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1. Introduction

In [8] (cf. [22,23]), it is shown, in particular, that any N = 2 superconformal super-Riemann surface with closed, genus-
zero body is N = 2 superconformally equivalent to one of a countably infinite family of uniformized N = 2 superconformal
super-Riemann spheres, denoted S2Ĉ(n) for n an integer. In [6]we analyzed the group of automorphisms for the equivalence
class S2Ĉ(0) as part of the larger study of the moduli space of certain N = 2 superconformal super-Riemann spheres with
tubesmodelingworldsheet particle interactions inN = 2 superconformal field theory. In this paper,we determine the group
of automorphisms for the remaining equivalence classes of genus-zero N = 2 superconformal super-Riemann surfaces, and
study their Lie structure. In particular, we show that the super-dimension of the Lie supergroup of automorphisms of S2Ĉ(n)
has even dimension 4 for n ∈ Z, odd dimension 4 for |n| ≤ 2, and odd dimension |n| + 2 for |n| ≥ 2.
DeWittN = 2 superconformal super-Riemann surfaces are fiber bundles over Riemann surfaceswith transition functions

that satisfy certain properties called N = 2 supersymmetry or N = 2 superconformality. These are the geometric
structures underlying holomorphic, two-dimensional, N = 2 superconformal field theory (cf. [12,15,21,26,16]). As N = 2
supersymmetric particlesmodeled as superstrings propagate through space–time, they sweep out anN = 2 superconformal
super-Riemann surface with half-infinite tubes called a worldsheet (see, for instance, [6]). Under certain meromorphicity
conditions, the algebra of correlation functions governed by genus-zero nonsuper (resp.N = 1 superconformal) worldsheet
interactions has the structure of a vertex operator algebra (resp. an N = 1 Neveu–Schwarz vertex operator superalgebra),
[17,1–4]. However, the results of [8] indicate that the algebra of correlation functions governed by genus-zero N = 2
superconformalworldsheets has as a substructure anN = 2Neveu–Schwarz vertex operator superalgebra [7], but in general
will have substantially more structure. This is due to the fact that, unlike in the nonsuper and N = 1 super cases for which
there is only one genus-zero surface up to global (N = 1 super)conformal equivalence, in the N = 2 super case, there is an
infinite family of N = 2 superconformally inequivalent genus-zero surfaces.
To construct and study many of the aspects of N = 2 superconformal field theory, one needs a description of the moduli

space of genus-zero N = 2 superconformal super-Riemann surfaces with half-infinite tubes attached; and to begin to study
this structure, one needs to understand the genus-zero N = 2 superconformal super-Riemann surfaces and their global
N = 2 superconformal automorphisms. The determination and study of these automorphisms are the purpose of this paper.
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There are two main approaches to supermanifolds: the ‘‘concrete’’ or ‘‘DeWitt’’ approach [14,11,24]; and the ‘‘ringed-
space’’ approach [20,22,23]. The DeWitt approach and the ringed-space approach to supermanifolds are equivalent if one
restricts the supermanifolds in the DeWitt approach to only allow for transition functions which do not include components
that are odd functions of an even variable [10,24]. However, formany applications to superconformal field theory, one needs
to include these more general transition functions, which are naturally incorporated using the DeWitt approach. Using the
ringed-space approach, in order to incorporate the more general transition functions allowed in the DeWitt approach and
in superconformal field theories, one must consider families of ringed-space supermanifolds over a given supermanifold.
For the purposes of this paper, we present our results in the concrete approach. In particular, we are interested in extending
the program developed by the author in [1–5] in the N = 1 superconformal case to the N = 2 superconformal case. This
work in the N = 1 case, developing a rigorous correspondence between the geometry of N = 1 superconformal super-
Riemann surfaces and the algebraic notion of N = 1 Neveu–Schwarz vertex operator superalgebra, and applications to
determining the change of variables formulas for N = 1 Neveu–Schwarz vertex operator superalgebras, relied on the local
N = 1 infinitesimal superconformal transformations giving a representation of the N = 1 Neveu–Schwarz algebra, which
implied that local coordinates must have even and odd variables taking values in some underlying Grassmann algebra and
involved component functions which are odd functions of an even variable. The N = 2 case will similarly depend on even
and odd variables taking values in some underlying Grassmann algebra and odd superfunctions of an even variable.
Many consider the need for a choice of Grassmann algebra themain drawback of the concrete approach. However within

the concrete approach (in particular allowing for odd functions of an even variable), certain functorial properties can be
incorporated into the definition of superfunction and supermanifold alleviating the need for a particular choice of underlying
Grassmann algebra (cf. [25]); or even further generalizations can be made by replacing the underlying Grassmann algebras
with almost nilpotent superalgebras [19]. Although we restrict most of our discussion in this paper to supermanifolds over
Grassmann algebras, the extension to almost nilpotent algebras following [19] is a natural one, as is the functorial nature of
our definitions; see Remarks 2.1 and 2.3.
We note here that in [13], it was shown that N = 2 superconformal super-Riemann surfaces are equivalent to N = 1

superanalytic super-Riemann surfaces. The same correspondence was obtained earlier, as the authors of [13] mention, in an
unpublished letter of Deligne toManin.We discuss this equivalence in Section 2.5 in the setting of concrete supermanifolds.
Under this correspondence the results of this paper extend to the equivalence classes of genus-zero N = 1 superanalytic
super-Riemann surfaces and their automorphism groups.

2. Preliminaries

In this section, we recall the notion of superalgebra, Lie superalgebra, Grassmann algebra, superanalytic function,
N = 2 superconformal function, supermanifold and N = 2 superconformal super-Riemann surface following, for
instance [6,11,24].

2.1. Superalgebras

Let C denote the complex numbers, let Z denote the integers, and let Z2 denote the integers modulo 2. For a Z2-graded
vector space V = V 0 ⊕ V 1, over C, define the sign function η on the homogeneous subspaces of V by η(v) = j, for v ∈ V j
and j ∈ Z2. If η(v) = 0, we say that v is even, and if η(v) = 1, we say that v is odd. A superalgebra is an (associative) algebra
A (with identity 1 ∈ A), such that: (i) A is a Z2-graded algebra; (ii) ab = (−1)η(a)η(b)ba for a, b homogeneous in A.
A Z2-graded vector space g = g0 ⊕ g1 is said to be a Lie superalgebra if it has a bilinear operation [·, ·] on g such that

for u, v homogeneous in g: (i) [u, v] ∈ g(η(u)+η(v))mod 2; (ii) skew symmetry holds [u, v] = −(−1)η(u)η(v)[v, u]; (iii) the
following Jacobi identity holds

(−1)η(u)η(w)[[u, v], w] + (−1)η(v)η(u)[[v,w], u] + (−1)η(w)η(v)[[w, u], v] = 0.
For anyZ2-graded associative algebra A and for u, v ∈ A of homogeneous sign,we can define [u, v] = uv−(−1)η(u)η(v)vu,

making A into a Lie superalgebra. The algebra of endomorphisms of A, denoted End A, has a naturalZ2-grading induced from
that of A, and defining [X, Y ] = XY − (−1)η(X)η(Y )YX for X, Y homogeneous in End A, this gives End A a Lie superalgebra
structure. An element D ∈ (End A)j, for j ∈ Z2, is called a superderivation of sign j (denoted η(D) = j) if D satisfies the
super-Leibniz rule

D(uv) = (Du)v + (−1)η(D)η(u)uDv (2.1)
for u, v ∈ A homogeneous.
Let h be a Lie superalgebra, and let End(h) denote the Lie superalgebra of endomorphisms from h to itself. Then End(h)

is a Lie superalgebra. We call an element D ∈ End(h) a Lie superalgebra derivation if it satisfies
D([u, v]) = [D(u), v] + (−1)η(D)η(u)[u,D(v)] (2.2)

for all u, v ∈ h. We denote the set of all Lie superalgebra derivations of h by Der(h), and note that Der(h) is a Lie sub-
superalgebra of End(h).
Given two Lie superalgebras g and h and a Lie superalgebra homomorphism
σ : g −→ Der(h), (2.3)
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we can put a Lie superalgebra structure on g× h by defining

[u+ v, u′ + v′] = [u, u′] + σu(v′)− (−1)η(v)η(u
′)σu′(v)+ [v, v

′
]. (2.4)

This is called the semi-direct product of gwith h and is denoted g×σ h.
Let V be a vector space. The exterior algebra generated by V , denoted

∧
(V ), has the structure of a superalgebra. Let N

denote the nonnegative integers. For L ∈ N, fix VL to be an L-dimensional vector space overCwith basis {ζ1, ζ2, . . . , ζL} such
that VL ⊂ VL+1. We denote

∧
(VL) by

∧
L and call this the Grassmann algebra on L generators. In other words, from now onwe

will consider the Grassmann algebras to have a fixed sequence of generators. Note that
∧
L ⊂

∧
L+1, and taking the direct

limit as L → ∞, we have the infinite Grassmann algebra denoted by
∧
∞
. Then

∧
L and

∧
∞
are the associative algebras

over C with generators ζj, for j = 1, 2, . . . , L and j = 1, 2, . . . , respectively, and with relations ζjζk = −ζkζj, for j 6= k, and
ζ 2j = 0. We use the notation

∧
∗
to denote a Grassmann algebra, finite or infinite.

