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This paper deals with a class of semilinear elliptic Dirichlet boundary value
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1. INTRODUCTION

Let ©2 be a bounded domain in R" and consider the semilinear elliptic
problem

(1.1)

_Auzf}.(x’u)a er,
u=0, xe i,

where f,: Q2 xR — R and 1 is a real parameter.

The existence of, possibly multiple, solutions of (1.1) has been extensively
investigated; see for example [1,9] for a survey. According to the
behaviour of f; and to the kind of results one wants to prove, topological
or variational methods turn out to be more appropriate.
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When f, is sublinear, for example, f, = Au? 0<g<1, sub- and super-
solutions easily provide the existence of a unique positive solution of (1.1),
for all A > 0; while, if /; = A ju|¢ 'u, variational methods yield the existence
of infinitely many solutions of (1.1); see for example [2].

Variational tools, such as min-max arguments, are quite convenient
when f, is superlinear, say f,=Au+|u|? " 'u, 1<p<(N+2)/(N-2)
Indeed, one can show that in this case, (1.1) possesses infinitely many solu-
tions at positive energy for all 4, and at least one positive solution provided
A< 4y, the first eigenvalue of —4 on £ with zero Dirichlet boundary
conditions; see [3]. When p equals the critical Sobolev exponent,
p=(N+2)/(N—2), the problem becomes delicate because of the lack of
compactness. However, the existence of one positive solution of (1.1} for all
0 <A< 4,, respectively (0 <)A* <A< i, and N> 3, respectively N =3, has
been proved in [8], still by variational arguments. See also [12] for some
multiplicity results. Moreover, if £ is a ball, the positive solution is unique;
see [ 19, 22].

The purpose of the present paper is to study (1.1) when f, is, roughly,
the sum of a sublinear and a superlinear term. The combined effects of
these two nonlinearities change considerably the structure of the solution
set.

To be specific, we first look for solutions of

—Adu=Au? +u?, xef,
u>0, xeq, (1.2)
u=0, xedf,

with 0 < ¢ < 1 < p. In Theorem 2.1 we show that there exists a positive con-
stant 4 € R such that a solution of (1.2) exists iff 0 <A< A. To find such
a solution we use sub- and supersolutions. The essential term is here »¢ and
p can be arbitrary.

In contrast with the pure concave case, a second (positive) solution of
(1.2) is found in Theorem 2.3 by variational arguments. Here, the term u”
plays its role and one has to take p < (N +2)/(N—2).

The behaviour of ||u,]|,, (u; solution of (1.2)) as A — 0 is investigated in
Theorems 2.2 and 2.4.

Finally, in Theorem 2.5 we prove, for A >0 and small, the existence of
infinitely many solutions of

{—Au=},|u|"*’u+|u|"'lu, xeg,

1.
u=290, X €08, (1.3)

by taking advantage of the oddness of the nonlinearity. To be slightly more
precise, the presence of the sublinear term |u|?~ 'u yields the existence of
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infinitely many solutions having negative energy, provided A > 0 is close to
zero. On the other hand, the term |u|”~'u plays an important role in
proving the existence of infinitely many solutions with positive energy,
provided p < (N +2)/(N—2).

The paper is organized as follows. Section 2 contains the statements
of Theorems 2.1-2.5; Section 3, respectively 4, contains the proofs of
Theorems 2.1 and 2.2, respectively 2.3 and 2.4; Section 5 deals with the
proof of Theorem 2.5; finally, in Section 6 we list some open problems.

Notvation. In the rest of the paper we make use of the following notation
L7(R2), 1 < p< 0, denote Lebesgue spaces; the norm in L? is denoted

by II-1l,»;
W*?(Q) denote Sobolev spaces; the norm in W*? is denoted by

Ielle, 5
H denotes W (), endowed with the norm [u|’=(, |Vu|? dx;

C, C,, C,, .. denote (possibly different) positive constants;
The smallest eigenvalue of

—Ap=lp, xeQ; ¢=0,xe0f2

is denoted by 4,; ¢, denotes the corresponding eigenfunction satisfying
¢,>01in 2 and such that [¢,[|,=1.

2. STATEMENTS OF THE RESULTS

We consider below the problem of finding solutions of the boundary
value problem (1.2), namely

—du=Au? + u?, xef,
u>0, xef,
u=0, x e o,

where Q is a bounded domain in R" with smooth boundary 02, N> 1,
4 is the Laplace operator and A is a real parameter. To emphasize the
dependence on 4, problem (1.2) often referred to as problem (1.2); (the
subscript 4 is omitted if no confusion arises). By a solution of (1.2) we
mean, unless specifically stated, a classical solution, which satisfies (1.2)
pointwise. If ue H is a solution of (1.2), we let

1 A 1
L =5 =g [ e e g [l

denote the energy of u. Our first result is the following.

