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Metatheorems are presented which can be used to (i) establish undccidability 
results about context-free grammar problems, and (ii) establish lower bounds on 
certain decidable grammar problems. The main undecidability result is obtained 
through the simulation of a Turing machine which always halts. This technique 
promises to be applicable in many situations where conventional techniques for 
proving undecidability do not succeed. 

1. ]NTRODUCTION 

This  paper is primarily concerned with the problem of establishing lower bounds 
on the complexity of broad classes of predicates on the context-free grammars. 

Section 1 contains an overview of the paper and sufficient background material 
and definitions for the comprehension of the more technical results. 

In  Section 2 we develop a metatheorem which gives sufficient conditions for arbitrary 
predicates on the context-free grammars to be undecidable. Although the idea of 
such metatheorems is not new, all previous such results deal with predicates on 
languages rather than predicates on grammars. Specifically, we show the undecidability 
of any predicate which is true of all grammars which are simultaneously strong LL, 
SLR, and BRC and false of all grammars which generate languages of unbounded 
inherent ambiguity. 1 Many undecidability results which had previously be obtained 
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1 A language is of unbounded inherent ambiguity if for any integer k and any grammar 

generating the language, that grammar produces k distinct derivation trees for some string. 
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by ad hoc constructions follow directly from this result. More importantly, the 
proof of this result introduces a new technique for proving undecidability which 
promises to be applicable in many situations where more conventional techniques 
cannot be used. Simply put, the technique involves efficiently reducing the member- 
ship problem for an arbitrary recursive set to the problem at hand. In this way we 
can show that the problem is of nonrecursive complexity and must therefore be 
undecidable. In many situations it is technically far easier to embed the computations 
of a Turing machine which is known to eventually halt than it is to embed the com- 
putations of machines not subject to this restriction. 

In Section 3 we develop a subrecursive analog of this metatheorem and use it 
to establish lower bounds for testing membership in certain parameterized hierarchies 
of grammar classes. For example, any uniform algorithm which decides of a grammar 
G and integer k whether that grammar is LR(k) requires nondeterministic exponential 
time. This particular result had previously been shown in [9]. Here we present 
a metatheorem which yields this result not only for the LR(k) hierarchy but also 
for most other "natural" hierarchies of grammars. 

We assume that the reader is familiar with the basic definitions and results con- 
cerning context-free grammars and languages, otherwise see [1] or [I0]. The empty 
string is denoted by A, the reversal of a string w is denoted by w rev, and the language 
generated by a grammar G is denoted by L(G). 

Moreover, we assume that the reader is acquainted with the basic results of parsing 
theory as presented, for instance, in [1]. In particular, we assume familiarity with 
the following parsing methods: strong LL, LL, SLR, LR, and BRC (bounded right 
context). Throughout the paper we shall only parameterize the above class names 
when we wish to denote a specific subclass. Under this convenition it would be 
legitimate to say "It is undecidable whether a grammar is LR, but decidable whether 
it is LR(k)." 

We shall need a few additional definitions associated with grammars. 

DEFINITION 1.1. Let G = (V, X, P, S) be a context-free grammar. The size 
of G (denoted I G I) is defined to be the total number of occurrences of terminals 
and nonterminals in all productions, more formally, 

IGI= ~ IA~I. 
A . o  e~ r P 

For any a ~ V* and nonnegative integer k, we define 

FIRST~(~) = { x ~ X * [ ~  x f land]x[ = k f o r s o m e 3 e V *  
G 

o r ~ * ~  xand  Ix[  < k } ,  
G 
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FOLLOWk(~ ) == {x e 27* [ S *~ ~,a/~ for some ~,, 13 e V* 
G 

and x e  FIRSTk(fl)}. | 

The concept of ambiguity arises in several places in this paper. 