Let

J0L =
{
(j) = (j1, j2, . . . , j2n) | j1 < j2 < · · · < j2n, jl ∈ {1, 2, . . . , L}, n ∈ N

}
,

J1L =
{
(j) = (j1, j2, . . . , j2n+1) | j1 < j2 < · · · < j2n+1, jl ∈ {1, 2, . . . , L}, n ∈ N

}
,

and JL = J0L ∪ J
1
L . Let Z+ denote the positive integers, and let

J0
∞
=
{
(j) = (j1, j2, . . . , j2n) | j1 < j2 < · · · < j2n, jl ∈ Z+, n ∈ N

}
,

J1
∞
=
{
(j) = (j1, j2, . . . , j2n+1) | j1 < j2 < · · · < j2n+1, jl ∈ Z+, n ∈ N

}
,

and J∞ = J0∞ ∪ J
1
∞
. We use J0

∗
, J1
∗
, and J∗ to denote J0L or J

0
∞
, J1L or J

1
∞
, and JL or J∞, respectively. Note that (j) = (j1, . . . , j2n)

for n = 0 is in J0
∗
, and we denote this element by (∅). The Z2-grading of

∧
∗
is given explicitly by∧0

∗
=

{∑
(j)∈J0∗

a(j)ζj1ζj2 · · · ζj2n
∣∣ a(j) ∈ C, n ∈ N

}
∧1
∗
=

{∑
(j)∈J1∗

a(j)ζj1ζj2 · · · ζj2n+1
∣∣ a(j) ∈ C, n ∈ N

}
.

We can also decompose
∧
∗
into body, (

∧
∗
)B = {a(∅) ∈ C}, and soul

(
∧
∗
)S =

{ ∑
(j)∈J∗r{(∅)}

a(j)ζj1ζj2 · · · ζjn
∣∣ a(j) ∈ C

}
subspaces such that

∧
∗
= (

∧
∗
)B ⊕ (

∧
∗
)S . For a ∈

∧
∗
, we write a = aB + aS for its body and soul decomposition. We will

use both notations aB and a(∅) for the body of a supernumber a ∈
∧
∗
interchangeably.

For n ∈ N, we introduce the notation
∧
∗>n to denote a finite Grassmann algebra

∧
L with L > n or an infinite Grassmann

algebra. We will use the corresponding index notations for the corresponding indexing sets J0
∗>n, J

1
∗>n and J∗>n.

2.2. Superfunctions

For n ∈ N, let U be a subset of
∧0
∗
⊕(
∧1
∗
)n. A

∧
∗
-super-function H on U in (1, n)-variables is a map H : U −→

∧
∗
,

(z, θ1, . . . , θn) 7→ H(z, θ1, . . . , θn) where z is an even variable in
∧0
∗
and θj, for j = 1, . . . , n, are odd variables in

∧1
∗
. If

H takes values only in
∧0
∗
(resp.

∧1
∗
), we say that H is an even (resp. odd) superfunction. Let f (zB) be a complex analytic

function in zB. For z ∈
∧0
∗
, define

f (z) =
∑
l∈N

z lS
l!

(
∂

∂zB

)l
f (zB). (2.5)

Consider the projection

π
(1,n)
B :

∧0
∗
⊕ (

∧1
∗
)n −→ C, (z, θ1, . . . , θn) 7→ zB. (2.6)

Let U ⊆
∧0
∗>n−1⊕(

∧1
∗>n−1)

n, and let H be a
∧
∗>n−1-superfunction in (1, n)-variables defined on U . Then H is said to be

superanalytic if H is of the form

H(z, θ1, . . . , θn) =
∑
(j)∈Jn

θj1 · · · θjl f(j)(z), (2.7)

where each f(j) is of the form

f(j)(z) =
∑

(k)∈J∗−n

f(j),(k)(z)ζk1ζk2 · · · ζks , (2.8)

and each f(j),(k)(zB) is analytic in zB for zB ∈ UB = π
(1,n)
B (U) ⊆ C.



1976 K. Barron / Journal of Pure and Applied Algebra 214 (2010) 1973–1987

We require the even and odd variables to be in
∧
∗>n−1, and we restrict the coefficients of the f(j)’s to be in

∧
∗−n ⊆∧

∗>n−1 in order for the partial derivatives with respect to each of the odd variables to be well defined and for multiple
partials to be well defined (cf. [11,3,24,6]). In the language of [24], these

∧
∗>n−1-superfunctions are called GC

ω functions
on C1,nS if

∧
∗
=
∧
∞
, and are called GHCω functions on C1,nS[L] if

∧
∗
=
∧
L for L ≥ n. In particular, they subsume the class of

HCω functions as defined in [24].
We define the DeWitt topology on

∧0
∗
⊕(
∧1
∗
)n by letting a subset U of

∧0
∗
⊕ (
∧1
∗
)n be an open set in the DeWitt topology

if and only if U = (π
(1,n)
B )−1(V ) for some open set V ⊆ C. Note that the natural domain of a superanalytic

∧
∗>n−1-

superfunction in (1, n)-variables is an open set in the DeWitt topology.
Let (

∧
∗
)× denote the set of invertible elements in

∧
∗
. Then (

∧
∗
)× = {a ∈

∧
∗
| aB 6= 0}, since 1a =

1
aB+aS

=∑
n∈N

(−1)nanS
an+1B

is well defined if and only if aB 6= 0.

Remark 2.1. Recall that
∧
L ⊂

∧
L+1 for L ∈ N, and note that from (2.5), any superanalytic

∧
L-superfunction, HL, in (1, n)-

variables for L ≥ n can naturally be extended to a superanalytic
∧
L′-superfunction in (1, n)-variables for L

′ > L and hence
to a superanalytic

∧
∞
-superfunction. Conversely, if HL′ is a superanalytic

∧
L′-superfunction (or

∧
∞
-superfunction) in

(1, n)-variables for L′ > n, then we can restrict HL′ to a superanalytic
∧
L-superfunction for L

′ > L ≥ n by restricting
(z, θ1, . . . , θn) ∈

∧0
L ⊕(

∧1
L )
n and setting f(j) ≡ 0 if (j) /∈ JL−n. If HL′ satisfies f(j) ≡ 0 if (j) /∈ JL−n, then this restriction to

∧
L

and then extension to
∧
L′ results in the identity mapping, i.e., leaves HL′ unchanged. Thus any superanalytic function over∧

L′ in (1, n)-variables with coefficient functions f(j) = 0 for (j) /∈ JL−n, for L ≤ L
′, can be thought of as a functor from the

category of Grassmann algebras
∧
∗
with ∗ ≥ L+ n to superanalytic functions over

∧
∗
in (1, n)-variables (cf. [25,19]).