580/122;2-18
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THEOREM 2.1. For all 0<g <1< p there exists A€ R, A>0, such that

1. for all 1€ (0, A) problem (1.2), has a minimal solution u, such that
I, (u;) <0. Moreover u, is increasing with respect to A;

2. for A=A problem (12), has at least one weak solution
ueHANLF*!,;

3. for all 1> A problem (1.2), has no solution.

Remark 2.1. If N <10 the solution found for A=A is in fact a classical
solution, for any p. If N> 11 it is also a classical solution provided p < py,
for some p,. The proof of this fact follows from the arguments of [15]. See
Remark 3.4 below.

Remark 2.2. The existence of one solution of (1.2),, with >0 suf-
ficiently small and the Laplace operator substituted by the p-Laplacian 4,
has been proved in [11].

The proof of Theorem 2.1, based on the method of sub- and super-
solutions, shows that |ju;|, = 0 as 4} 0. Actually, for solutions with small
L™ norm one can prove a uniqueness result.

THEOREM 2.2. There exists A>0 such that for all Ae(0, A) problem
(1.2), has at most one solution u such that ||u| . < A.

Using the variational structure of the problem (1.2) and taking advan-
tage of the superlinear term u?, it is possible to improve Theorem 2.1, at
the expense of the standard growth restriction p < (N +2)/(N—2), when
N = 3. Henceforth we take N > 3. As usual, in the cases N =1, 2 there is no
restriction.

THEOREM 23. Let 0<g<l<p<(N+2)(N-2) Then for all
A€ (0, A) problem (1.2), has a second solution v; > u,.

Roughly, one shows that (1.2), has a first solution which is a local mini-
mum of the corresponding energy functional; a second solution is then
found by means of a variant of the Mountain Pass Theorem, see [14]. In
addition, one can show

THEOREM 2.4. Let p=(N+2)/(N—-2) and suppose that 2 is star-
shaped. Then ||w,l ., — o0 as A0, where w; is any solution of (1.2), distinct
from the minimal solution u;.

Remark 2.3. When Q is a ball Theorem 2.4 was proved by Peletier [16]
by shooting arguments.
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I,

L .
FiG. 1. Case p<(N+2)/(N—2).

The above results suggest that the structure of the set of positive
solutions of (1.2); looks as follows, see Figs. 1 and 2 below.

Our last result deals with the existence of infinitely many solutions
(possibly not positive) of the problem (1.3). Indeed, taking advantage of
the fact that the nonlinearity is now odd, one can use the stronger results
of the Lusternik—Schnirelman theory for Z,-invariant functionals to show

THEOREM 2.5. 1. Let0<g<1<p<(N+2)/(N—2). Then there exists
A* > 0 such that for all € (0, A*) problem (1.3) has infinitely many solutions
such that I,(u) <0;

2. fO0<g<l<p<(N+2)/(N—=2) then for all ie(0, A*) problem
(1.3) has also infinitely many solutions such that I,(u)> 0.

o,

.'A l
FiG. 2. Case p=(N+2)/(N—2).
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Remark 2.4. A result similar to the one stated in point 1 of the
preceding theorem has been proved in {13] for the equation —4,u=
Alul? 'u+iul*"'u, where 4, denotes the p-Laplacian, 1< p<N,
s=pN/(N—p)—land O<g<l<s.

Remark 2.5. 1t is clear from the proofs that in Theorems 2.1, 2.3, and
2.5 one can substitute »? with any concave function that behaves like u
near u=0. Similarly, when p < (N +2)/(N—2), u” can be substituted by
any superlinear function that behaves like u” near u =0 and near u = + cc.

3. EXISTENCE OF POSITIVE SOLUTIONS

In this section we prove Theorems 2.1 and 2.2. Let us define
A=sup{i>0:(1.2),; has a solution}.

LEmMMmA 3.1, 0<A<o0.

Proof. Let e denote the solution of

—de=1, x e,
e=0, xe Q.