DEFINITION 1.2. A context-free grammar G is said to be: 

(i) unboundedly ambiguous if for any positive integer k there exists some string 
in L(G) having k or more distinct leftmost derivations according to G, 

(ii) ambiguous of degree k if some string in L(G) has k distinct leftmost deriva- 
tions, but no string in L(G) has more than k leftmost derivations according to G, 

(iii) unambiguous if it is ambiguous of degree l, that is, every string in L(G) 
has a unique leftmost derivation in G, 

(iv) ambiguous if it is not unambiguous. | 

DEFINITION 1.3. A context-free language L is said to be: 

(i) of unbounded inherent ambiguity if every grammar generating L is un- 
boundedly ambiguous, 

(ii) inherently ambiguous of degree k if L is generated by some grammar which 
is ambiguous of degree k but by no grammar which is ambiguous of degree less 
than k, 

(iii) inherently unambiguous if L is generated by a grammar which is un- 
ambiguous, 

(iv) inherently ambiguous if every grammar generating L is ambiguous. | 

It has been shown [13] that there are context-free languages of unbounded inherent 
ambiguity and of inherent ambiguity k for every k >~ 1. We shall often apply these 
terms directly to grammars. Thus the statement "G is inherently ambiguous" means 
"L(G) is inherently ambiguous." 

We shall also need some basic notions concerning computational complexity. 

DEFINITION 1.4. A function f(n) is said to be polynomially bounded (exponentially 
bounded) if there exists a polynomial p(n) and integer n' such thatf(n) ~< p(n) (f(n) <~ 
2 v(n)) for all n > n'. P, NP, E, and NE are the classes of languages accepted by 
deterministic and nondeterministic, polynomially and exponentially, time bounded 
Turing machines, respectively. | 

It is not currently known whether P = NP or E = NE. Nevertheless certain 
languages called complete languages reflect the complexity of each entire class. 
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DEFINITION 1.5. A language L 0 is said to be NP-hard (NE-hard) if the following 
condition is true: Given a deterministic polynomially (exponentially) time bounded 
Turing machine to recognize L 0 and a language L in NP (lYE), we can effectively 
find a deterministic polynomially (exponentially) time bounded Turing machine 
to recognize L, I f  in addition, L o is a member  of NP (NE) then L o is said to be NP- 
complete (NE-complete). | 

We shall occasionally deal with various types of transformations between languages. 

DEFINITION 1.6. Let  Z and A be finite alphabets. A function f :  2:* -+  A * is said 
to be log space computable if there exists a deterministic Turing machine M such that 

(1) M has a two-way read-only input tape, 

(2) M has a one-way write-only output tape, 

(3) M has one or more two-way read-write work tapes, 

(4) M when started with x on its input tape produces f(x) on its output tape, 

(5) M never uses more than 0(log [ x l) tape cells on its work tapes. | 

We may now define various types of transformations. 

DEFINITION 1.7. A language L is transformable to a language L '  (written L ~ L ' )  
if there exists a function f such that x e L  if and only if f ( x )~L ' .  Iff is computable 
by a polynomially t ime bounded deterministic Turing machine then we say that L 
is polynomially transformable to L '  (written L ~ - t i m e  L'). Iff is log space computable 
we say L is log space transformable to L '  (written L ~log L') .  I f  in addition [f(x)l ---- 
0(] x I) we say that L is log-lin space transformable to L' (written L ~log-un L') .  | 

Notice that L ~-log-lin L' implies L ~log L' implies L ~.~p-time L'. I f  every language 
in a set of languages S is transformable to some language L 0 , we shall write S ~ L 0 , 
subscripting the ~ if necessary to indicate a particular kind of transformabillty. 

We shall need one technical lemma concerning inherent ambiguity. 

LEMMA 1.8. Let L be a context-free language and h be a homomorphism. Then 
the degree of inherent ambiguity of h-l(L) is less than or equal to the degree of inherent 
ambiguity of L. 

