~< T([x I), there exists an accepting computation
of M on x which we may write as

id o ~ ida ~ ads ~-~M "" ~ id,~.

Let z be the string

id o # id~ ev # id~ # id~ ev # . . . # id,n_, # id~ v # .

Notice that z is derivable from both B and/~.
Define a homomorphism h by

h(a) = a,

h(b) = b,

h(c) = c,

h(r = r

Then

h-I(L(GM,x)) = {$ aibacz I i ~- j or i = / } * " {r

Clearly this is a language of unbounded inherent ambiguity. Since, by Proposition 1.8,
an inverse homomorphism cannot increase the degree of inherent ambiguity of a
language, we can conclude that GM, , must be a grammar of unbounded inherent
ambiguity. Thus GM. x is ambiguous and certainly not BRC(k, k), SLR(k), or strong
LL(k) for any value of k, let alone for k = k~. We have thus established that (a)
implies (b) through (e).

Suppose then that M does not accept x. Close examination of the productions
of GM,~ reveal that GM.x is very easily parsed provided that the parser can somehow
"tell the difference" between the productions .4 -+ $ and A--~ $. More formally,
GM,x is BRC(kx, k~), SLR(k~), and strong LL(k~) if and only if

FOLLOW~,(A) n FOLLOW**(A) == ~ .

CONTEXT-FREE GRAMMARS 325

Accordingly, let y be an arbitrary member of F O L L O W k , (A) n FOLLOW~, (A) .
Two cases arise depending on whether y contains the symbol a or not. We shall
show that both cases lead to contradictions and that y cannot exist. This will prove
that F O L L O W ~ (A) n FOLLOWk,(~ i) is empty and hence that GM,~ is BRC(k~, k~),
SLR(k~), and strong LL(k~).

Case I. y contains one or more a 's.
Then we can write y as y ' a y " where the indicated a is the leftmost occurrence

of a in y. Inspection of GM.~ reveals that y ' is of the form

Ul # U2 # ' " # U2t #,

where t is a positive integer and each ui is a member of 2 * Q Z * . Moreover, y ' must
be derivable from both B and B. Since y ' is derivable from B we must have u 1 = qo x,

= rev ray and e QI27". Since y ' is derivable f rom/~ U~ev //3 , U4 = U5 , " ' , U2t--2 = U2/--1 ~ U2t

we must have u 1 F-- M u~ ev, u 3 V---M U~ev,... , Ua , - i E--"M U~ v, Putt ing these together,

there must exist a computat ion of M on x, namely

rev rev rev
Ul ~ /12 ~lVl u4 ~2ta "'" ~M u2t "

rev E 2:* �9 Qf Since we have Moreover, this is an accepting computat ion since u2~
hypothesized that M does not accept x, we can conclude that this case cannot occur.

Case 2. y contains no a's.
In this case we must have] y] = k~ and y is the prefix of some string z derivable

from B and also a prefix of some ~ derivable from B. Thus we may write

y = FIRSTk~(z) = FIRSTk~(~)

B *~ z and /~ *~ 2.

Moreover, it is possible to write

y = u l # u ~ # . . . # u ~ , # v

for some t ~ 0 and some v containing either 0 or 1 # ' s , so that each u i is a member
of 27* Q2;*.

For convenience, let us rewrite these as

for some z ' and Z-'.

B *~ z = ul # u2 # " " # u2, # vz',

B ~ ~ = u 1 # u 2 # ' " # u ~ , # v e , '

326 H U N T III AND SZYMANSKI

By an argument similar to that used in Case 1, we have

rev
U 1 = % x , u l~-~u~ ,

rev rev
U2 ~- /~Z , U3 ~ U4 ,

"2l--2 = U2t--1, U2t--I 'MM u2~u

This, of course, represents a t step computation of M on x, namely,

r e v r e v ., u2 .