Since 0 <g< 1< p, we can find 1,>0 such that for all 0 <A< 4, there
exists M = M(4)> 0 satisfying

M>=AiM" |ell% + M? |le| 4.
As a consequence, the function Me verifies
M= —A(Me)= i(Me)? + (Me)”*,

and hence it is a supersolution of (1.2),. Moreover, any ¢p, is a sub-
solution of (1.2);, provided

ehi@= —d(ep,) < Ae%p{ +e70f,

which is satisfied for all ¢>0 small enough and all 4. Taking ¢ possibly
smaller, we also have

eQ, < Me.

It follows that (1.2); has a solution ep, < u < Me whenever 4 < 4, and thus
A = 4,. Next, let A be such that

A1 > A, VieR, t>0. (3.1)
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If A is such that (1.2), has a solution u, multiplying (1.2), by ¢, and
integrating over 2 we find

A J uQp, dx=,1f uig, dx+j ulo, dx.
2 2 2
This and (3.1) immediately implies that A < A and shows that A <4. |

Lemma 3.2. For all 0< i< A problem (1.2); has a solution.

Proof. Given A< 4, let u, be a solution of (1.2), with A<u<4.
Plainly, such a u, is a supersolution for (1.2),. Since &¢, <u, provided
&> 0 is sufficiently small, it follows that (1.2), has a solution. |

We next prove that (1.2), possesses a minimal solution. For this we need
the following lemma.

LEMMA 3.3. Assume that f(t) is a function such that t='f(t) is
decreasing for t > 0. Let v and w satisfy

—Av < f(v), xeN
v>0, xe (3.2)
v=0, xedf2

and

—Aw 2 f(w), xeQ
w >0, xeQ (3.3)
w=0, x € 00.
Then w2vin §2.

Proof. The proof of the lemma is inspired by Method II in [6, p. 103].
From (3.2) and (3.3) we infer

—vdw+wdv = f(w)v— f(v)w
=pw (jlw_)_M) (3.4)

w v

Let 8(z) be a smooth nondecreasing function such that 8(0)=0, 6(¢)=1 for
t=1 and 8(1)=0 for t <0. Set
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so that 6,(¢) >0, for all e R. We multiply (3.4) by 6,(v — w) and integrate
over §2; this yields

-wa—)—-f-%ﬂ] 0.(v—w)dx. (3.5)

J‘ [—vAw-i-wAu]He(v—w)dx:J vw|:
2 22
Observe that

J. [—vdAw+w Av] 0, (v—w) dx

Q

=j v0’(v — w) Vw - (Vo — V) dx

Q
—j w0 (v — w) Vo - (Vo — Vw) dx

=J v8(v—wlVw—Vuv)- (Vv —Vw)dx
Q
+f (v—w) 8 (v—w)Vv-(Vo—Vw)dx

2
<j (v —w) 0:(v— w) Vo - (Vo — Vi) dx

=j Vo -V[y,(v—w)] dx=—J. Avy, (v—w) dx,
2 2

where y,(¢) = ({, s0.(s) ds. Since
0<y.(1)<e,  VteR,

then it follows

L) [—vdw+w ] 0, (v—w)dx<e.
Inserting this into (3.5) we find

LJ ow [%@—I—(l?—):l 0.(v—w)dx<e

As ¢ -+ 0 we are led to

'[[Dw] ow [M—M] dx <0.

w v



CONCAVE AND CONVEX NONLINEARITIES 527

But f(v)/v < f(w)/w on [v>w] and therefore meas[v >w]=0; thus v < w.
This completes the proof of the lemma. ||

LeMMA 3.4. For all 0 <l < A, Problem (1.2); has a minimal solution u;.

Proof. Let v, be the unique positive solution of

—Av = Av?, xeQ,
v=0, x €08

We already know that there exists a solution u>0 of (1.2), for every
Ae (0, A). Since —Au>= iu? we can use Lemma 3.3 with w=u to deduce
that any solution u of (1.2); must satisfy ¥ > v,. Clearly, v, is a subsolution
of (1.2),. The monotone iteration

—du, =i+ u?, uy=v,,

satisfies u, Tu;, with u; solution of (1.2);. It is easy to check that u; is a
minimal solution of (1.2),. Indeed, if u is any solution of (1.2),, then u> v,
and u is a supersolution of (1.2);. Thus u,<wu, Vn, by induction, and
U, S u. l

Henceforth we use the symbol u;, 1e(0, A), to denote the minimal
solution of (1.2);.
Before proving Theorem 2.1 a further lemma is in order.