Proof. We give a proof modeled after one appearing on [10, p. 172]. Let  P be 
any pushdown automaton (PDA) which accepts L. Construct a PDA P' for h-l(L) 
as follows: P', on input x, applies h to x one character at a time, buffering the result 
in its finite control and simulating P on the result. Thus  P' accepts x if and only 
if P accepts h(x). Hence P' accepts exactly h-l(L). Moreover, the number  of distinct 
ways in which P' accepts x is no greater than the number  of ways in which P accepts 
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h(x). Thus, the degree of ambiguity of P '  is no greater than the degree of ambiguity 
of P. Rephrasing this in terms of languages and inherent ambiguity, we have our 
result. | 

2. UNDECIDABILITY METATHEOREMS FOR CONTEXT-FREE GRAMMAR PROBLEMS 

Several powerful metatheorems for proving the undecidability of arbitrary predicates 
on the context-free languages have appeared in the literature [5, 7]. The haain result 
of this section is a metatheorem which is applicable to predicates defined on grammars 
rather than languages. 

The reader would be well advised to pause at this point and reflect upon the distinc- 
tion between language and grammar problems. Decidability questions involving 
languages must always involve a level of "indirection" as exemplified by "given 
a grammar G, isL(G) empty ?" This indirection is required by the fact that languages 
are in general infinite objects and as such must always be defined by some sort of 
finite descriptor. This indirection is not needed in typical grammar questions such 
as "given a grammar G, is G ambiguous ?" 

To  further clarify this distinction let us contrast the class of recursively enumerable 
sets, for which no nontrivial predicate is decidable, with the class of type 0 grammars, 
for which many nontrivial predicates are decidable. 

The statement and proof of our metatheorem depend on the following lemma. 

LEMMA 2.1. Let M be a deterministic or nondeterministic 
T(n) be a strictly increasing recursive function such that: 

(i) 
(ii) 

(iii) 

(iv) 
portion of 

(v) 

Turing machine and 

M has one semi-infinite tape on which the input is placed left-justified; 

M never "falls of f"  the left end of its tape; 

M never performs more than T(n) steps on any input of length n; 

M only enters an accepting state when at the extreme right end of the utilized 
its tape; 

M can make no move out of an accepting state. ~ 

Let v be the input alphabet of  M. Let x ~ Z* and let k~ be at least 2 �9 T(I x 1) 2 + 
6 �9 T([ x ]) + 5. Then there exists a grammar GM.~ and constants q ,  c 2 , and c 3 , 
depending only on M such that: 

(1) G i . ~ i s o f s i z e c l  + J x l ;  

(2) GM,z may be constructed from x in deterministic time c 2 �9 I x l + ca, on a 
multi-tape Turing machine; 

Conditions (i) through (v) may be assumed without loss of generality for any Turing machine 
which accepts a recursive set, although the running time T(n) may have to be increased. 



(3) 
(a) 

(b) 

(c) 

(d) 

(e) 

Proof. 
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the following are equivalent: 

M accepts x, 

GM. ~ is of unbounded inherent ambiguity, 

G,~t.~ is not strong LL(k~), 

GM, x is not SLR(k~), 

G~.~ is not BRC(k~, k~). | 
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Let Q, Qt ,  and / "  be respectively the sets of states, final accepting states, 
and tape symbols of M. Let qo be the start state of M. Let $, r # ,  a, b, and c be new 
symbols. 

The grammar GM.~ includes the following productions 

S ~ A B C S  [ A B C S  [ r 

A - + S ,  
.,~---, $, 

B--+ qox # D, 

plus many additional productions which depend only on M. The complete construction 
of GM.~ is presented in Appendix I. It should be clear that CaM. x is of size q .'-- ] x [ 
and may be constructed in time co-. ix  I - -  c3 for appropriate constants q ,  co, c3 
depending only on M. 