By hypothesis, M never performs more than T(n) steps on an input of length n,
and so t -~ T(I x I). Each instantaneous description of M operating on x can consist
of at most T(i x I) + 1 characters because M starts at the end of a semi-infinite
tape and can "reach" at most T([x [) tape cells during a computation (the + l term
in the size bound for instantaneous descriptions is due to the single character needed
to represent the state and head position of the machine). Thus t u, # .-. # u2~ # I
2" T(I x])[T(i x L) + 2] and]v l is at least 2" T([x I) q- 5.

rev Since B ~ z and u2t is not a member of Qr " S*, u2t # must be a prefix of v z .
Since ~ uzt # [is at most T(I x 1) + 2, this means that for some v' we can write

r e v V!

with

lv ' l >~ T(t xl) + 3.

Thus 5 -- u, # "'" # u2' # u rev # v 'e ' .

By definition of GM. x , there exists some prefix w # of v'5' such that u~ ev ~---M Wrev.
Moreover,] w i ~ ! u~ ! + 1 ~ T(I x f) + 2. Thus w is a proper prefix of v' and so

r o v w # is a prefix of v'. But this means u2~ # w # is a prefix of v contradicting the
definition of v as containing at most I occurrence of # . We conclude therefore that
this case cannot occur.

At this point we have used the hypothesis that M does not accept x to show that
F O L L O W k (A) n FOLLOWe~(A) is empty and that G~t,~ is therefore SLR(kx),
BRC(kx, k~), strong LL(k~), and unambiguous. Thus the negation of (a) implies
the negation of (b) through (c) and the theorem is proved. |

We may now present the main result of this section.

THEOREM 2.2. Let I" be any subset of the context-free grammars such that:

(1) F includes all grammars which are strong LL, SLR, and BRC,

(2) F includes no grammars of unbounded inherent ambiguity.

Then it is undecidable whether an arbitrary grammar is a member of I'.

CONTEXT-FREE GRAMMARS 327

Proof. Suppose that the membership problem in I" were decidable. Then there
exists some strictly increasing recursive function f(n) which bounds from above
the time needed to deterministically decide on a multitape Turing machine whether
a grammar of size n is a member o f / ' .

Let R be an arbitrary recursive set. Then there exists a deterministic one tape
Turing machine M and a recursive function T such that M accepts R and M and T
satisfy constraints (i) through (v) of Lemma 2.1.

We shall now describe an efficient recognition algorithm for R. Given a string x,
first construct GM. ~ according to Lemma 2.1 and then test whether GM, ~ is a member
of -P. I f x is a member of R, then M accepts x and GM.~ is of unbounded inherent
ambiguity and therefore not a member of F. Conversely, if x is not a member of R,
then M does not accept x and GM. ~ is strong LL(k), SLR(k), and BRC(k, k) for
k = k~. Thus GM,~ certainly is a member of F. Thus x ~ R if and only if GM.~ q~ I'.
The recognition algorithm for R which was just described may be executed deter-
ministically on a multi-tape Tur ing machine in time f (q +] x]) + c~ �9 l x I + c3
where the constants ca, c~, and c 3 are the constants of Lemma 2.1 which depend
only on M. The last two terms in the expression are, of course, the time needed
to construct GM.~ from x and the leading term is the time needed to test whether
GM, ~ is a member of _P.

Since R in the above construction was an arbitrary recursive set, we can conclude
that any recursive set may be recognized by a deterministic multitape Turing machine
in time f (a @ n) + bn + c for appropriate constants a, b, and c which depend only
on R. Consider now the recursive function F (n) = f (2 n) + n ~ which is strictly
greater than f (a + n) + bn + c almost everywhere regardless of the choice of a,
b, and c. Therefore, any recursive set may be recognized in time F(n).

It is well known, however, that for every recursive function r(n), there exists a
recursive set which cannot be recognized in time r(n) [6]. We must therefore conclude
t ha t / " does not have a decidable membership problem. |

The key idea in the proof of Theorem 2.2 is that undecidability results can be
derived by embedding arbitrary halting computations in the problem at hand. More
conventional approaches seek to establish undecidability by embedding arbitrary
(and perhaps nonterminating) computations in a given problem. These approaches
are not sufficiently powerful to prove Theorem 2.2, as the reader can readily verify
by trying to construct a grammar GM, ~ which is ambiguous if Tur ing machine M
accepts string x and L L if M does not.