LEMMA 3.5. Let < ¥ be a subsolution, respectively a supersolution,
of (1.2),, and suppose \ is not a solution. Let u be the minimal solution
such that Yy <u<¥. Then v, =4 [—A4—a(x)]=20, where a=a(x)=
Aqui~ '+ puP~' and A, [—A-—a(x)] denotes the first eigenvalue of
—d — a(x) with zero Dirichlet boundary conditions on 0Q (see Remark 3.1
below).

Remark 3.1. It is worth pointing out that the spectral theory for
— A4 —a(x) can still be carried over in H, even if a(x)= + oo on Q. Indeed,

[ aprax<ciiglr,  vgen.
2

To see this fact, we note that

[ wrtgrae=] q<i¢)¢dx<nunzo-‘g”z-nqﬁnz,

u
o]
where 6(x) = dist(x, 622). By the Hardy inequality,

|5 <c.ivb=catan, ween,
2
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it follows that
[ wrigrax<cslon.
Q2

Moreover, the map ¢ — [, a” dx is sequentially continuous for the weak
H"? topology because

¢n+¢
$

< flull, -

I, 620 s

2-||¢,,~¢||z-+0.

Proof of Lemma 3.5. We follow the same method of [10] except that
here the nonlinearity f; is not C! at u=0. By contradiction, suppose that
v; <0 and let ¢ >0 denote a corresponding eigenfunction:

{—Aqf—wﬁ_:vlq;, xef
$=0, x e 0Q.

We claim that ¥ —ag is a supersolution of (1.2); for & >0 small enough.
Indeed, let us compute

—A(u—oap)— [Mu—ad)! + (u—ag)”]
=+ u’—oav,d—a(Aqu? '+ puP ') ¢ — Au—ad)? — (u—ad)”.
Since 1+ t? is concave then
(u—ad)! <u’—aqu’~'g,
and hence
—A(u—af)— [A(u—ad)? + (u—ad)”]
>u’—oav,g—opu” 'g—(u—ad)” = —av, @ + o(ag) >0,

for >0 small, because v; <0 and #>0. As a consequence, u —a¢ is a
supersolution of (1.2),. Moreover, since ¥ is not a solution, then u >y
and, taking o possibly smaller, we can also assume that u —a¢ >1. Then
(1.2), has a solution #, with ¢ <#<u—ad, a contradiction because u is
minimal. This proves the lemma. ||

For future reference, it is worth recalling that 4, [ —4 —a(x)] =0 iff

fn(|V¢|2—a¢2)dx>0, VéeH. (3.6)
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Remark 3.2. Plainly, Lemma 3.5 applies to the minimal solution ;. In
particular, (3.6) holds with a=a; = Aqu] '+ pu? ' yielding

f (V4> —a,4*)dx =0, VéeH. (3.7)
2

We are now ready to give the

Proof of Theorem 2.1. 1. From Lemmas 3.1, 3.2, and 3.4 it follows
that (1.2); has a minimal solution u; for all i€ (0, A4). Recall that

L) =3 numz—;ﬁ ezl ~>T1 [TATSeT

Since u; is a solution of (1.2), one also has

Nzl = A Qa9 53+ Nl 530

By Lemma 3.5 and Remark 3.2, in particular from (3.7) with ¢ =u;, we
infer

2
huzll® = Ag w531 = 2 1aN15 21 2 0.

Putting together these relations one finds that 7, (u;) <0. To complete the
proof of point 1 it remains to show that

Uy <u, whenever 1< A4,.

Indeed, if A <4, then u, is a supersolution of (1.2),. Since, for £> 0 small,
&, is a subsolution of (1.2); and &9, <u,,, then (1.2), possesses a solution
v, with

(6o S)vsuy,.

Since u, is the minimal solution of (1.2);, we infer that u; <v<u,,. The
strict inequality follows from the strong maximum principle, since u; is not
identically equal to u,, . This completes the proof of point 1.

2. Let 4, be a sequence such that 4,7 4. Since the solutions u, =u;,
satisfy I, (u,) <O, it follows there exists C >0 such that

IVu,|?<C,

lu i< C.

Then there exists u* € H such that u, - u* >0 a.e. in , strongly in L”*!
and weakly in H. Such a u* is thus a weak solution of (1.2); for A= 4.
3. This follows from the definition of 4. J
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Remark 3.3. Since M(1) -0 as A — 0 (see the proof of Lemma 3.1), it
follows that ||u,|l., —» 0 as 1 0.

Remark 3.4. Completing Remark 2.1 we recall that to prove the
regularity of the solution found for A=A one follows the arguments of
[15, Théoréme 4] and uses the inequality (3.7) with ¢ =7, for a suitable
y>0.