Any string derived from B is of the form 

such that 

wl # wo- # . ' -  # w~ # 

t is a positive integer, 

W 1 --= qo x ,  

w i ~ Z ' * - ( Q - Q 1 ) . 2 ~ *  for 1 < i < 2 t ,  

w2e ~ Qt �9 ~*,  
rev for I ~ i < t. ~/32i :-: W21+l 

Any string derived from/~ is of the form 

w~ # w,, # . . .  # w2~ # 

such that 
t is a positive integer, 

w i c X * Q X *  for 1 < i < ~ 2 t ,  

rev for 1 ~ / i ~ t. W2i--1 ~ W2i 

571t't3f3-6 
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The nonterminal C derives 

{ aibjcz I i, j, l >~ 1 and i : j}, 

whereas the nonterminal C derives 

{aib~c I [ i , j ,  l ~ 1 and i = l}. 

We must now show the equivalence of statements (a) through (e). Suppose first 
that M accepts x. Then for some m ~< T([ x I), there exists an accepting computation 
of M on x which we may write as 

id o ~ ida ~ ads ~-~M "" ~ id,~. 

Let z be the string 

id o # id~ ev # id~ # id~ ev # . . .  # id,n_, # id~ v # .  

Notice that z is derivable from both B and/~. 
Define a homomorphism h by 

h(a)  = a,  

h(b)  = b, 

h(c)  = c, 

h(r  = r 

Then 

h-I(L(GM,x)) = {$ aibacz I i ~- j or i = / } * "  {r 

Clearly this is a language of unbounded inherent ambiguity. Since, by Proposition 1.8, 
an inverse homomorphism cannot increase the degree of inherent ambiguity of a 
language, we can conclude that GM, , must be a grammar of unbounded inherent 
ambiguity. Thus GM. x is ambiguous and certainly not BRC(k, k), SLR(k), or strong 
LL(k) for any value of k, let alone for k = k~. We have thus established that (a) 
implies (b) through (e). 

Suppose then that M does not accept x. Close examination of the productions 
of GM,~ reveal that GM.x is very easily parsed provided that the parser can somehow 
"tell the difference" between the productions .4 -+  $ and A--~ $. More formally, 
GM,x is BRC(kx, k~), SLR(k~), and strong LL(k~) if and only if 

FOLLOW~,(A) n FOLLOW**(A) == ~ .  
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Accordingly, let y be an arbitrary member  of F O L L O W k , ( A )  n FOLLOW~, (A) .  
Two cases arise depending on whether y contains the symbol a or not. We shall 
show that both  cases lead to contradictions and that y cannot exist. This  will prove 
that F O L L O W ~ ( A )  n FOLLOWk,(~ i )  is empty and hence that GM,~ is BRC(k~, k~), 
SLR(k~), and strong LL(k~). 

Case I. y contains one or more a 's.  
Then  we can write y as y ' a y "  where the indicated a is the leftmost occurrence 

of a in y.  Inspection of GM.~ reveals that y '  is of the form 

Ul # U2 # ' "  # U2t #,  

where t is a positive integer and each ui is a member  of 2 * Q Z * .  Moreover,  y '  must  
be derivable from both B and B. Since y '  is derivable from B we must  have u 1 = qo x,  

= rev ray and e QI27". Since y '  is derivable f rom/~  U~ev //3 , U4 = U5 , " ' ,  U2t--2 = U2/--1 ~ U2t 

we must  have u 1 F-- M u~ ev, u 3 V---M U~ev,... ,  Ua , - i  E--"M U~ v, Putt ing these together, 

there must  exist a computat ion of M on x, namely 

rev rev rev 
Ul ~ /12 ~lVl u4 ~2ta "'" ~M u2t " 

rev E 2:* �9 Qf Since we have Moreover, this is an accepting computat ion since u2~ 
hypothesized that M does not accept x, we can conclude that this case cannot occur. 

Case 2. y contains no a's. 
In  this case we must  have ] y ] = k~ and y is the prefix of some string z derivable 

from B and also a prefix of some ~ derivable from B. Thus  we may write 

y = FIRSTk~(z) = FIRSTk~(~) 

B *~ z and /~ *~ 2. 

Moreover, it is possible to write 

y = u l # u ~ #  . . . # u ~ , # v  

for some t ~ 0 and some v containing either 0 or 1 # ' s ,  so that each u i is a member  
of 27* Q2;*. 