Theorem 2.2 may be used to show the undecidability of many classes of grammars
studied in the literature.

COROLLARY 2.3. The following predicates are undecidable on the context-free
grammars.

328 HUNT III AND SZYMANSKI

(1)
(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

(10)
(11)
(12)
03)
(14)
05)
(16)

(17)
(18)

Proof.

G is BRC,

G is strong LL,

G is LL ,

G is strong LC,

G is LC,

G is ELC,

G is SLR,

G is LALR,

G is LR,

G is LR-regular,

G is unambiguous,

G is ambiguous of degree k o for any fixed integer ko,

G is" basic SPM parsable,

G is full SPM parsable,

G is FSPA,

G is RPP,

k, t such that G is LR(k, t),

].k such that G is LR(k, ~) .

These classes of grammars all satisfy the conditions of Theorem 2.2.
ELC grammars are defined in [2], LR-regular grammars in [3], SPM grammars
in [4], FSPA, RPP, and LR(k, ~) grammars in [14] and LR(k, t) grammars are
defined in [12] and [14]. All remaining classes are defined in [1]. I

The reader familiar with the history of parsing theory will note that Theorem 2.2
shows that no parsing technique exists which

(1) works for all LR grammars,

(2) works for no ambiguous grammars,

(3) has a decidable "membership" problem.

3. LOWER BOUNDS FOR GRAMMAR PROBLEMS

Many of the more thoroughly explored classes of context-free grammars are
actually infinite hierarchies. For example, the class of LR grammars may be con-
sidered to be the union or limit of the classes of LR(0), LR(1), LR(2), etc., grammars.

CONTEXT-FREE GRAMMARS 329

It is interesting to note that although the membership problem for each of the
individual subclasses (i.e., LR(k) for any fixed k) is decidable, the membership
problem for the general class (LR) is not decidable. The undecidability result given
in Theorem 2.2 is useful for establishing this latter fact but is of no use in establishing
lower bounds on the membership problem for subclasses. For this reason the current
section is devoted to investigating the complexity of the membership problem for
parameterized hierarchies of grammar classes.

DEFINITION 3.1. Let [' =/~(0), F(1) , / (2) be an infinite hierarchy of classes
of grammars. A uniform algorithm for 1" testing is an algorithm which takes two inputs,

(i) a context-free grammar G,

(ii) an integer k

and which determines whether G is a member of F(k). |

This paper will not treat complexity issues involving specific members within a
hierarchy such as, say, the members LR(3) and LR(17) within the LR hierarchy
(such problems are considered in [8, 9]). Instead we restrict our attention to the
complexity of uniform algorithms for testing membership in a hierarchy.

Our treatment requires that we be able to encode arbitrary grammars as strings
over the fixed alphabet {0, 1). We shall leave the specific details of the encoding
to the reader.

PROPOSITION 3.2. (i) Any grammar of size n with vocabulary V can be represented
as a binary string of length O(n log l V I),

(ii) Any grammar of size n can be represented as a binary string of size O(n log n).

Proof. (i) Each position of the grammar can be represented in log [V [bits with
perhaps an extra bit added to delimit the end of each production.

(ii) Follows from (i) and the realization that no grammar of size n can have a
vocabulary with more than n elements. |

We shall subsequently denote the binary representation of a grammar G by
REP(G). We now come to the main result of this section.

THEOREM 3.3. Let F =/ ' (0) , / - ' (1) , / ' (2) be an infinite hierarchy of classes of
grammars such that

(1) F(i) contains all the grammars which are simultaneously strong LL(i), SLR(i),
and BRC(i, i),

(2) no grammar of I'(i) is of unbounded inherent ambiguity. Let

/-'u = {REP(G) # v] v is the unary representation of
an integer i and the grammar G is not a member of F(i)).

330 H U N T III AND SZYMANSKI

Let

Then

(i)
(ii)

Proof.

/'b ~- {REP(G) # v [v is the binary representation of
an integer i and the grammar G is not a member of/~(i)}.

NP ~<log F~ ,

NE ~log Fb.

The proofs of (i) and (ii) are quite similar. Accordingly, we shall only
prove the latter.