To prove Theorem 2.2 we use the following

LEMMA 3.6, Let z denote the unigue solution satisfying

—Az=12z9, x €L,
z>0, xeq, (3.8)
z=0, xeof.

Then there exists >0 such that
J‘n[|V¢I2—q2""¢2] dx=f8l3, VéeH. (3.9)
Proof of Lemma 3.6. Let us recall that z can be obtained by
min { Jul> ~—— Jul 2} ue H
2 g+1" 4t '

As a consequence, we have that

[ [veIP—gz2 147 1ax=0,  vpeH,

0

namely A, [ —4—gz7 ']1>0. Suppose that i,[—4—gz7 ']=0. Then
there exists ¢ € H, ¢ >0, such that

_A¢—qzqil¢=0’

and hence
j- V¢ -Vz dx=qf z9 dx. (3.10)
2 2

On the other hand, using (3.8), one also has

L V¢ -Vzdx= J.Q z9 dx,
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a contradiction with (3.10), because g <1. Thus A, [—4—¢z7"']>0, ie.
(39) holds. [

Proof of Theorem 2.2. Let A >0 be such that
AP ' <p,

where f is the value found in Lemma 3.6. We show that for every Ae (0, A)
¢1.2), has at most one solution u satisfying

llull o < 4.

Suppose, by contradiction, that (1.2}, has a second solution w=u,+v
such that

Iwll ., < A. (3.11)

Note that, since u; is the minimal solution of (1.2),, then v> 0. Letting
{(x) =AY~ 9z(x) we obtain

— AL = AL
Moreover, one also has
—du,; = Auf,

and therefore, using Lemma 3.5 with f(¢) = At%, v={, and w =u,, it follows
that

u; = A0 -9z (3.12)
Since w=u, + v is a solution of (1.2);, we have
—A(u, +v)=A(u, +0) + (u; + v)°.
By concavity,
Alu; +0) < Auf+ Aqui~'v

and thus

—Av < Aqud o+ (u; + v)? —uf. (3.13)
Moreover (3.12) implies

wi ATzl (3.14)
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From (3.13) and (3.14) we deduce that
—Av < gz o+ (u; +v)° —uf.
On the other hand, since w=u,; + v < 4, see (3.11), we have
(u; +v)? —ul < pAP~'v
and hence
—Av—qz' " 'v< pA” .

Multiplying this inequality by » and using (3.9) with ¢ =v, we infer that
ﬂj vzdxspA”"J v’ dx.
Q «Q

Since pA*~' < f it follows that v=0. i

Remark 3.5. The behaviour of 4, near 4 =0 must clearly be of the form
w, ~ A=,
A= .
4. EXISTENCE OF A SECOND POSITIVE SOLUTION

In this section we always assume that

q P\N_z-

In particular, letting

As? + 57 s=0

fi(s>={0 >

and
Fiw=| fi(s)ds
4]
we may define the functional 7, : H — R by setting
L =4ul*~ | Fi(w)dx.
Q

Of course, I,(u)=1I;(u) whenever u>0. Moreover it is well known that
critical points of 7, correspond to solutions of (1.2},.
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In the preceding section (see in particular Lemma 3.5 and Remark 3.2)
we have established the existene of a minimal solution u; of (1.2), such that
v, =4, [—4—a;]=0.If v, >0 this solution is a local minimum of 7;, but
if v, =0 this need not be the case. For the purpose of finding a second solu-
tion by variational methods it is essential to have a first solution which is
also a local minimum. To carry over this program we begin by proving a
preliminary result.

LemMMA 4.1. For all A€ (0, A) Problem (1.2); has a solution u which is in
addition a local minimum of I in the C' topology.

Proof. We fix A, <i<l,<A and consider the minimal solutions
u, :=u, and u, := u,, defined in Theorem 2.1. Thus «, <, and u,, respec-
tively u,, is a subsolution, respectively supersolution, of (1.2),. Moreover,

—A(uy —uy) = Ayul + uf — (A,uf +uf)
zAud+uf—Aui—ul20in Q.
Since u, # u, (because i, < 4,), then the Hopf Maximum Principle yields

0
u, <u, and — (4, —u, ) <0,
av

where v is the outer unit normal at dQ2. We now follow the arguments of
Theorem 9, Part IV, Section 2 of [9], see also [10], and we will therefore
be brief. We set

Silug(x)) sKu;
Filx,5)=1 fils) U, <s<u
Si(uy(x)) S 2 Uy

Fx, s)=rf,~_(x,s)ds
and
7;.(“)=%|WH2-—J. F,(x, u) dx.
2

One verifies in a standard way that I, achieves its (global) minimum at
some ue W*7(Q), ¥p < oo, and moreover,

—Auzf,i(x, u), xe L.
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Using once more the Hopf Maximum Principle as above, we find that

U <u<u, inQ
g—(u—ul)<0 on 8Q (4.1)
ov

—a%(u—uz)>0 on 0%2.