For  convenience, let us rewrite these as 

for some z '  and Z-'. 

B *~ z = ul # u2 # " "  # u2, # vz', 

B ~ ~ = u 1 # u 2 # ' " # u ~ , # v e , '  
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By an argument similar to that used in Case 1, we have 

rev 
U 1 = % x ,  u l~-~u~ , 

rev rev 
U2 ~- /~Z , U3 ~ U4 , 

"2l--2 = U2t--1, U2t--I 'MM u2~u 

This, of course, represents a t step computation of M on x, namely, 

r e v  r e v  ., u2 . 

By hypothesis, M never performs more than T(n) steps on an input of length n, 
and so t -~ T(I x I). Each instantaneous description of M operating on x can consist 
of at most T(i x I) + 1 characters because M starts at the end of a semi-infinite 
tape and can "reach" at most T([ x [) tape cells during a computation (the + l  term 
in the size bound for instantaneous descriptions is due to the single character needed 
to represent the state and head position of the machine). Thus  t u, # .-. # u2~ # I 
2"  T(I x ])[T(i x L) + 2] and ]v l  is at least 2" T([ x I) q- 5. 

rev Since B ~ z and u2t is not a member of Qr " S*, u2t # must be a prefix of v z .  
Since ~ uzt # [ is at most T(I x 1) + 2, this means that for some v' we can write 

r e v  V! 

with 

lv ' l  >~ T(t xl) + 3. 

Thus  5 -- u, # "'" # u2' # u rev # v 'e ' .  

By definition of GM. x , there exists some prefix w # of v'5' such that u~ ev ~---M Wrev. 
Moreover, ] w i ~ ! u~ ! + 1 ~ T(I x f) + 2. Thus  w is a proper prefix of v'  and so 

r o v  w # is a prefix of v'. But this means u2~ # w # is a prefix of v contradicting the 
definition of v as containing at most I occurrence of  # .  We conclude therefore that 
this case cannot occur. 

At this point we have used the hypothesis that M does not accept x to show that 
F O L L O W k  ( A ) n  FOLLOWe~(A) is empty and that G~t,~ is therefore SLR(kx), 
BRC(kx, k~), strong LL(k~), and unambiguous. Thus  the negation of (a) implies 
the negation of (b) through (c) and the theorem is proved. | 

We may now present the main result of this section. 

THEOREM 2.2. Let I" be any subset of the context-free grammars such that: 

(1) F includes all grammars which are strong LL,  SLR, and BRC, 

(2) F includes no grammars of unbounded inherent ambiguity. 

Then it is undecidable whether an arbitrary grammar is a member of I'. 
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Proof. Suppose that the membership problem in I" were decidable. Then  there 
exists some strictly increasing recursive function f(n) which bounds from above 
the time needed to deterministically decide on a multitape Turing machine whether 
a grammar of size n is a member o f / ' .  

Let  R be an arbitrary recursive set. Then  there exists a deterministic one tape 
Turing machine M and a recursive function T such that M accepts R and M and T 
satisfy constraints (i) through (v) of Lemma 2.1. 

We shall now describe an efficient recognition algorithm for R. Given a string x, 
first construct GM. ~ according to Lemma 2.1 and then test whether GM, ~ is a member 
of -P. I f  x is a member of R, then M accepts x and GM.~ is of unbounded inherent 
ambiguity and therefore not a member of F. Conversely, if x is not a member of R, 
then M does not accept x and GM. ~ is strong LL(k), SLR(k), and BRC(k, k) for 
k = k~. Thus  GM,~ certainly is a member of F. Thus  x ~ R if and only if GM.~ q~ I'. 
The recognition algorithm for R which was just described may be executed deter- 
ministically on a multi-tape Tur ing machine in time f ( q  + ] x ]) + c~ �9 l x I + c3 
where the constants ca, c~, and c 3 are the constants of Lemma 2.1 which depend 
only on M. The  last two terms in the expression are, of course, the time needed 
to construct GM.~ from x and the leading term is the time needed to test whether 
GM, ~ is a member of _P. 