Let L be any language in NE. There exists a polynomial p(n) and a nondeter-
ministic one-tape Tur ing machine M such that

(1) M recognizes L,

(2) M satisfies constraints (i) through (v) of L e m m a 2.1 for T(n) = 2 ~r

Let x be a string in 27* where 27 is the alphabet of L. Consider the grammar GM,~
of L e m m a 2.1. Since the vocabulary size of GM. ~ depends only on M, there must
exist constants d 1 and d 2 depending only on M such that] REP(GM,x)] ~ dl + d2 �9 I x l-
Let k = 8 �9 [2~1~1)] ~ q- 5. T h e n v, the binary representation of k is of length at most
2 "P(I x I) q- 4.

I t should thus be clear that given any x, we can produce a string WM. ~ =
REP(GM,x) # v such that

(1) WM, ~ ~ F~ if and only if x is not a member of L,

(2) [WM,~ I is at most q ,] x I% where q and c 2 depend only on M,

(3) WM. , can be constructed from x in O(p(I x I)) t ime and 0(log I x l) space
on a deterministic multi tape Tur ing machine.

We thus have L ~log -P~ as was to be shown.
This result immediately yields the lower bounds expressed below.

COROLLARY 3.4. Let l~be as Theorem 3.3. Then

(i) /',~ is NP-hard,

(ii) F b is NE-hard,

(iii) there exists a constant c > 0 such that any nondeterministic Turing machine
which accepts l~b uses more than 2<~1 time on infinitely many inputs x.

Proof. Straightforward. |

As before, our theorem applies to many well-known classes of grammars.

CONTEXT-FREE GRAMMARS 331

COROLLARY 3.5. The following classes of context-free grammars satisfy the conditions
of Theorem 3.3:

(1) BRC,

(2) strong LL,

(3) LL,

(4) strong LC,

(5) LC,
(6) ELC,

(7) SLR,

(8) LALR,

(9) LR. |

We close the section by noting that the lower bounds given by Theorem 3.3 are
tight, in that algorithms achieving these run times are known for many hierarchies
to which the metatheorem applies. The reader is referred to [9] for further details.

CONCLUSION

We have presented a way of embedding the computations of an always-halting
Turing machine in a context-free grammar in such a manner that the grammars
was either very "nice" or very "messy" (i.e., easily parsable or of unbounded inherent
ambiguity). This embedding gave rise to a powerful undecidability metatheorem
for context-free grammar problems as well as specific lower bounds on the running
time of any uniform algorithm for deciding membership in many hierarchies of
grammars.

APPENDIX I: CONSTRUCTING GM, ~

Let M satisfy the constraints of Lemma 2.1.
Let 2: be the input alphabet of M,

/ ' be the tape alphabet of M,

Q be the state set of M,
QI be the set of accepting states of M,

qo be the start state of M,

S be the move function of M, that is a function mapping O • p into subsets
of Q • T' • (L, R, S),

x be an element of 2:*.

332 H U N T I I I AND SZYMANSKI

We shall assume that • C / ' and that {$, r # , a, b, c}, r ' and Q are all pairwise
disjoint. The blank tape symbol is denoted by $ and is a member of P -- 27. All
nonterminals of QM.,: are either upper case Roman letters or elements of (F tJ {#}) X
Q x F. Nonterminals of the latter category are denoted by (a l , q, %). The complete
set of productions of GM. ~ is broken down for convenience into six groups as follows:

group 1 : S --+ A B C S I A B C S] r

A - + S ,
> i -* $,

B --+ qox # D;

group 2: D - - * E # D [q G

E --9- aEal qFq

F - ~ aFcr [#

G - + ~ G I #

group 3: B - - , - D # B I ; ~

b --. q # <#q/~>

D --,- qaF(#qa)

D - . P_,.
F.--. ~,Eo

E ~ ~rxq%F<%q%>

E ~ alq # <alq~)

group 4: (rqa> --+ a'rq' if

(rW> --* a' q'r if

(rqa) --.'- q'a'r if

group 5: C---* HI,

H ~ JHb Jb,

J ----~ a ,

I--+ cI [c;

o ~]c-~]G~,

O--+ bOl b,
.--->. a .

group 6:

Vq r Ol ,
w e t ,
Wet ,
Va e F;

q e QI ,

Vqe Q,

Va e _r', q e Q ,

Vae F,

W~, ~2~r, qeQ,

V%eI ' , q e Q ,

Wl ~ F;

(q', o', L) e 3(q, (r) and r e P,

(q', a', S) e 8(q, a) and r e r U {#} ,

(q', a', R) ~ 8(q, a) and r e / ' U {#};

The productions of group I are those that were given in the main text of the paper.
Group 2 produces the w 2 # w 3 # ... # w~, # portion of strings derivable from B.