From (4.1} it follows that if
[v—ulla=¢

with ¢ small, then u, <v<w,. Moreover I,(v)—7,(v) is constant for
u;<v<u, and therefore u is also a local minimum for f, in the C!
topology. ||

In the sequel 4 is fixed. We look for a second solution of (1.2); of the
form u=uy+ v, where u, denotes the solution found in Lemma 4.1 above
and v> 0. The corresponding equation for v becomes

—dv=A(uy+v)? — Aud + (ug+v)" —uj. (4.2)
Let us define

Aug+ ) — Aug+ (uo+5)” —uf 520

g(x,S)=gi(xss)={0 $<0

G0 =G(4)= | glx, ) s
and
W) =7,)=4v}*~ | G()dx.

If ve H, v #0 is a critical point of J then v is a solution of (4.2) and, by
the Maximum Principle, v >0 in Q. Here #=u,+ v is a solution of (1.2);
and u #wu,. We argue by contradiction and assume that v =0 is the only
critical point of J.

LemMa 4.2. v=0 is a local minimum of J in H.

Proof. In view of Theorem 8 of [9] (see also [10]) it suffices to prove
that v=0 is a local minimum of J in the C' topology. Let v* denote the
positive part of v. Since

Gt)—F(ug+vt)=— ud* — Aufot — ub*' —ulbvt,

g+1 p+1
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then
JE) =1t P+ 4l 12— | Go*)dx
2

= B0t IP 4l 1P = | Fluo+v*) d

A 1
+J-Q I:q—_*_"‘l‘“gﬂﬂ'lugv* +p+ 0 up*! +u{)’v+]dx
=3l P+ 41071 = | Flug+o*)d
+J F(uo)dx+j (Aug+ub)v™ dx.
Q Q
By a straightforward computation one finds

T+ 0" )= $lugl*+ 31017+ | Vito Vo dx— [ Flug+0*) dx

= ol + 310 1P+ | (g uf)o® dx— [ Flug+o*)dx.
Hence
Jw) =307+ Tt +0™) = ol + [ Fluo) dx
= 17+ Hug+v*) — I(ug).
Using Lemma 4.1 it follows that
Jw)= v~ >0

provided |[vfiq <& |}

Recall that J satisfies the Palais—Smale condition at level ¢, (PS), for
short, whenever any sequence u, € H such that J(u,) — ¢ and J'(u,) — 0 has
a convergent subsequence.

LemMma 43. (1) If p<(N+2)/(N—2) then J satisfies (PS), for all c;

(i) if p=(N+2)/(N—2)and if 0 is the only critical point of J, then
J satisfies (PS), for all c <(1/N)S¥?2, where S denotes the best Sobolev
constant.
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Proof. (i) is standard, see e.g. [3].
(1) The result follows in the same way as in [8]. |

Proof of Theorem 2.3. We first deal with the case p < (N +2)/(N—2),
when (PS),. holds for all c¢. Since p>1, it follows that for every v>0,
J(tv)—> — oo as £ — + oo and there exists v, € H such that J(v,) <0. Then
the existence of a critical point v#0 follows from the Ghoussoub-Preiss
version of the Mountain—Pass Theorem [147]; see also [17]. More
precisely, letting

I'={yeC([0,1], H):7(0)=0,y(1)=v,}
and

c=inf max{J(y(s)):te[0, 1]},
vel

Lemma 4.2 implies that ¢>0. Then one applies the Mountain-Pass
Theorem whenever ¢>0 and the Ghoussoub-Preiss version whenever
c=0.

To prove Theorem 2.3 when p=(N+2)/(N—2) one has to show that
¢ < (1/N) S¥2, For this some preliminaries are in order.