2.3. Superconformal (1, 2)-superfunctions

Let z be an even variable in
∧0
∗>1, and let θ

+ and θ− be odd variables in
∧1
∗>1. Define

D± =
∂

∂θ±
+ θ∓

∂

∂z
. (2.9)

ThenD± are odd superderivations on
∧
∗>1-superfunctions in (1, 2)-variableswhich are superanalytic in someDeWitt open

subset U ⊆
∧0
∗>1⊕(

∧1
∗>1)

2. Note that

[D±,D±] = 2(D±)2 = 0 (2.10)[
D+,D−

]
= D+D− + D−D+ = 2

∂

∂z
. (2.11)

Let

H : U ⊆
∧0
∗>1 ⊕ (

∧1
∗>1)

2
−→

∧0
∗>1 ⊕ (

∧1
∗>1)

2 (2.12)

(z, θ+, θ−) 7→ (z̃, θ̃+, θ̃−)

be superanalytic, i.e., z̃ = H0(z, θ+, θ−) is an even superanalytic (1, 2)-superfunction, and θ̃± = H±(z, θ+, θ−) are odd
superanalytic (1, 2)-superfunctions. Then D+ and D− transform under H(z, θ+, θ−) by

D± = (D±θ̃±)D̃± + (D±θ̃∓)
∂

∂θ̃∓
+ (D±z̃ − θ̃∓D±θ̃±)

∂

∂ z̃
. (2.13)

We define an N = 2 superconformal function H on a DeWitt open subset U of
∧0
∗>1⊕(

∧1
∗>1)

2 to be a superanalytic
(1, 2)-superfunction from U into

∧0
∗>1⊕(

∧1
∗>1)

2 under which D+ and D− transform homogeneously of degree one.
That is, H transforms D± by non-zero superanalytic functions times D̃±, respectively. Since such a superanalytic function
H(z, θ+, θ−) = (z̃, θ̃+, θ̃−) transforms D+ and D− according to (2.13), H is superconformal if and only if, in addition to
being superanalytic, H satisfies

D±θ̃∓ = 0, (2.14)

D±z̃ − θ̃∓D±θ̃± = 0, (2.15)

for D±θ̃± not identically zero, thus transforming D± by D± = (D±θ̃±)D̃±. These conditions imply that we can write
H(z, θ+, θ−) = (z̃, θ̃+, θ̃−) as

z̃ = f (z)+ θ+g+(z)ψ−(z)+ θ−g−(z)ψ+(z)+ θ+θ−(ψ+(z)ψ−(z))′ (2.16)

θ̃± = ψ±(z)+ θ±g±(z)± θ+θ−(ψ±)′(z) (2.17)
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for f , g± even and ψ± odd superanalytic (1, 0)-superfunctions in z, satisfying the condition

f ′(z) = (ψ+)′(z)ψ−(z)− ψ+(z)(ψ−)′(z)+ g+(z)g−(z), (2.18)

and we also require that D+θ̃+ and D−θ̃− not be identically zero.
Thus an N = 2 superconformal function H is uniquely determined by the superanalytic functions f (z),ψ±(z), and g±(z)

satisfying the condition (2.18).

Remark 2.2. The setting above is in the ‘‘homogeneous’’ coordinate system, denoted byN = 2 supercoordinates (z, θ+, θ−).
There is another commonly used coordinate system for N = 2 super-settings, namely the ‘‘nonhomogeneous’’ coordinates,
denoted by (z, θ1, θ2), where θ1 = 1

√
2

(
θ+ + θ−

)
and θ2 = − i

√
2

(
θ+ − θ−

)
, or equivalently θ± = 1

√
2
(θ1 ± iθ2).

This is a standard transformation in N = 2 superconformal field theory (cf. [13,6–8]), and the terms homogeneous and
nonhomogeneous were introduced in [6] along with reasons for this nomenclature. These reasons lie in the fact that the
U(1)-current algebra in the Lie superalgebra of infinitesimal N = 2 superconformal transformations (see (5.1)–(5.5))
acts homogeneously (resp. nonhomogeneously) on odd elements when in the homogeneous (resp. nonhomogeneous)
coordinates. We will continue to use the homogeneous coordinate system for the purposes of this paper, as the results
are more easily presented in this system (cf. [8]).

2.4. Complex supermanifolds and N = 2 superconformal super-Riemann surfaces

A DeWitt (1, n)-dimensional supermanifold over
∧
∗
is a topological space X with a countable basis which is locally

homeomorphic to an open subset of
∧0
∗
⊕(
∧1
∗
)n in the DeWitt topology. A DeWitt (1, n)-chart on X over

∧
∗
is a pair (U,Ω)

such that U is an open subset of X and Ω is a homeomorphism of U onto an open subset of
∧0
∗
⊕(
∧1
∗
)n in the DeWitt

topology. A superanalytic atlas of DeWitt (1, n)-charts on X over
∧
∗>n−1 is a family of charts {(Uα,Ωα)}α∈A satisfying

(i) Each Uα is open in X , and
⋃
α∈A Uα = X .

(ii) Each Ωα is a homeomorphism from Uα to an open set in
∧0
∗>n−1⊕(

∧1
∗>n−1)

n in the DeWitt topology, such that
Ωα ◦ Ω

−1
β : Ωβ(Uα ∩ Uβ) −→ Ωα(Uα ∩ Uβ) is superanalytic for all non-empty Uα ∩ Uβ , i.e., Ωα ◦ Ω

−1
β = (z̃, θ̃1, . . . , θ̃n)

where z̃ and θ̃j, for j = 1, . . . , n, are even and odd, respectively, superanalytic
∧
∗>n−1-superfunctions in (1, n)-variables.

Such an atlas is called maximal if, given any chart (U,Ω) such that Ω ◦ Ω−1β : Ωβ(U ∩ Uβ) −→ Ω(U ∩ Uβ) is a
superanalytic homeomorphism for all β , then (U,Ω) ∈ {(Uα,Ωα)}α∈A.
ADeWitt (1, n)-superanalytic supermanifold over

∧
∗>n−1 is a DeWitt (1, n)-dimensional supermanifoldM togetherwith a

maximal superanalytic atlas of DeWitt (1, n)-charts over
∧
∗>n−1. In the language of [24], if

∧
∗
is infinite dimensional, then

these supermanifolds are called (1, n)-GCω DeWitt supermanifolds. If the transition functions forM are restricted to beHCω
functions, thenwe callM anH-supermanifold. These are the supermanifolds that are most often studied in the ringed-space
approach, cf. [20,22–24].
Given a DeWitt (1, n)-superanalytic supermanifold M over

∧
∗>n−1, define an equivalence relation ∼ on M by letting

p ∼ q if and only if there exists α ∈ A such that p, q ∈ Uα and π
(1,n)
B (Ωα(p)) = π

(1,n)
B (Ωα(q))where π

(1,n)
B is the projection

given by (2.6). Let pB denote the equivalence class of p under this equivalence relation. Define the body MB of M to be the
complex manifold with analytic structure given by the coordinate charts {((Uα)B, (Ωα)B)}α∈A where (Uα)B = {pB | p ∈ Uα},
and (Ωα)B : (Uα)B −→ C is given by (Ωα)B(pB) = π

(1,n)
B ◦Ωα(p). We define the genus ofM to be the genus ofMB.

Note thatM is a complex fiber bundle over the complex manifoldMB; the fiber is the complex vector space (
∧0
∗>n−1)S ⊕

(
∧1
∗>n−1)

n. This bundle is not in general a vector bundle since the transition functions are in general nonlinear.
An N = 2 superconformal super-Riemann surface over

∧
∗>1 is a DeWitt (1, 2)-superanalytic supermanifold over

∧
∗>1

with coordinate atlas {(Uα,Ωα)}α∈A such that the coordinate transition functionsΩα◦Ω
−1
β in addition to being superanalytic

are also N = 2 superconformal for all non-empty Uα ∩ Uβ .
Since the condition that the coordinate transition functions be N = 2 superconformal instead of merely superanalytic is

such a strong condition (unlike in the nonsuper case), we again stress the distinction between anN = 2 superanalytic super-
Riemann surface which has superanalytic transition functions versus an N = 2 superconformal super-Riemann surface
which has N = 2 superconformal transition functions. In the literature one will find the term ‘‘super-Riemann surface’’
or ‘‘Riemannian supermanifold’’ used for both merely superanalytic structures (cf. [11]) and for superconformal structures
(cf. [14]).
From now on, we will focus on N = 1 superanalytic super-Riemann surfaces, that is DeWitt (1, 1)-superanalytic

supermanifolds over
∧
∗>0, and N = 2 superconformal super-Riemann surfaces.

