
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Asthma and lower airway disease
Multidimensional endotyping in patients with
severe asthma reveals inflammatory heterogeneity
in matrix metalloproteinases and chitinase 3–like
protein 1
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Background: Disease heterogeneity in patients with severe
asthma and its relationship to inflammatory mechanisms
remain poorly understood.
Objective: We aimed to identify and replicate clinicopathologic
endotypes based on analysis of blood and sputum parameters in
asthmatic patients.
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Methods: One hundred ninety-four asthmatic patients and 21
control subjects recruited from 2 separate centers underwent
detailed clinical assessment, sputum induction, and phlebotomy.
One hundred three clinical, physiologic, and inflammatory
parameters were analyzed by using topological data analysis
and Bayesian network analysis.
Results: Severe asthma was associated with anxiety and
depression, obesity, sinonasal symptoms, decreased quality of
life, and inflammatory changes, including increased sputum
chitinase 3–like protein 1 (YKL-40) and matrix
metalloproteinase (MMP) 1, 3, 8, and 12 levels. Topological data
analysis identified 6 clinicopathobiologic clusters replicated in
both geographic cohorts: young, mild paucigranulocytic; older,
sinonasal disease; obese, high MMP levels; steroid resistant TH2
mediated, eosinophilic; mixed granulocytic with severe
obstruction; and neutrophilic, low periostin levels, severe
obstruction. Sputum IL-5 levels were increased in patients with
severe particularly eosinophilic forms, whereas IL-13 was
suppressed and IL-17 levels did not differ between clusters.
Bayesian network analysis separated clinical features from
intricately connected inflammatory pathways. YKL-40 levels
strongly correlated with neutrophilic asthma and levels of
myeloperoxidase, IL-8, IL-6, and IL-6 soluble receptor. MMP1,
MMP3, MMP8, and MMP12 levels were associated with severe
asthma and were correlated positively with sputum IL-5 levels
but negatively with IL-13 levels.
Conclusion: In 2 distinct cohorts we have identified and
replicated 6 clinicopathobiologic clusters based on blood and
induced sputum measures. Our data underline a disconnect
between clinical features and underlying inflammation, suggest
IL-5 production is relatively steroid insensitive, and highlight
the expression of YKL-40 in patients with neutrophilic
inflammation and the expression of MMPs in patients with
severe asthma. (J Allergy Clin Immunol 2016;138:61-75.)

Key words: Asthma, cytokines, eosinophils, neutrophils, phenotype,
endotype, heterogeneity, matrix metalloproteinase, chitinase 3–like
protein 1, topological data analysis

Asthma is a chronic inflammatory disorder of the airways
characterized by variable airflow obstruction and airway remod-
eling and mediated by a variety of inflammatory mediators and
cells, including mast cells, T cells, eosinophils, and neutrophils.1
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There is now recognition of considerable disease heterogeneity
within the spectrum of clinical asthma, the precise nature of
which remains to be defined, and this currently constitutes a
significant barrier to research.2 It is postulated that distinct
subgroups of asthma exist, which have been termed endotypes,
meaning ‘‘a subtype of a condition defined by distinct pathophys-
iological mechanisms.’’3 A better understanding of such
endotypes and their relationship to distinct underlying disease
mechanisms should enable identification of novel therapeutic tar-
gets and facilitate the aim of stratified medicine (ie, the efficient
targeting of specific therapies to subgroups of subjects likely to
benefit most).
To date, several groups have reported cluster analyses of patient

cohorts to investigate possible disease endotypes.4-9 However,
these are often limited by a lack of robust statistical validation
in replication cohorts or have generated clusters the identity of
which is dominated by predominantly clinical parameters, such
as pulmonary physiology or participants’ demographics, without
providing significant insight into the underlying pathophysiology.
Furthermore, techniques like principle component analysis tend
to accentuate separation between clusters, which might in reality
represent groupings within a continuum of disease rather than
clear-cut entities.9 Recently, we have piloted a new analytic
approach to such large clinical data sets by using network ana-
lyses that allow truly multidimensional analysis of clusters and
provide visual representations of the data that reveal continuities
within data sets.10

The aim of this study was to identify and independently
replicate distinct multidimensional clinicopathobiologic clusters
of severe asthma from the participants in the Wessex Severe
Asthma cohort who had induced sputum and peripheral blood
biomarker measures, as well as detailed clinical characterization.
We aimed to cluster participants using only parameters that could
be available to a clinician in tertiary care with access to sputum
induction facilities and then to investigate the disease mecha-
nisms of airway inflammation in each of these clusters by using
more advanced immunologic assays.
METHODS