Since R in the above construction was an arbitrary recursive set, we can conclude 
that any recursive set may be recognized by a deterministic multitape Turing machine 
in time f (a  @ n) + bn + c for appropriate constants a, b, and c which depend only 
on R. Consider now the recursive function F ( n ) = f ( 2 n ) +  n ~ which is strictly 
greater than f (a  + n) + bn + c almost everywhere regardless of the choice of a, 
b, and c. Therefore, any recursive set may be recognized in time F(n). 

It  is well known, however, that for every recursive function r(n), there exists a 
recursive set which cannot be recognized in time r(n) [6]. We must therefore conclude 
t ha t / "  does not have a decidable membership problem. | 

The  key idea in the proof of Theorem 2.2 is that undecidability results can be 
derived by embedding arbitrary halting computations in the problem at hand. More 
conventional approaches seek to establish undecidability by embedding arbitrary 
(and perhaps nonterminating) computations in a given problem. These approaches 
are not sufficiently powerful to prove Theorem 2.2, as the reader can readily verify 
by trying to construct a grammar GM, ~ which is ambiguous if Tur ing machine M 
accepts string x and L L  if M does not. 

Theorem 2.2 may be used to show the undecidability of many classes of grammars 
studied in the literature. 

COROLLARY 2.3. The following predicates are undecidable on the context-free 
grammars. 
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(1) 
(2) 

(3) 

(4) 

(5) 
(6) 

(7) 

(8) 

(9) 

(10) 
(11) 
(12) 
03) 
(14) 
05) 
(16) 

(17) 
(18) 

Proof. 

G is BRC, 

G is strong LL, 

G is LL ,  

G is strong LC, 

G is LC, 

G is ELC, 

G is SLR, 

G is LALR, 

G is LR, 

G is LR-regular, 

G is unambiguous, 

G is ambiguous of degree k o for any fixed integer ko, 

G is" basic SPM parsable, 

G is full  SPM parsable, 

G is FSPA, 

G is RPP, 

k, t such that G is LR(k, t), 

].k such that G is LR(k, ~) .  

These classes of grammars all satisfy the conditions of Theorem 2.2. 
ELC grammars are defined in [2], LR-regular grammars in [3], SPM grammars 
in [4], FSPA, RPP, and LR(k, ~ )  grammars in [14] and LR(k, t) grammars are 
defined in [12] and [14]. All remaining classes are defined in [1]. I 

The reader familiar with the history of parsing theory will note that Theorem 2.2 
shows that no parsing technique exists which 

(1) works for all LR grammars, 

(2) works for no ambiguous grammars, 

(3) has a decidable "membership" problem. 

3. LOWER BOUNDS FOR GRAMMAR PROBLEMS 

Many of the more thoroughly explored classes of context-free grammars are 
actually infinite hierarchies. For example, the class of LR grammars may be con- 
sidered to be the union or limit of the classes of LR(0), LR(1), LR(2), etc., grammars. 
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It is interesting to note that although the membership problem for each of the 
individual subclasses (i.e., LR(k) for any fixed k) is decidable, the membership 
problem for the general class (LR) is not decidable. The undecidability result given 
in Theorem 2.2 is useful for establishing this latter fact but is of no use in establishing 
lower bounds on the membership problem for subclasses. For this reason the current 
section is devoted to investigating the complexity of the membership problem for 
parameterized hierarchies of grammar classes. 

DEFINITION 3.1. Let [ '  =/~(0),  F(1) , / (2)  .... be an infinite hierarchy of classes 
of grammars. A uniform algorithm for 1" testing is an algorithm which takes two inputs, 

(i) a context-free grammar G, 

(ii) an integer k 

and which determines whether G is a member of F(k). | 

This paper will not treat complexity issues involving specific members within a 
hierarchy such as, say, the members LR(3) and LR(17) within the LR hierarchy 
(such problems are considered in [8, 9]). Instead we restrict our attention to the 
complexity of uniform algorithms for testing membership in a hierarchy. 