Let M1 and M2 be N = 2 superconformal (resp. N = 1 superanalytic) super-Riemann surfaces with coordinate atlases
{(Uα, Ωα)}α∈A for M1 and {(Vβ ,Ξβ)}β∈B for M2. A map F : M1 −→ M2 is said to be N = 2 superconformal (resp. N = 1
superanalytic) ifΞβ ◦ F ◦Ω−1α : Ωα(Uα ∩ F−1(Vβ)) −→ Ξβ(Vβ) is N = 2 superconformal (resp. N = 1 superanalytic) for all
α ∈ A and β ∈ BwithUα∩F−1(Vβ) 6= ∅. If in addition, F is bijective, thenwe say thatM1 andM2 areN = 2 superconformally
equivalent (resp. N = 1 superanalytically equivalent).
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Remark 2.3. Just as a single superanalytic function over a certain Grassmann algebra can be thought of as a functor from a
(sub)category of Grassmann algebras to superanalytic functions over any one of these Grassmann algebras (see Remark 2.1),
so can a DeWitt (1, n)-superanalytic supermanifold over a certain Grassmann algebra be thought of as a functor from
a (sub)category of Grassmann algebras to DeWitt (1, n)-superanalytic supermanifolds over any one of these Grassmann
algebras. LetM be an (1, n)-superanalytic supermanifold over

∧
L′ for L

′
≥ nwith coordinate atlas given by {(Uα,Ωα)}α∈A.

If the coordinate transition functions forM are such that the coefficient functions f(j) ≡ 0 for (j) /∈ JL−n for some L′ > L ≥ n,
then the submanifold ofM given by

⋃
α∈AΩ

−1
α ((Ωα(Uα))B × (

∧
L)S) is naturally a (1, n)-superanalytic supermanifold over∧

L. Moreover, ifM1 andM2 result in the same submanifold under this restriction from
∧
L′ to

∧
L, thenM1 = M2. Thus there

is a natural and unique extension of any (1, n)-superanalytic supermanifold over
∧
L to a (1, n)-superanalytic supermanifold

over
∧
∗
for ∗ > L.

2.5. The equivalence of N = 2 superconformal and N = 1 superanalytic DeWitt super-Riemann surfaces

In this section, we recall (and slightly extend) some results from [13] establishing an equivalence between N = 1
superanalytic super-Riemann surfaces and N = 2 superconformal super-Riemann surfaces. Our main results in this paper,
Theorems 4.1, 5.1 and 6.1 and Corollary 5.3, are formulated and proved for N = 2 superconformal super-Riemann surfaces.
However, using Proposition 2.4 from this section, our results are easily formulated in the correspondingN = 1 superanalytic
setting.
Although we follow [13], modified slightly to our setting, there are discrepancies between some of our formulas and

those given in [13]. For instance, there is a typo in [13] in the transformation from the nonhomogeneous coordinate system
(z, θ1, θ2) to the homogeneous coordinate system (z, θ+, θ−); the typo is a factor of 1/2 erroneously introduced into the
D± superderivations after the transformation of coordinates, and this factor is carried throughout their calculations.
Let UB be an open set in C. Let SC∗>1(2,UB) be the set of invertible N = 2 superconformal functions defined on the

DeWitt open setUB×((
∧0
∗>1)S⊕(

∧1
∗>1)

2) in
∧0
∗>1⊕(

∧1
∗>1)

2. LetSA∗>1(1,UB) be the set of invertibleN = 1 superanalytic
functions H defined on the DeWitt open set UB× (

∧
∗>1)S in

∧
∗>1 such that the coefficients of the functions defining H are

restricted to lie in
∧
∗−2 rather than just in

∧
∗−1; that is in (2.8), we take (k) ∈ J∗−2 rather than (k) ∈ J∗−1.

Define the map

F1 : SC∗>1(2,UB) −→ SA∗>1(1,UB) (2.19)
H 7→ F1(H)

as follows: For H ∈ SC∗>1(2,UB), then H(z, θ+, θ−) = (z̃, θ̃+, θ̃−) is of the form (2.16)–(2.18) for even functions f and g±
and odd functions ψ±. Define

F1(H)(z, θ) = (f (z)+ ψ+(z)ψ−(z)+ 2θg+(z)ψ−(z), ψ+(z)+ θg+(z)). (2.20)
This invertibleN = 1 superanalytic functionF1(H) can be thought of as arising fromperforming theN = 2 superanalytic

coordinate transformation
(z, θ+, θ−) 7→ (u, η, α) = (z + θ+θ−, θ+, θ−). (2.21)

Under this transformation, we obtain the N = 2 superanalytic function in the even variable u and the two odd variables η
and α given by

ũ = f (u)+ ψ+(u)ψ−(u)+ 2ηg+(u)ψ−(u) (2.22)
η̃ = ψ+(u)+ ηg+(u) (2.23)
α̃ = ψ−(u)+ αg−(u)− 2ηα(ψ−)′(u). (2.24)

Conversely, define the map

F2 : SA∗>1(1,UB) −→ SC∗>1(2,UB) (2.25)
H 7→ F2(H)

as follows: For H ∈ SA∗>1(1,UB), then H(z, θ) = (f1(z)+ θξ(z), ψ(z)+ θg(z)) for even functions f1(z) and g(z) and odd
functions ξ(z) andψ(z), andwith g(z) nonvanishing. DefineF2(H)(z, θ+, θ−) = (z̃, θ̃+, θ̃−) to be of the form (2.16)–(2.17)
where

f (z) = f1(z)−
ψ(z)ξ(z)
2g(z)

, (2.26)

g+(z) = g(z), and g−(z) =
f ′1(z)
g(z)
−
ψ ′(z)ξ(z)
g(z)2

(2.27)

ψ+(z) = ψ(z), and ψ−(z) =
ξ(z)
2g(z)

. (2.28)

One can easily check that condition (2.18) is satisfied, and thus F2(H) is indeed N = 2 superconformal.
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We have that F1 and F2 are bijections and

F1 ◦ F2 = idSA∗>1(1,UB) and F2 ◦ F1 = idSC∗>1(2,UB). (2.29)

Let SCM∗>1(2) be the category of N = 2 superconformal super-Riemann surfaces over the Grassmann algebra
∧
∗>1,

and let SAM∗>1(1) be the category of N = 1 superanalytic super-Riemann surfaces M over the Grassmann algebra
∧
∗>1

such that the transition functions forM are in SA∗>1(1,UB) for some UB ∈ C.
Define the functor

F : SCM∗>1(2) −→ SAM∗>1(1) (2.30)
M 7→ F (M)

as follows: Let M be an N = 2 superconformal super-Riemann surface over the Grassmann algebra
∧
∗>1 with coordinate

atlas {(Uα,Ωα)}α∈A. Let F (M) be the N = 1 superanalytic super-Riemann surface with body MB obtained by patching
together DeWitt open domains in

∧
∗>1 with local coordinates (z, θ) by means of the transition functions F1(Ωα ◦Ω

−1
β ) :

(Ωβ(Uα ∩ Uβ))B × (
∧
∗>1)S −→ (Ωα(Uα ∩ Uβ))B × (

∧
∗>1)S .

From (2.29), it follows that F is an isomorphism of categories. Thus we have the following proposition (cf. [13]):

Proposition 2.4. The category SCM∗>1(2) of N = 2 superconformal super-Riemann surfaces over the Grassmann algebra∧
∗>1 is isomorphic to the category SAM∗>1(1) of N = 1 superanalytic super-Riemann surfaces such that the coefficients of

the coordinate transition functions are restricted to lie in
∧
∗−2.