Southampton participants (derivation cohort)
The derivation cohort comprised 213 adult participants (18-70 years)

enrolled for clinical phenotyping in the Wessex Severe Asthma Cohort, at

the NIHR Southampton Respiratory Biomedical Research Unit. Five were

excluded because of alternative diagnoses of bronchiectasis (n 5 3),

interstitial lung disease (n 5 1), and gastroesophageal reflux without

asthma. One hundred forty-five participants underwent successful sputum
induction, with the emphasis on severe asthma (n 5 121) and inclusion of

8 healthy nonatopic participants, 9 patients with mild asthma receiving

b2-agonists alone, and 7 patients with moderate asthma receiving inhaled

corticosteroids (ICSs). Thirty-eight of the 121 patients with severe

asthma with persistent symptoms despite high-dose ICSs and other

therapy were also receiving daily oral corticosteroids (Table I and see

the Methods section and Fig E1 in this article’s Online Repository at

www.jacionline.org).
Portsmouth participants (validation cohort)
The validation cohort comprised 108 adult participants (18-70 years)

enrolled by a separate study team from outpatient clinics at Queen Alexandra

Hospital, Portsmouth. Seventy-one participants underwent successful sputum

induction: 13 healthy nonatopic participants, 1 patient with mild asthma,

6 patients with moderate asthma, and 50 patients with severe asthma with

persistent symptoms despite high-dose ICSs (n5 32) and oral corticosteroids

(n 5 18, Table II and see Fig E1).
Study procedures
Participants were assessed based on history; examination; questionnaires,

including the AsthmaControl Questionnaire (ACQ),11 AsthmaQuality of Life

Questionnaire,12 Hospital Anxiety and Depression (HAD) Scale,13

Sino-Nasal Outcome Test 20,14 and Short-Form 36 Health Survey15; skin

prick tests with common aeroallergens; spirometry with albuterol

reversibility; exhaled nitric oxide measurements; the University of

Pennsylvania smell identification test16; and serum IgE and urinary cotinine

measurements. Sputum samples were obtained by means of hypertonic saline

induction and processed as previously described.17 Fifty-five different

inflammatory mediators were measured in serum and sputum by using

ELISAs or cytokine bead arrays (see the Methods section in this article’s

Online Repository).

The study was approved by the Southampton and South West Hampshire

Research Ethics Committee A (09/H0502/37). All participants provided

informed consent.
Statistical analysis
Data were analyzed initially by using topological data analysis (TDA) to

define multidimensional clusters in the derivation and validation cohorts

separately. Standard statistical methods were then applied to define the

features of these clusters. In a separate analysis to define relationships between

these parameters, Bayesian network analysis was then applied to all the

pathobiologic and clinical features on the highest quality data from both

cohorts combined.

Data are expressed as medians with interquartile ranges, unless stated

otherwise. Data were logarithmically transformed if they were not normally

distributed. For all analyses, 2-tailed P values of less than .05 were considered

significant. Data were compared between the healthy and control groups by

using Mann-Whitney U or Student t tests and between each asthma severity

group and control subjects by using the Kruskal-Wallis test or ANOVA,

depending on data distribution. For the latter, an overall 5% significance level

was adjusted for multiple comparisons by using the Bonferroni method.

Correlations were tested with the Spearman r statistic. Kolmogorov-

Smirnov (K-S) tests identified significant differences between distributions

within a single cluster. Data were analyzed with Prism 6.0 (GraphPad

Software, San Diego, Calif) and SPSS 21.0 (IBM, Armonk, NY) software.

Network analyses (TDA and Bayesian network analysis) were performed,

as previously described.10 Networks were generated from all participants with

the most complete data (n5 145 for the derivation data set and n5 70 for the

validation data set) after missing data (6.1%of data set) were imputed by using

the mean of 5 multiple imputations. Subsequent analyses of sputum

parameters used only data from the highest quality sputum samples

(n 5 118 for the derivation data set and n 5 55 for the validation data set)

and without imputation. Terms used to generate the networks are described

in Tables E1 and E2 in this article’s Online Repository at www.jacionline.org.

http://www.jacionline.org
http://www.jacionline.org


TABLE I. Demographics of clusters in the derivation cohort

Parameters

Healthy

control

subjects

Cluster

A B C D E F G H

No.* 8 30 7 13 4 13 17 37 19

Demographics

Sex (male/female),

no. (%)