Following the method of [8], we consider test functions of the form
v=1¥,, with

M

# (N —=2)2
v =aio(ot)

and where {{x)=1 near x =0 (for the sake of simplicity, we assume hence-
forth that 0 € ), { has compact support in €2 and « is chosen in such a way
that for p=1, ¥, satisfies

—AY = PNEDW =D pear (.
Note that there still exists ¢, >0 such that J(z,¥,) <0. Letting
I,={yeC([0,1], H):y(0)=0,y(1)=1,%,}
and

cuzﬂin}' max {J(y(¢)) : te [0, 1]},

we claim

LEMMA 44. We have

1 v
¢, <sup J(1¥,) < % SN2

t=20

provided u >0 is small enough.
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Proof. (i) Case N=4. First of all we claim that for all p>1 there
exists a = a(p)> 0 such that

(a+b) = af +b? +aa” " 'b, Ya,b=0. (4.3)
Indeed, by scaling it suffices to show that
1+ 21417+, VO<t<1,

which follows from the fact that

1 P_1—¢?
imUF =0
rl0 t
From (4.3) it follows that
g(x, s)=s? +asuf ™' (s>0),
1 1 (44)

> p+ - p— .

G(x,s)/p+ls +2as uf (s>0)

Using (4.4) we infer

Ju#,) =3P 1P - [ Glx 1#,) dx

tp+l t2 -
'P’“——af ul ~ 'Y dx.
p+1lig * 2 )" #

1
<32 1,07-
Since u, > a, >0 on the support of ¥,, we deduce
1 2 2 tP+l p+1 t2 2
Je¥,) <519, _ﬁTL, e —-Eaaofg W2 d,

The conclusion now follows as in [8].

(i) Case N=3. We do not use here (4.4) but instead (recall that
p=(N+2)/(N-2)=5)

(a+ b)Y =a’+b*+ Sab* (a, b>0).
Hence
G(x,s) =218 +uys®  (s=0)

and

J¥, )<L P02 — L J’,, P dx — Cot® L, S dx. (4.5)

580/122/2-19
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Recall that

Bi=| %> =S+ 0(n)
B i=|¥,l5=S"+ O(x*) (46)
B":=5C, ||, 3= ku'? +0(u*?)

with £ >0. Let
d(p)=max {3B* — Bt~ 5B"1°}.
Since d(u) is achieved for t = t(u) satisfying
B=RBt*+ B"H,

then, by (4.6) it follows that

k
Hu)=1- 372 lll/z + o(#uz)_

4

As a consequence we infer that

S3/2_,§(”1/2 + 0(#1/2)

W —

d(p)=

and therefore ¢, < d(u)<$S¥? for >0 small enough. This completes the
proof of the lemma. |

Proof of Theorem 2.3 completed. By Lemma 44 we know that
c<c,<(1/N)S"". Then, according to Lemma 4.3, (PS), holds and the
conclusion follows as in the case when p<(N+2)/(N-2). |

Remark 4.1. The solutions we have found are in H. But one knows by
[7] that they belong to every L* and thus they are classical solutions.

Proof of Theorem 2.4. We argue by contradiction. Suppose that there
exist 4|0 and solutions v, of (1.2),, different from the minimal solutions
u;, and such that |v, ]|, <C. Since the minimal solution u; satisfies
lu;l o <A as 4]0 (see Remark 3.3}, then by Theorem 2.2 it follows that
lvall. > A4, for n large. On the other hand, elliptic estimates imply that, up
to a subsequence, v, converges uniformly to some we H and

—Aw = w NN -2

Since Q is star-shaped, w=0; a contradiction. |}
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Remark 4.2. In the case ¢ =0 Problem (1.2), becomes

{—Au=i+u”, xX€Q,
u=20, X €8,

and the existence of at least two positive solutions when p=(N+2)/
(N —2) has been established in [21] for every 4> 0 sufficiently small.

S. EXISTENCE OF INFINITELY MANY SOLUTIONS

In this section we prove Theorem 2.5. We are brief because the
arguments to prove part 1 are similar to those of [13], while part2 is
closely related to Section 2 of [3]. Welet p< (N +2)(N—2)and forue H
define

1 A 1
Hu)=TI;(w)=3 llullz—;-l" el 333 Tl lall 531

The critical points of I, on H give rise to solutions of (1.3),. Let
B,={ue H:|ul <r}. Using the Sobolev and Hoélder inequalities one has

Li(u) 2 g |ull® = AC, ull* ' = Cylluli P+ . (5.1)

From this one readily finds that there exists i* >0 such that for all
/€ (0, A*] there are r, a> 0 such that

(L1) I,(u)=za for all |u|)=r;
(I.2) 1[I, is bounded from below on B,.

Moreover, one easily shows that
(L.3) I, satisfies (PS) on B,.