Remark 2.5. In N = 2 superconformal field theory, the supermanifolds that arise from superstrings propagating through
space–time, are N = 2 superconformal super-Riemann surfaces with half-infinite tubes attached. These half-infinite
tubes are N = 2 superconformally equivalent to punctures on the N = 2 superconformal super-Riemann surface with
N = 2 superconformal local coordinates vanishing at the punctures. Although, there is a bijection between N = 2
superconformal local coordinates in a neighborhood of a given point on an N = 2 superconformal super-Riemann surface
M and the N = 1 superanalytic local coordinates in a neighborhood of the corresponding point on F (M), a bijective
correspondence does not exist between such N = 2 superconformal local coordinates vanishing at the point p ∈ M
and N = 1 superanalytic local coordinates vanishing at the corresponding point in F (M). For example, the N = 1
superanalytic function H(z, θ) = (z + θ, θ) vanishes at the origin (0, 0) of the N = 1 superplane

∧
∗>1. However

the corresponding N = 2 superconformal function F1(H)(z, θ+, θ−) = (z + 1
2θ
+, θ+, 12 + θ

−) does not vanish at the
corresponding point in F −1(

∧
∗>1) =

∧0
∗>1⊕(

∧1
∗>1)

2, that point being the origin. Thus one cannot simply replace N = 2
superconformal worldsheets swept out by propagating superstrings by N = 1 superanalytic worldsheets when the full data
of the propagating strings is included. One must either work in the N = 2 superconformal setting, or take into account the
discrepancies that arise by using the N = 1 superanalytic setting when modeling the incoming and outgoing tubes for the
superstrings. See, for example, [9] for further discussion of this fact.

3. The uniformization theorem for genus-zero N = 2 superconformal and N = 1 superanalytic super-Riemann
surfaces

For n ∈ Z, define the N = 2 superconformal map

In : (
∧0
∗>1)

×
⊕ (

∧1
∗>1)

2
−→ (

∧0
∗>1)

×
⊕ (

∧1
∗>1)

2 (3.1)

(z, θ+, θ−) 7→ In(z, θ+, θ−) =
(1
z
,
iθ+zn

z
,
iθ−z−n

z

)
.

For n ∈ Z, define S2Ĉ(n) to be the genus-zero N = 2 superconformal super-Riemann surface over
∧
∗>1 with N = 2

superconformal structure given by the covering of local coordinate neighborhoods {U∆n ,UΥn} and the local coordinatemaps

∆n : U∆n −→
∧0
∗>1 ⊕ (

∧1
∗>1)

2 (3.2)

Υn : UΥn −→
∧0
∗>1 ⊕ (

∧1
∗>1)

2, (3.3)

which are homeomorphisms of U∆n and UΥn onto
∧0
∗>1⊕(

∧1
∗>1)

2, respectively, such that

∆n ◦ Υ
−1
n : (

∧0
∗>1)

×
⊕ (

∧1
∗>1)

2
−→ (

∧0
∗>1)

×
⊕ (

∧1
∗>1)

2 (3.4)

(z, θ+, θ−) 7→ In(z, θ+, θ−).

Thus the body of S2Ĉ(n) is the Riemann sphere, i.e., (S2Ĉ(n))B = Ĉ = C ∪ {∞}.
The N = 1 superanalytic super-Riemann surface F (S2Ĉ(n)), for n ∈ Z, has body Ĉ, and transition function given by

F1(In)(z, θ) = (1/z, iθzn−1).
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In [8], we proved the following Uniformization Theorem:

Theorem 3.1 ([8]). Any N = 2 superconformal super-Riemann surface with closed, genus-zero body is N = 2 superconformally
equivalent to S2Ĉ(n) for some n ∈ Z. Moreover, S2Ĉ(m) and S2Ĉ(n) for m, n ∈ Z are not N = 2 superconformally equivalent if
m 6= n.
Similarly, any N = 1 superanalytic super-Riemann surface with closed, genus-zero body is N = 1 superanalytically equivalent

to F (S2Ĉ(n)) for some n ∈ Z. Moreover, F (S2Ĉ(m)) and F (S2Ĉ(n)) for m, n ∈ Z are not N = 1 superanalytically equivalent
if m 6= n.

Remark 3.2. As discussed in [8], this Uniformization Theorem for genus-zero N = 2 superconformal (resp. N = 1
superanalytic) super-Riemann surfaces, Theorem 3.1, can be restated as follows: There is a bijection between N = 2
superconformal (resp. N = 1 superanalytic) equivalence classes of N = 2 superconformal (resp. N = 1 superanalytic)
super-Riemann surfaces with closed, genus-zero body and holomorphic equivalence classes of holomorphic line bundles
over the Riemann sphere. One can see this bijective correspondence explicitly, by noting that the N = 2 superconformal
super-Riemann sphere S2Ĉ(n) for n ∈ Z has, as a substructure, the GL(1,C)-bundle over Ĉ given by the transition function
izn−1(∅) : C

×
−→ C×, corresponding to the transition function for the first fermionic component of S2Ĉ(n) restricted to the

fiber in the first component of θ+ = θ+(1)ζ1 + θ
+

(2)ζ2 + · · · . (Or equivalently, one can restrict to the (j)-th component for
(j) ∈ J1

∗>1.) Moreover, the GL(1,C)-bundle over Ĉwith transition function izn−1(∅) : C
×
−→ C×, for n ∈ Z, picks out a unique

S2Ĉ(n). Under this bijection between equivalence classes of genus-zeroN = 2 superconformal super-Riemann surfaces and
equivalence classes of holomorphic line bundles over the body, the N = 2 superconformal super-Riemann surface S2Ĉ(n)
corresponds to the holomorphic line bundle over Ĉ of degree−n+ 1.

Remark 3.3. In particular, in the genus-zero case, any N = 2 superconformal (resp. N = 1 superanalytic) super-Riemann
surface is N = 2 superconformally (resp. N = 1 superanalytically) equivalent to anH-manifold, and thus the classification
of such supermanifolds reduces to that found in the ringed-space approach as in [22]. This is not the case for genus greater
than one. As shown in [8], whether or not a general N = 2 superconformal (resp. N = 1 superanalytic) super-Riemann
surfaceM isN = 2 superconformally (resp.N = 1 superanalytically) equivalent to anH-manifold is dependent onwhether
the first Čech cohomology group of the underlying body Riemann surfaceMB with coefficients in the sheaf of holomorphic
vector fields over the body is trivial.

Throughout the remainder of this paper, we will use the setting of N = 2 superconformal super-Riemann spheres and
their automorphism groups. However, using Proposition 2.4, the category isomorphism (2.30), and the map (2.20), our
results can easily be translated to the N = 1 superanalytic setting.

4. The automorphism groups of the N = 2 superconformal super-Riemann spheres

Let Aut(S2Ĉ(n)) denote the group of N = 2 superconformal automorphisms of S2Ĉ(n), for n ∈ Z. For T ∈ Aut(S2Ĉ(n)),
define the N = 2 superconformal function T∆ = ∆n ◦T ◦∆−1n where (U∆n ,∆n) is the coordinate chart (3.2) defining S

2Ĉ(n).
Then by (2.16) and (2.17), T∆ is uniquely determined by three even superfunctions of one even variable f (z) and g±(z),
and two odd superfunctions of one even variable ψ±(z) satisfying the condition (2.18). We will call these 5 functions the
component functions of T∆.

Theorem 4.1. If T ∈ Aut(S2Ĉ(n)), then T is uniquely determined by T∆ = ∆n ◦ T ◦∆−1n with the T∆ determined by component
functions as follows:

f (z) =
az + b
cz + d

for a, b, c, d ∈
∧0
∗−2 and ad− bc = 1. (4.1)

If n = 0, we have

ψ±(z) =
ψ±1 z + ψ

±

0

cz + d
for ψ±j ∈

∧1
∗−2 with j = 0, 1, (4.2)

and

g±(z) =
ε±

cz + d
+
f ±z + h±

(cz + d)2
(4.3)

for ε± ∈ (
∧0
∗−2)

×, f ±, h± ∈
∧0
∗−2 satisfying

ε+ε− = 1− ψ+1 ψ
−

0 − ψ
−

1 ψ
+

0 (4.4)

f ± = ∓ε±ψ+1 ψ
−

1 d (4.5)

h± = ±ε±(ψ+0 ψ
−

0 c − (ψ
+

1 ψ
−

0 − ψ
−

1 ψ
+

0 )d∓ ψ
+

1 ψ
−

1 ψ
+

0 ψ
−

0 d). (4.6)
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If n = 1, we have

ψ+(z) = ψ+0 (4.7)

ψ−(z) =
ψ−2 z

2
+ ψ−1 z + ψ

−

0

(cz + d)2
(4.8)

g+(z) = ε (4.9)

g−(z) =
1

ε(cz + d)2
+
ψ+0 (2ψ

−

2 dz − ψ
−

1 (cz − d)− 2ψ
−

0 c)
ε(cz + d)3

, (4.10)

for ψ+0 , ψ
−

j ∈
∧1
∗−2 with j = 0, 1, 2, and ε ∈ (

∧0
∗−2)