3 (38)/5 (72) 9 (30)/21 (70) 4 (57)/3 (43) 3 (23)/10 (77) 2 (50)/2 (50) 6 (46)/7 (54) 9 (53)/8 (47) 13 (35)/24 (65) 9 (47)/10 (53)

Age (y), median

(range)

33.5 (21-53) 38 (22-65) 60 (39-67) 44 (21-57) 54.5 (23-61) 45 (26-62) 57 (29-68) 51 (23-69) 58 (43-71)

Pulmonary function

FEV1 (% predicted,

pre-BD)�

89 (84-98) 91 (83-105) 58 (53-64) 80 (72-94) 99 (63-115) 64 (58-83) 40 (31-64) 74 (55-84) 44 (35-59)

FEV1 reversibility (%) 0 (0.0-1.8) 6.8 (4.1-9.3) 16 (5.7-23) 5.8 (2.6-11) 4.7 (0.68-11) 8.7 (2.7-20) 12 (8.2-24) 11 (3.3-20) 14 (3.3-25)

FEV1 (% predicted,

post-BD)

92 (84-98) 96 (87-112) 67 (63-76) 85 (70-104) 112 (71-122) 75 (64-87) 52 (30-77) 82 (66-88) 54 (44-66)

Exhaled nitric oxide

(ppb, at 50 L/s)

13 (11-17) 26 (12-52) 25 (19-45) 11 (9.5-19) 20 (16-35) 33 (11-73) 22 (17-46) 19 (10-29) 17 (10-30)

Clinical

Atopy (positive skin

test response,

yes/no), no. (%)

4 (50)/4 (50) 22 (73)/8 (27) 4 (57)/3 (43) 5 (38)/8 (62) 3 (75)/1 (25) 11 (82)/2 (18) 12 (71)/5 (29) 22 (59)/15 (41) 13 (68)/6 (32)

No. of allergens

eliciting positive

skin test responses

1 (0-23) 3 (0-5) 3 (0-4) 0 (0-4) 2 (1-4) 2 (1-5) 3 (0-6) 2 (0-4) 2 (0-3)

Peripheral eosinophil

count (109/L)

0.1 (0.1-0.3) 0.2 (0.1-0.4) 0.2 (0.1-0.4) 0.3 (0.1-0.6) 0.2 (0.1-1.3) 0.6 (0.4-0.7) 0.4 (0.1-0.7) 0.2 (0.1-0.2) 0.2 (0.1-0.3)

Total IgE (IU/mL) 230 (79-280) 120 (30-260) 88 (23-210) 34 (11-110) 130 (37-190) 68 (13-812) 380 (110-1400) 92 (12-260) 130 (28-290)

Body mass index

(kg/m2)

23.5

(22.4-25.6)

31.3

(26.7-35.7)

28.0

(27.6-35.5)

36.4 (32.4-41.7) 34.6

(25.6-37.9)

25.9 (23.3-29.0) 28 (25.8-37.2) 25.5

(24.3-29.8)

30.9

(28.6-36.5)

Smoking status

Never, no. (%) 5 (72) 15 (50) 5 (71) 4 (31) 4 (100) 7 (54) 10 (59) 17 (46) 10 (53)

Former, no.

(% [mean

pack years])

3 (38 [3.3]) 12 (40 [14]) 2 (29 [29]) 7 (54 [16]) 0 (0) 6 (46 [3]) 6 (35 [22]) 14 (38 [16]) 5 (26 [13])

Current, no.

(% [mean

pack years])

0 (0) 3 (10 [13]) 0 (0) 2 (15 [23]) 0 (0) 0 (0) 1 (5.9 [6.5]) 6 (16 [28]) 4 (21 [35])

Duration of

asthma (y)

NA 19 (5-31) 30 (15-49) 21 (6-32) 12 (9.3-20) 29 (21-42) 34 (25-47) 29 (18-44) 43 (23-47)

ACQ7 score NA 1.6 (0.9-2.7) 2.3 (1.7-4.1) 2.7 (2.1-3.7) 2.1 (0.43-2.7) 2.9 (1.7-4.0) 3.1 (2.3-3.9) 3.3 (2.4-3.9) 3.3 (2.5-4.2)

Treatment

Inhaled steroid dose

(equivalent mg

of BDP)

0 1240 (0-2160) 2400

(1600-2400)

1440

(1220-2080)

1640

(400-1860)

1600

(800-1840)

2000

(1760-2000)

1640

(1280-2080)

1600

(920-2300)

Maintenance oral

corticosteroids

(yes/no), no. (%)