Our treatment requires that we be able to encode arbitrary grammars as strings 
over the fixed alphabet {0, 1). We shall leave the specific details of the encoding 
to the reader. 

PROPOSITION 3.2. (i) Any grammar of size n with vocabulary V can be represented 
as a binary string of length O(n log l V I), 

(ii) Any grammar of size n can be represented as a binary string of size O(n log n). 

Proof. (i) Each position of the grammar can be represented in log [ V [ bits with 
perhaps an extra bit added to delimit the end of each production. 

(ii) Follows from (i) and the realization that no grammar of size n can have a 
vocabulary with more than n elements. | 

We shall subsequently denote the binary representation of a grammar G by 
REP(G). We now come to the main result of this section. 

THEOREM 3.3. Let F =/ ' (0) , / - ' (1) , / ' (2)  .... be an infinite hierarchy of classes of 
grammars such that 

(1) F(i) contains all the grammars which are simultaneously strong LL(i), SLR(i), 
and BRC(i, i), 

(2) no grammar of I'(i) is of unbounded inherent ambiguity. Let 

/-'u = {REP(G) # v ] v is the unary representation of 
an integer i and the grammar G is not a member of F(i)). 
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Let 

Then 

(i) 
(ii) 

Proof. 

/'b ~- {REP(G) # v [ v is the binary representation of 
an integer i and the grammar G is not a member of/~(i)}. 

NP ~<log F~ ,  

NE ~log Fb.  

The  proofs of (i) and (ii) are quite similar. Accordingly, we shall only 
prove the latter. 

Let  L be any language in NE. There  exists a polynomial p(n) and a nondeter- 
ministic one-tape Tur ing machine M such that 

(1) M recognizes L, 

(2) M satisfies constraints (i) through (v) of L e m m a  2.1 for T(n) = 2 ~r 

Let  x be a string in 27* where 27 is the alphabet of L. Consider the grammar  GM,~ 
of L e m m a  2.1. Since the vocabulary size of GM. ~ depends only on M, there must  
exist constants d 1 and d 2 depending only on M such that ] REP(GM,x)] ~ dl + d2 �9 I x l- 
Let  k = 8 �9 [2~1~1)] ~ q- 5. T h e n  v, the binary representation of k is of length at most 
2 "P(I x I) q- 4. 

I t  should thus be clear that given any x, we can produce a string WM. ~ = 
REP(GM,x) # v such that 

(1) WM, ~ ~ F~ if and only if x is not a member  of L, 

(2) [ WM,~ I is at most q ,  ] x I% where q and c 2 depend only on M, 

(3) WM. , can be constructed from x in O(p(I x I)) t ime and 0(log I x l) space 
on a deterministic multi tape Tur ing  machine. 

We thus have L ~log -P~ as was to be shown. 
This  result immediately yields the lower bounds expressed below. 

COROLLARY 3.4. Let l~be as Theorem 3.3. Then 

(i) /',~ is NP-hard, 

(ii) F b is NE-hard, 

(iii) there exists a constant c > 0 such that any nondeterministic Turing machine 
which accepts l~b uses more than 2<~1 time on infinitely many inputs x. 

Proof. Straightforward. | 

As before, our theorem applies to many well-known classes of grammars.  
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COROLLARY 3.5. The following classes of context-free grammars satisfy the conditions 
of Theorem 3.3: 

(1) BRC, 

(2) strong LL, 

(3) LL, 

(4) strong LC, 

(5) LC, 
(6) ELC, 

(7) SLR, 

(8) LALR, 

(9) LR. | 

We close the section by noting that the lower bounds given by Theorem 3.3 are 
tight, in that algorithms achieving these run times are known for many hierarchies 
to which the metatheorem applies. The reader is referred to [9] for further details. 