×.
If n = −1, we have

ψ+(z) =
ψ+2 z

2
+ ψ+1 z + ψ

+

0

(cz + d)2
(4.11)

ψ−(z) = ψ−0 (4.12)

g+(z) =
1

ε(cz + d)2
−
(2ψ+2 dz − ψ

+

1 (cz − d)− 2ψ
+

0 c)ψ
−

0

ε(cz + d)3
, (4.13)

g−(z) = ε, (4.14)

for ψ+j , ψ
−

0 ∈
∧1
∗−2 with j = 0, 1, 2, and ε ∈ (

∧0
∗−2)

×.
If n ≥ 2, we have

ψ+(z) = 0 (4.15)

ψ−(z) =
ψ−n+1z

n+1
+ ψ−n z

n
+ · · · + ψ−1 z + ψ

−

0

(cz + d)n+1
(4.16)

g±(z) = ε±1(cz + d)±n−1, (4.17)

for ψ−j ∈
∧1
∗−2 with j = 0, 1, . . . , n+ 1, and ε ∈ (

∧0
∗−2)

×.
If n ≤ −2, we have

ψ+(z) =
ψ+
−n+1z

−n+1
+ ψ+−nz−n + · · · + ψ

+

1 z + ψ
+

0

(cz + d)−n+1
(4.18)

ψ−(z) = 0 (4.19)
g±(z) = ε∓1(cz + d)±n−1, (4.20)

for ψ−j ∈
∧1
∗−2 with j = 0, 1, . . . , n+ 1, and ε ∈ (

∧0
∗−2)

×.

Proof. For any T ∈ Aut(S2Ĉ(n)), we have that T restricted to the body of S2Ĉ(n) is an automorphism of the Riemann sphere.
Thus

(T∆)B(z, θ+, θ−) = π
(1,2)
B ◦ T∆(z, θ+, θ−) = fB(zB) = π

(1,0)
B ◦ f (z) (4.21)

=
aBzB + bB
cBzB + dB

for aB, bB, cB, dB ∈ C satisfying aBdB−bBcB = 1. Therefore, the only possible singularity for T∆ is at zB = −dB/cB. In addition,
defining TΥ = Υn◦T ◦Υ −1n ; that is, TΥ = I

−1
n ◦T∆◦In, thenwe have that the only possible singularity for TΥ is at zB = −aB/bB.

Let f̃ (z), g̃±(z), and ψ̃± be the three even and two odd component functions that determine TΥ (z, θ+, θ−). Then in terms
of the component functions f , g± and ψ± that determine T∆, we have

f̃ (z) =
1

f (1/z)
(4.22)

ψ̃±(z) = −iψ±(1/z)(f (1/z))±n−1 (4.23)
g̃±(z) = z±n−1g±(1/z)(f (1/z))±n−2

(
f (1/z)− (n∓ 1)ψ+(1/z)ψ−(1/z)

)
. (4.24)

Expanding f (z) about the pole at zB = −dB/cB and taking into consideration that f̃ (z) can only have poles at zB = −aB/bB,
and that fB(zB) is given by (4.21), we have that there exists a, b, c, d ∈

∧0
∗−2 such that
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f (z) =
az + b
cz + d

(4.25)

where aBdB − bBcB = 1. Furthermore, if ad − bc 6= 1, then we can normalize a, b, c, d by dividing by
√
ad− bc , so that

f (z) = (a′z + b′)/(c ′z + d′) for a′, b′, c ′, d′ ∈
∧0
∗−2 with a

′d′ − b′c ′ = 1. This proves (4.1).
Now, requiring that ψ±(z) only have poles at z = −d/c , Eq. (4.23) and the restriction that ψ̃± only have poles at

z = −a/b, implies that the ψ± must be of the form as stated in the theorem; that is, Eqs. (4.2), (4.7), (4.8), (4.11), (4.12),
(4.15), (4.16), (4.18), and (4.19) hold.
Let n ≥ 2. Requiring that g−(z) only have poles at z = −d/c , Eq. (4.24) and the restriction that g̃−(z) only have poles at

z = −a/b, implies that g−(z) = ε(cz + d)−n−1 for some constant ε ∈
∧0
∗−2. The N = 2 superconformal condition (2.18)

applied to T∆, then implies that g+(z) = (g−(z))−1(cz + d)−2 giving (4.17). Eq. (4.20) is obtained analogously.
Now let n = 1. Requiring that g+(z) only have poles at z = −d/c , Eq. (4.24) and the restriction that g̃+ only have poles

at z = −a/b, implies that g+(z) = ε for some constant ε ∈
∧0
∗−2. The N = 2 superconformal condition (2.18) applied to

T∆, then implies that g−(z)must be of the form (4.10). Then one must check the condition that g̃−(z) can only have poles
at z = −a/b, which is indeed satisfied. The case for n = −1 is proved analogously.
The case n = 0 was proved in [6].
It remains to show that T can be uniquely determined, by T∆. We have

T∆ :
(∧0
∗>1 r

(
{−dB/cB} × (

∧0
∗>1)S

))
⊕ (

∧1
∗>1)

2
−→

(∧0
∗>1 r

(
{aB/cB} × (

∧0
∗>1)S

))
⊕ (

∧1
∗>1)

2, (4.26)

and

TΥ :
(∧0
∗>1 r

(
{−aB/bB} × (

∧0
∗>1)S

))
⊕ (

∧1
∗>1)

2
−→

(∧0
∗>1r

(
{dB/bB} × (

∧0
∗>1)S

))
⊕ (

∧1
∗>1)

2, (4.27)

where TΥ = I−1n ◦ T∆ ◦ In on the restricted domain.
Thus

T (p) =
{
∆−1n ◦ T∆ ◦∆n(p) if p ∈ U∆n r X1,
Υ −1n ◦ TΥ ◦ Υn(p) if p ∈ UΥn r X2,

(4.28)

where X1 = ∆−1n (({−dB/cB} × (
∧0
∗>1)S)⊕ (

∧1
∗>1)

2) and X2 = Υ −1n (({−aB/bB} × (
∧0
∗>1)S)⊕ (

∧1
∗>1)

2). This defines T for
all p ∈ S2Ĉ(n) unless:
(i) aB = 0 and p ∈ Υ −1n (({0} × (

∧0
∗>1)S)⊕ (

∧1
∗>1)

2); or
(ii) dB = 0 and p ∈ ∆−1n (({0} × (

∧0
∗>1)S)⊕ (

∧1
∗>1)

2).
In case (i), we define T (p) as follows: Let H(z, θ+, θ−) = T∆ ◦ In(z, θ+, θ−). Then the domain of H extends to

(zS, θ+, θ−) ∈ ({0} × (
∧0
∗
)S ⊕ (

∧1
∗
)2). Define T (p) = ∆−1n ◦ H(z, θ

+θ−), for Υn(p) = (z, θ+, θ−) = (zS, θ+, θ−).
In case (ii), we define T (p) as follows: Let H(z, θ+, θ−) = I−1n ◦ TΥ (z, θ

+, θ−). Then the domain of H extends to
(zS, θ+, θ−) ∈ ({0} × (

∧0
∗
)S ⊕ (

∧1
∗
)2). Define T (p) = Υ −1n ◦ H(z, θ

+, θ−), for∆n(p) = (z, θ+, θ−) = (zS, θ+, θ−).
Thus T is uniquely determined by T∆, i.e., by its value on∆n(U∆n). �

5. The Lie superalgebras of infinitesimal global transformations of N = 2 super-Riemann spheres

The N = 2 Neveu–Schwarz algebra is the Lie superalgebra with basis consisting of the central element d, even elements
Ln and Jn, and odd elements G±n+1/2 for n ∈ Z, and commutation relations

[Lm, Ln] = (m− n)Lm+n +
1
12
(m3 −m)δm+n,0 d, (5.1)