0 (0)/8 (0) 5 (17)/25 (83) 0 (0)/7 (100) 5 (38)/8 (62) 2 (50)/2 (50) 6 (46)/7 (54) 5 (29)/12 (71) 12 (32)/25 (68) 3 (16)/16 (84)

Inflammatory subtype, no. (%)

Neutrophilic 0 (0) 0 (0) 3 (43) 3 (23) 0 (0) 0 (0) 6 (35) 8 (22) 13 (68)

Eosinophilic 1 (13) 6 (20) 3 (43) 3 (23) 2 (50) 0 (0) 4 (24) 10 (27) 1 (5)

Mixed granulocytic 0 (0) 0 (0) 1 (14) 1 (8) 0 (0) 9 (69) 4 (24) 3 (8) 2 (10)

Paucigranulocytic 7 (87) 24 (80) 0 (0) 6 (46) 2 (50) 4 (31) 3 (18) 16 (43) 3 (16)

Sputum cell differential (%)

Macrophages 70 (58-85) 70 (57-76) 17 (7.7-28) 44 (28-59) 64 (26-68) 41 (25-51) 13 (5.3-48) 36 (26-55) 25 (9.7-29)

Neutrophils 12 (7.7-30) 19 (13-28) 66 (57-84) 52 (40-61) 21 (22-27) 30 (22-41) 65 (47-91) 53 (34-64) 71 (64-88)

Eosinophils 0.75 (0.60-1.3) 1.3 (0.0-2.6) 5.3 (0.3-13) 0.25 (0.0-1.3) 2 (0.13-17) 14 (1.8-43) 2.8 (1.2-8.1) 1 (0.3-6.0) 0.75 (0.06-1.38)

Lymphocytes 0.0 (0.0-0.0) 0.0

(0.0-0.38)

0.0 (0.0-0.0) 0.0 (0.0-0.25) 0.0 (0.0-0.06) 0.0 (0.0-0.25) 0 (0.0-0.31) 0.15 (0.0-0.30) 0.0 (0.0-0.19)

Epithelial 2.4 (1.5-11) 8.0 (2.5-12) 1.3 (0.9-7.0) 4.0 (1.0-6.0) 9.1 (0.38-14) 3.4 (2.2-4.9) 1.3 (0.25-2.4) 2.8 (1.5-9.8) 1.2 (0.31-3.7)

The inflammatory subtype is based on sputum differentials by using the following cut points: neutrophilic, greater than 61%; eosinophilic, greater than 3%. Percentages shown are

derived from those subjects with valid data.

ACQ, Asthma Control Questionnaire11; BD, bronchodilator; BDP, beclomethasone dipropionate; CT, computed tomography; FVC, forced vital capacity; GINA, Global Initiative for

Asthma; NA, not available; PEFR, peak expiratory flow rate.

*Because some subjects were outliers, not all are assigned to clusters A through H.

�Values are medians with interquartile ranges, unless stated otherwise.

J ALLERGY CLIN IMMUNOL

VOLUME 138, NUMBER 1

HINKS ET AL 63



TABLE II. Demographics of clusters in the validation cohort

Parameters

Healthy

control

subjects

Cluster

a b c e f h i

No.* 13 4 9 7 5 19 9 5

Demographics

Sex (male/female),

no. (%)

5 (8)/8 (62) 3 (75)/1 (25) 7 (78)/2 (22) 3 (43)/4 (57) 1 (20)/4 (80) 12 (63)/7 (37) 2 (22)/7 (72) 3 (60)/2 (40)

Age (y), median (range) 34 (18-53) 34 (23-51) 61 (29-79) 44 (30-62) 61 (45-71) 51 (29-79) 57 (30-73) 45 (41-50)

Pulmonary function

FEV1 (% predicted,

pre-BD)�

104 (96-108) 103 (95-109) 57 (52-62) 73 (68-78) 50 (49-52) 60 (51-78) 48 (44-69) 75 (75-85)

FEV1 reversibility (%) 0 (0.0-0.0) 2.1 (20.3-4.7) 8.4 (1.2-17) 11 (5.3-13) 5.8 (2.6-17) 13.3 (5.7-15) 7.5 (6.2-14) 9.3 (5.0-9.4)

FEV1 (% predicted,

post BD)

104 (96-108) 105 (97-111) 61 (53-73) 78 (73-86) 53 (51-62) 70 (58-83) 53 (50-73) 81 (80-87)

Exhaled nitric oxide

(ppb, at 50 L/s)