Henceforth we fix A€ (0, A*] and drop the subscript 4.
After these preliminaries, let us give the

Proof of Theorem 2.5 (1). We set
2={AcH:0¢A4A,ueA=>—uecd}.

For A € X the Z,-genus of A is denoted by y(A4) (see, for example, [3]). We
set also

o, ={AeX: A compact, Ac B,, y(A4) > n}.



540 AMBROSETTI, BREZIS, AND CERAMI

Clearly, o, , # J for all n=1, 2, ..., because
SH,E := a(I{'l n B&) E %,r'
Here H, denotes an n-dimensional subspace of H. Let

b,,= inf max I(u).
Aesty, ued

Each b, , is finite because of (1.2). Moreover, one has

b,,<0, VneN. (5.2)
Indeed, let we H, be such that ||w|| =& From

I(w)<ie? —AC 7",

it follows that I(w) <0 provided ¢ > 0 is small enough, and this suffices to
prove (5.2).

Next, let us note that for all ue B, n {I<0} the steepest descent flow 7,
(defined through the pseudo-gradient vector field, see e.g. the Deformation
Lemma in [3]) is well defined for 1€ [0, oo} and

n(u)eB,n{I<0}  Vit=0,

because of (I.1). Since, by (5.2), b,,<0 and (PS) holds in B,, see (L3),
we can make use of the Lusternik—Schnirelman theory to find infinitely
many critical points of [/ in B, such that /() <0. This proves point 1 of
Theorem 2.5.

Proof of Theorem 2.5(2). Here we take p<(N+2)/(N—2). As men-
tioned before, we adapt the arguments of [3], where we refer for more
details. First of all, let us remark that (I.1) is nothing but the assumption
(I,) of [3]. Moreover, letting

ﬁ(,:B,u{I;O},

one clearly has that H, n A, is bounded for all ne N; i.e., (I5) of [3] holds
true. Next we set

I'* = {he C(H, H) : his an odd homeomorphism and h(B,) = 4,},
I,={KeX :y(Knh(éB)))=nVYhel*},

and

c,= inf max I{u).
Kel, uek
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After noting that Lemma 2.7 of [3] still holds in the present setting, we
remark that, choosing

h(u)=ru,

r defined in (1.1 —3), one has that A e I'*. Therefore one finds again that
KnB,# @, VKeTl,, and it follows that

c,za>0.
Moreover, letting ¢ =5, we obtain
¢~ (do) < Ao. (5.3)

To prove this fact, it suffices to take ue B,, otherwise if /(u)>0 then
I(¢~"(u))> I(u) and (5.3) holds trivially. Now, if ue B, and w =¢ 1¢B,
(otherwise there is again nothing to prove), then there exists v <1 such
that #_(w)edB,. By (I.1) one finds that I(n.(w))>a>0. Hence I(w)>
I(n.(w))>0 and we A4,, proving (5.3).

Finally, as for J, see Lemma 4.3(i), / satisfies (PS), too. Hence
Theorem 2.8 of [3] applies and yields the existence of infinitely many criti-
cal points of 7 such that 7(x)>0. |

6. SOME OPEN PROBLEMS

In this final section we indicate some open questions.

(a) Suppose that p>(N+2)/(N—2), 2 is a ball and N> 3. Does
(1.2), have two positive solutions for 4> 0 small enough?

Ml

A
Fi1G. 3. Solution set of when g=1 and p<(N+2)/(N-2).
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14l o

A
FiG. 4. Expected solution set when 0 <g <1 and p < (N + 2)/(N—2).

(b) Does (1.3); have infinitely many solutions with positive energy
when p=(N+2)/(N—2), for A >0 small enough?

(c}) Does (1.3), have infinitely many solutions at negative and/or
positive energy for all A>07? If the answer to question (c) is positive, then
the diagram of the solution set looks as follows, see Figs. 3 and 4 below.

It is perhaps worth recalling that the answer is indeed positive in the
following two limiting cases:

1. when g=1, p<(N+2)/(N—-2); and

2. when ¢g=0, p< N/(N-2).

In the former (1.3), becomes
—Au=Au+|ul" " 'u xef2, u=0, xeoQ,
that can be handled by Theorem 3.32 of [3]. In the latter (1.3), becomes
—du=u|? 'u+ i xeQ, u=0,xedQ
that can be handled by the results of [5], see also [4, 18, 20].

(d) It could be interesting to study in detail the structure of all solu-
tions of (1.2); and (1.3); in the special case when N=1 and 2= [a, b].
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