[Jm, Jn] =
1
3
mδm+n,0d, [Lm, Jn] = −nJm+n, (5.2)[

Lm,G±n+ 12

]
=

(
m
2
− n−

1
2

)
G±
m+n+ 12

, (5.3)[
Jm,G±n+ 12

]
= ±G±

m+n+ 12
,

[
G±
m+ 12

,G±
n+ 12

]
= 0, (5.4)[

G+
m+ 12

,G−
n− 12

]
= 2Lm+n + (m− n+ 1)Jm+n +

1
3
(m2 +m)δm+n,0 d, (5.5)

form, n ∈ Z.
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Let x denote a formal even variable, and ϕ+ and ϕ− denote odd (i.e., anticommuting) variables. Consider the
superderivations in Der(

∧
∗
[[x, x−1]][ϕ+, ϕ−]), given by

Ln(x, ϕ+, ϕ−) = −
(
xn+1

∂

∂x
+

(n+ 1
2

)
xn
(
ϕ+

∂

∂ϕ+
+ ϕ−

∂

∂ϕ−

))
(5.6)

Jn(x, ϕ+, ϕ−) = −xn
(
ϕ+

∂

∂ϕ+
− ϕ−

∂

∂ϕ−

)
(5.7)

G±
n− 12

(x, ϕ+, ϕ−) = −
(
xn
( ∂

∂ϕ±
− ϕ∓

∂

∂x

)
± nxn−1ϕ+ϕ−

∂

∂ϕ±

)
(5.8)

for n ∈ Z. These give a representation of the N = 2 Neveu–Schwarz algebra with central charge zero; that is (5.6)–(5.8)
satisfy (5.1)–(5.5) with d = 0. In addition, in [6] it is shown that with this representation, this is the Lie superalgebra of
infinitesimal N = 2 superconformal transformations.
Let y be an even formal variable and ξ an odd formal variable. By direct expansion, we have that

e−yL−1(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (x+ y, ϕ+, ϕ−) (5.9)

e−yL0(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (eyx, e
y
2 ϕ+, e

y
2 ϕ−) (5.10)

e−yJ0(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (x, eyϕ+, e−yϕ−) (5.11)

e−ξG
+

−1/2(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (x+ ϕ−ξ, ξ + ϕ+, ϕ−) (5.12)

e−ξG
−

−1/2(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (x+ ϕ+ξ, ϕ+, ξ + ϕ−), (5.13)

and for k ∈ Z+

e−ξG
+

k−1/2(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (x+ ϕ−ξxk, ξxk + ϕ+ + kϕ+ϕ−ξxk−1, ϕ−) (5.14)

e−ξG
−

k−1/2(x,ϕ
+,ϕ−)

· (x, ϕ+, ϕ−) = (x+ ϕ+ξxk, ϕ+, ξxk + ϕ− − kϕ+ϕ−ξxk−1). (5.15)

For n ∈ Z, we have

e−y(L1(x,ϕ
+,ϕ−)−nJ1(x,ϕ+,ϕ−) · (x, ϕ+, ϕ−)

= exp
(
y
(
x2
∂

∂x
+ (1− n)xϕ+

∂

∂ϕ+
+ (1+ n)xϕ−

∂

∂ϕ−

))
· (x, ϕ+, ϕ−)

=

(∑
k∈N

ykxk+1, ϕ+
∑
k∈N

(
n− 1
k

)
(−1)kykxk, ϕ−

∑
k∈N

(
−n− 1
k

)
(−1)kykxk

)

=

(
x

1− yx
,

ϕ+

(1− yx)−n+1
,

ϕ−

(1− yx)n+1

)
.

In addition, we note that

e−y(L0(x,ϕ
+,ϕ−)− n2 J0(x,ϕ

+,ϕ−)
· (x, ϕ+, ϕ−) = (eyx, e

y(1−n)
2 ϕ+, e

y(1+n)
2 ϕ−). (5.16)

Thus letting a = d−1 = ey/2, Eq. (5.16) gives ((a/d)x, ϕ+dn−1, ϕ−d−n−1), with ad = 1.
This along with Theorem 4.1 implies the following:

Theorem 5.1. For n ∈ Z, let gn be the Lie superalgebra of infinitesimal automorphisms of S2Ĉ(n), i.e., gn = Lie(Aut(S2Ĉ(n))).
Then each gn is a subalgebra of the N = 2 Neveu–Schwarz algebra, and these subalgebras are given as follows

g0 = spanC

{
L−1, L0, L1, J0, G+−1/2, G

+

1/2, G
−

−1/2, G
−

1/2

}
(5.17)

g1 = spanC

{
L−1, L0 −

1
2
J0, L1 − J1, J0, G+−1/2, G

−

−1/2, G
−

1/2, G
−

3/2

}
(5.18)

g−1 = spanC

{
L−1, L0 +

1
2
J0, L1 + J1, J0, G+−1/2, G

+

1/2, G
+

3/2, G
−

−1/2

}
, (5.19)

gn = spanC

{
L−1, L0 −

n
2
J0, L1 − nJ1, J0, G−−1/2, G

−

1/2, . . . ,G
−

n−1/2, G
−

n+1/2

}
, (5.20)

for n ≥ 2, and

gn = spanC

{
L−1, L0 −

n
2
J0, L1 − nJ1, J0, G+−1/2, G

+

1/2, . . . ,G
+

−n−1/2, G
+

−n+1/2

}
, (5.21)

for n ≤ −2.
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Remark 5.2. FromRemark 3.2,we see that the integern is related to the degree of the line bundle over Ĉwhich is canonically
determined by S2Ĉ(n). Considering the coordinate transition function (3.1), the integer n is also ameasure of the asymmetry
between the fermionic (odd) components of S2Ĉ(n). Thus the dimension of the Lie algebra of infinitesimal global N = 2
superconformal transformations grows, roughly, as the absolute value of the degree of the corresponding line bundle or,
equivalently, the degree of fermionic asymmetry. That is dim gn = 4+ 4 if |n| ≤ 2 and dim gn = 4+ (|n| + 2) if |n| ≥ 2.

The reason we have written the basis in this rather unusual way — with L0 − n
2 J0 and J0 rather than L0 and J0 — is due to

the more natural correspondence with the action of the group of automorphisms, cf. Eq. (5.16) above, as well as Eq. (5.22).
For n ∈ Z, let gn = g0n ⊕ g1n denote the decomposition of the Lie superalgebra into even and odd components. Then g0n is

a Lie algebra and decomposes into the direct sum of Lie algebras as follows:

g0n = spanC

{
L−1, L0 −

n
2
J0, L−1, L1 − nJ1, J0

}
(5.22)

= spanC

{
L−1, L0 −

n
2
J0, L−1, L1 − nJ1

}
⊕ CJ0

∼= sl(2,C)⊕ gl(1,C),

for each n ∈ Z. The isomorphism with sl(2,C) is given explicitly by(
0 1
0 0

)
←→ L−1,

1
2

(
1 0
0 −1

)
←→ L0 −

n
2
J0, (5.23)(

0 0
−1 0

)
←→ L1 − nJ1.

In the case of n = 0, the Lie superalgebra g0 is isomorphic to the orthogonal-symplectic superalgebra osp(2|2,C); see
[6]. This is also denoted C(2) in [18], and is in the family of simple Lie superalgebras C(m). Explicitly, we have

osp(2|2,C) =


 a b s q
c −a −r −p
p q d 0
r s 0 −d

 ∈ gl(2|2,C)
∣∣∣∣ a, b, c, d, p, q, r, s ∈ C


which is the subalgebra of gl(2|2,C) leaving a certain non-degenerate form invariant (cf. [18,6]). The isomorphism g0 ∼=
osp(2|2,C) is given explicitly, for instance, as follows: L−1, L0, and L1 are given by the embedding of sl(2,C) into osp(2|2,C)
via (

a b
c −a

)
−→

 a b 0 0
c −a 0 0
0 0 0 0
0 0 0 0

 , (5.24)

and the isomorphism defined by (5.23). Then for J0 we have 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

←→ J0, (5.25)

and for the odd components, we have 0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

←→ G+
−
1
2
,

 0 0 0 0
0 0 0 −1
1 0 0 0
0 0 0 0

←→ G+1
2
,

 0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

←→ G−
−
1
2
,

 0 0 0 0
0 0 −1 0
0 0 0 0
1 0 0 0

←→ G−1
2
.