CONTEXT-FREE GRAMMARS 333

The nonterminal D first produces (E#) *-1 qG, from which E produces each
w2 irev # w2i+ 1 substring and qG produces w2t

Group 3 produces the strings derivable from B. Fi rs t /~ generates (/~#)t. E a c h /)
then produces a representation of a single move of the Tur ing machine M, i.e.,
a string of the form w # y such that w ~--M yrev. This is normally done by a derivation

of the form

*~ uEurev,

::r ualqcr2F(olqo~)urev ,

*~ u,rlq~r2v # vrev(olq,~)U rev,

where u, v ~ F*, ~1, e2 e F, q e Q. This portion of the grammar is made somewhat

messy by the need to handle the cases in which the tape head is at an extreme end
of the tape.

Group 4 productions simulate the actual move of the Tur ing machine.
Group 5 productions generate strings of {aibic~[i,j, l ~ 1, i =j}. The a's are

produced via the nonterminal J so that this portion of the grammar will be BRC.
Finally group 6 produces strings of {aib~c ~ [i, k, 1 ~ 1, i = l}.

REFERENCES

I. A. V. AHO AND J. D. ULLMAN, "The Theory of Parsing, Translation and Compiling,"
Volumes 1, 2, Prentice-Hall, Englewood Cliffs, N. J., 1972, 1973.

2. B. M. BROSGOL, Deterministic translation grammars, in "Proceedings of the 8th Annual
Princeton Conference on Information Sciences and Systems," pp. 300-306, 1974.

3. K. CULIK, II AND R. COHEN, LR-regular grammrs--an extension of LR(k) grammars,
J. Comput. System Sci. 7 (1973), 66-96.

4. C. N. FISCHER, On parsing context-free languages in parallel environments, Ph.D. Thesis,
Cornell University, Ithaca, New York, April 1975.

5. S. A. GRIEBACH, A note on undecidable properties of formal languages, Math. Systems
Theory 2 (1968), 1-6.

6. J. HARTMANIS AND J. E. HOPCROFT, An overview of the theory of computational complexity,
J. Assoc. Comput. Mach. 18 (1971), 444-475.

7. H. B. HUNT, III AND D. J. ROSENKRANTZ, Computational parallels between the regular and
context-free languages, in "Proceedings of the 6th Annual ACM Symposium on Theory of
Computing," pp. 64-74, 1974.

8. H. n. HUNT, III AND T. G. SZYMANSKI, Lower bounds and reductions between grammar
problems, in preparation.

9. H. B. HUNT, T. G. SZYMANSKI, AND J. n. ULLMAN, "On the complexity of LR(k) testing,
Comm. ACM 18 (1975), 707-716.

10. J. E. HoecaorT AND J. D. ULLMAN, "Formal Languages and Their Relation to Automata,"
Addison-Wesley, Reading, Mass., 1969.

334 HUNT III AND SZYMANSKI

11. A. J. KORENJAK AND J. E. HOPCROFT, Simple deterministic languages, in " IEEE Conference
Record of the 7th Annual Symposium on Switching and Automata Theory," pp. 36-46,
1966.

12. D. E. KIWUTH, On the translation of languages from left to right, Inform. Contr. 8 (1965),
609-639.

13. W. F. OCDEN, A helpful result for proving inherent ambiguity, Math. Systems Theory 2
(1968), 191-194.

14. T. G. SZe~Ar~SKI AND J. H. WILLIAMS, Non-canonical extensions of bottom-up parsing
techniques, SI.ZIM J. Computing, to appear.