CONCLUSION 

We have presented a way of embedding the computations of an always-halting 
Turing machine in a context-free grammar in such a manner that the grammars 
was either very "nice" or very "messy" (i.e., easily parsable or of unbounded inherent 
ambiguity). This embedding gave rise to a powerful undecidability metatheorem 
for context-free grammar problems as well as specific lower bounds on the running 
time of any uniform algorithm for deciding membership in many hierarchies of 
grammars. 

APPENDIX I: CONSTRUCTING GM, ~ 

Let M satisfy the constraints of Lemma 2.1. 
Let 2: be the input alphabet of M, 

/ '  be the tape alphabet of M, 

Q be the state set of M, 
QI be the set of accepting states of M, 

qo be the start state of M, 

S be the move function of M, that is a function mapping O • p into subsets 
of Q • T' • (L, R, S), 

x be an element of 2:*. 
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We shall assume that • C / '  and that {$, r # ,  a, b, c}, r '  and Q are all pairwise 
disjoint. The blank tape symbol is denoted by $ and is a member of P --  27. All 
nonterminals of QM.,: are either upper case Roman letters or elements of (F tJ {#}) X 
Q x F. Nonterminals of the latter category are denoted by ( a l ,  q, %). The complete 
set of productions of GM. ~ is broken down for convenience into six groups as follows: 

group 1 : S --+ A B C S  I A B C S  ] r 

A - + S ,  
> i -*  $, 

B --+ qox # D; 

group 2: D - - * E # D [ q G  

E --9- aEal qFq 

F - ~  aFcr [ # 

G - + ~ G I  # 

group 3: B - - , - D # B I ; ~  

b --. q # <#q/~> 

D --,- qaF(#qa) 

D - .  P_,. 
F.--. ~,Eo 

E ~ ~rxq%F<%q%> 

E ~ alq # <alq~ ) 

group 4: (rqa> --+ a'rq' if 

(rW> --* a' q'r if 

(rqa) --.'- q'a'r if 

group 5: C---* HI, 

H ~ JHb Jb, 

J ----~ a ,  

I--+ cI [ c; 

o ~ ]c-~ ]G~, 

O--+ bOl b, 
.--->. a .  

group 6: 

Vq r Ol ,  
w e t ,  
Wet ,  
Va e F; 

q e  QI ,  

Vqe Q, 

Va e _r', q e Q ,  

Vae F, 

W~, ~2~r, qeQ,  

V%eI ' ,  q e Q ,  

Wl ~ F; 

(q', o', L) e 3(q, (r) and r e P, 

(q', a', S) e 8(q, a) and r e r U {#} ,  

(q', a', R) ~ 8(q, a) and r e / '  U {#};  

The productions of group I are those that were given in the main text of the paper. 
Group 2 produces the w 2 # w 3 # ... # w~, # portion of strings derivable from B. 



CONTEXT-FREE GRAMMARS 333 

The nonterminal D first produces (E#)  *-1 qG, from which E produces each 
w2 irev # w2i+ 1 substring and qG produces w2t 

Group 3 produces the strings derivable from B. Fi rs t /~  generates (/~#)t. E a c h / )  
then produces a representation of a single move of the Tur ing  machine M, i.e., 
a string of the form w # y such that w ~--M yrev. This is normally done by a derivation 

of the form 

*~ uEurev, 

::r ualqcr2F(olqo~)urev , 

*~ u,rlq~r2v # vrev(olq,~)U rev, 

where u, v ~ F*, ~1, e2 e F, q e Q. This portion of the grammar is made somewhat 

messy by the need to handle the cases in which the tape head is at an extreme end 
of the tape. 

Group 4 productions simulate the actual move of the Tur ing  machine. 
Group 5 productions generate strings of {aibic~[ i,j, l ~ 1, i =j}. The a's are 

produced via the nonterminal J so that this portion of the grammar will be BRC. 
Finally group 6 produces strings of {aib~c ~ [ i, k, 1 ~ 1, i = l}. 
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