(5.26)

We next address the cases n = ±1. Let p(2|2,C) denote the seven-dimensional Lie superalgebra which is the subalgebra
of sl(2|2,C) given by

p(2|2,C) =


 a b p q

c −a q r
0 s −a −c
−s 0 −b a

 | a, b, c, p, q, r, s ∈ C

 . (5.27)
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This is the simple Lie superalgebra denoted P(1) in [18] which is in the series P(m) of simple Lie superalgebras. Then g±1 is
the semi-direct product of gl(1,C) ∼= CJ0 with p(2|2,C). Explicitly, the isomorphism

p(2|2,C) ∼= spanC

{
L−1, L0 ∓

1
2
J0, L1 ∓ J1, G±−1/2, G

∓

−1/2, G
∓

1/2, G
∓

3/2

}
(5.28)

= g±1 r CJ0,

is given as follows: L−1, L0 − n
2 J0, and L1 − nJ1, for n = ±1, are given by the embedding of sl(2,C) into sl(2|2,C) via

(
a b
c −a

)
−→


a b 0 0
c −a 0 0

0 0 −a −c
0 0 −b a

 , (5.29)

and the isomorphism defined by (5.23). Then for the odd components, we have 0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0

←→ G±
−1/2, 2

 0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

←→ G∓
−1/2,

 0 0 0 −1
0 0 −1 0
0 0 0 0
0 0 0 0

←→ G∓1/2, 2

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

←→ G∓3/2,

for n = ±1, respectively. In addition we have 0 0 0 0
0 0 0 0
0 0 ±1 0
0 0 0 ±1

←→ J0.

Thus the semi-direct product structure g±1 ∼= gl(1,C) ×σ p(2|2,C) is given by the homomorphism σ : gl(1,C) −→
Der(p(2|2,C))with σJ0(g) = 0 if g is even and σJ0(G

±

k+ 12
) = ±G±

k+ 12
; and we have

g±1 ∼=


 a b p q

c −a q r
0 s −a+ d −c
−s 0 −b a+ d

 | a, b, c, d, p, q, r, s ∈ C

 . (5.30)

If n ≥ 2 or n ≤ 2, then {0} ⊕ g1n is an abelian subalgebra of gn. Furthermore, gn is the semi-direct product of
g0n
∼= sl(2,C) ⊕ gl(1,C) acting on this abelian Lie superalgebra {0} ⊕ g1n; i.e., gn ∼= g0n ×σn ({0} ⊕ g1n), where for n ≥ 2,

we have σn : g0n −→ Der({0} ⊕ g1n) is given by (σn)L−1(G
−

k− 12
) = −kG−

k− 32
, (σn)L0− n2 J0(G

−

k− 12
) =

(
−k+ n+1

2

)
G−
k− 12
,

(σn)L1−nJ1(G
−

k− 12
) = (−k+ n+ 1)G−

k+ 12
, and (σn)J0(G

−

k− 12
) = −G−

k− 12
, and similarly for n ≤ 2.

Thus to recap, we have the following corollary:

Corollary 5.3.

g0 = Lie(S2Ĉ(0)) ∼= osp(2|2,C) (5.31)

g±1 = Lie(S2Ĉ(±1)) ∼= gl(1,C)×σ p(2|2,C) (5.32)

gn = Lie(S2Ĉ(n)) ∼= (sl(2,C)⊕ gl(1,C))×σn ({0} ⊕ g1n), (5.33)

for |n| ≥ 2, where {0} ⊕ g1n is an abelian Lie superalgebra of even dimension zero and odd dimension |n| + 2.

6. The Lie supergroup structure of Aut(S2Ĉ(n))

Let

SL(2,
∧0
∗−2) =

{(
a b
c d

)
| a, b, c, d ∈

∧0
∗−2, ad− bc = 1

}
, (6.1)

and let GL(1,
∧0
∗−2) = (

∧0
∗−2)

×. The group SL(2,
∧0
∗−2) × GL(1,

∧0
∗−2) acts on S

2Ĉ(n) as automorphisms as follows: For
each n ∈ Z,
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α =

(a b 0
c d 0
0 0 ε

)
∈ SL(2,

∧0
∗−2)× GL(1,

∧0
∗−2), (6.2)

define

α ·n (z, θ+, θ−) =
(
az + b
cz + d

, θ+ε(cz + d)n−1, θ−ε−1(cz + d)−n−1
)

(6.3)

for (z, θ+, θ−) ∈ (
∧0
∗>1 r{−dB/cB} × (

∧0
∗>1)S)× (

∧1
∗>1)

2.
Acting in thisway, SL(2,

∧0
∗−2)×GL(1,

∧0
∗−2) is a double cover of the even component of the Lie supergroup Aut(S

2Ĉ(n))
for each n ∈ Z. In particular, the even component of the Lie supergroup Aut(S2Ĉ(n)), denoted by (Aut(S2Ĉ(n)))0 is given as
follows: Let idSL denote the identity in SL(2,

∧0
∗−2) and let idGL denote the identity in GL(1,

∧0
∗−2). Define

K0̄ = 〈(−idSL,−idGL)〉 (6.4)
K1̄ = 〈(−idSL, idGL)〉 (6.5)

which are both normal subgroups of order two in SL(2,
∧0
∗−2)× GL(1,

∧0
∗−2). Then from (6.3), we have

(Aut(S2Ĉ(n)))0 ∼= (SL(2,
∧0
∗−2)× GL(1,

∧0
∗−2))/Kn̄ (6.6)

where n̄ ∈ Z2 is the equivalence class of nmodulo 2.
For g a Lie superalgebra, let exp∧

∗−2
(g) denote its corresponding Lie supergroup over the Grassmann algebra

∧
∗−2. Then

exp∧
∗−2
(osp(2|2,C)) = OSP(2|2,

∧
∗−2) (6.7)

exp∧
∗−2
(p(2|2,C)) = P(2|2,

∧
∗−2). (6.8)

(These are the Lie supergroups denoted C(2) and P(1), respectively, studied in for instance [11].) We will also denote by K0̄
the image of K0̄ in OSP(2|2,

∧
∗−2) given by the group generated by the negative of the 4 × 4 identity matrix; and we will

also denote by K1̄ the image of K1̄ in P(2|2,
∧
∗−2) given by the negative of the 4× 4 identity matrix.

For n ∈ Z+, the set (
∧1
∗−2)

n is an abelian group under addition. If n ≥ 2, then (
∧1
∗−2)

n+2 acts as automorphisms of
S2Ĉ(n) by

(ψ−n+1, . . . , ψ
−

1 , ψ
−

0 ) · (z, θ
+, θ−) = (z + θ+(ψ−n+1z

n+1
+ · · · + ψ−1 z + ψ

−

0 ),

θ+, ψ−n+1z
n+1
+ · · · + ψ−1 z + ψ

−

0 + θ
−), (6.9)

for ψ−j ∈
∧1
∗−2. Analogously, if n ≤ 2, then (

∧1
∗−2)

−n+2 acts as automorphisms of S2Ĉ(n) by

(ψ+
−n+1, . . . , ψ

+

1 , ψ
+

0 ) · (z, θ
+, θ−) = (z + θ−(ψ+

−n+1z
−n+1
+ · · · + ψ+1 z

+ψ+0 ), ψ
+

−n+1z
−n+1
+ · · · + ψ+1 z + ψ

+

0 + θ
+, θ−), (6.10)

for ψ+j ∈
∧1
∗−2.

Thus we have the following theorem:

Theorem 6.1. The automorphism groups of the N = 2 superconformal super-Riemann spheres S2Ĉ(n), for n ∈ Z, are

Aut(S2Ĉ(0)) ∼= OSP(2|2,
∧
∗−2)/K0̄ (6.11)

Aut(S2Ĉ(±1)) ∼= GL(1,
∧0
∗−2) n (P(2|2,

∧
∗−2)/K1̄) (6.12)

Aut(S2Ĉ(n)) ∼=
(
(SL(2,

∧0
∗−2)× GL(1,

∧0
∗−2))/Kn̄

)
n (
∧1
∗−2)

|n|+2, (6.13)

for |n| ≥ 2, where OSP(2|2,
∧
∗−2) and P(2|2,

∧
∗−2) are as defined in (6.7) and (6.8) above, and the Kn̄, for n ∈ Z, are defined

by (6.4) and (6.5).
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