14 (11-18) 39 (28-72) 32 (17-68) 26 (17-53) 72 (17-98) 32 (18-64) 27 (16-52) 28 (14-51)

Clinical

Atopy (positive skin

test response, yes/no),

no. (%)

4 (31)/9 (69) 3 (75)/1 (25) 8 (89)/1 (11) 6 (83)/1 (17) 4 (80)/1 (20) 13 (68)/6 (32) 5 (56)/44 (44) 4 (80)/1 (20)

No. of allergen eliciting

positive skin test

responses

0 (0-0) 3.5 (2-6) 3 (1-4) 2 (2-4) 2 (1-3) 3 (0-4.5) 1 (0-4) 5 (5-5)

Peripheral eosinophil

count (109/L)

0.1 (0.1-0.1) 0.1 (0.1-0.2) 0.5 (0.3-0.5) 0.3 (0.1-0.4) 0.2 (0.1-0.3) 0.5 (0.2-0.9) 0.3 (0.0-0.4) 0.5 (0.5-0.6)

Total IgE (IU/mL) 21 (8.8-52) 77 (34-130) 116 (69-136) 145 (79-1500) 149 (100-860) 130 (54-170) 73 (32-540) 266 (140-400)

Body mass index (kg/m2) 24.3 (21.9-28.4) 29.4 (26.1-31.5) 26.4 (25.9-29.0) 30.9 (27.8-33.5) 27.3 (26.4-28.4) 29.1 (26.4-32.1) 26.2 (41.0-29.1) 32.1 (27.2-34.2)

Smoking status

Never, no. (%) 11 (85) 1 (25) 2 (22) 4 (57) 2 (40) 10 (53) 6 (67) 2 (60)

Former, no.

(% [mean pack years])

2 (15 [2.5]) 3 (75 [6]) 7 (78 [25]) 3 (43 [19]) 2 (40% [25]) 8 (42 [20]) 3 (33 [17]) 3 (40% [16])

Current, no.

(% [mean pack years])

0 (0) 0 (0) 0 (0) 0 (0) 1 (20 [32]) 1 (5.3 [32]) 0 (0) 0 (0)

Duration of asthma (y) NA 16 (12-22) 26 (14-38) 30 (19-47) 13 (5-16) 33 (18-46) 22 (6-41) 41 (21-41)

ACQ7 score NA 0.76 (0.43-1.2) 3.4 (2.9-4.0) 2.3 (1.9-3.2) 3.6 (3.0-4.1) 2.9 (2.4-3.6) 3.4 (2.7-4.0) 3.1 (3.0-3.3)

Treatment

Inhaled steroid dose

(equivalent mg of BDP)

0 3280 (2280-3940) 1600 (1600-2000) 2880 (1840-4440) 2000 (2000-2880) 1600 (1600-2000) 2240 (1270-2850) 2000 (2000-2000)

Maintenance oral

corticosteroids

(yes/no), no. (%)

0 (0)/13 (100) 0 (0)/4 (100) 4 (44)/5 (56) 2 (29)/5 (71) 2 (40)/3 (60) 6 (32)/13 (68) 3 (33)/6 (66) 3 (60)/2 (40)

Inflammatory subtype, no. (%)

Neutrophilic 0 (0) 0 (0) 1 (11) 2 (29) 0 (0) 6 (32) 3 (33) 0 (0)

Eosinophilic 0 (0) 0 (0) 5 (56) 2 (29) 3 (60) 9 (47) 2 (22) 2 (40)

Mixed granulocytic 0 (0) 0 (0) 1 (11) 0 (0) 0 (0) 1 (5) 3 (33) 0 (0)

Paucigranulocytic 13 (100) 4 (100) 2 (22) 3 (43) 2 (40) 3 (16) 1 (11) 3 (60)

Sputum cell differential (%)

Macrophages 82 (69-89) 70 (63-78) 26 (19-54) 34 (25-39) 52 (12-67) 30 (22-51) 24 (17-31) 84 (75-89)

Neutrophils 18 (11-33) 26 (17-34) 50 (42-50) 45 (39-53) 18 (9.9-23) 50 (32-70) 67 (51-76) 16 (3.8-17)

Eosinophils 0.0 (0.0-0.2) 0.0 (0.0-0.13) 11 (3.8-25) 0.69 (0.38-30) 42 (5.4-79) 4.9 (2.0-13) 7.4 (1.8-19) 3.3 (0.29-6.7)

Lymphocytes 0.2 (0.0-0.63) 0.1 (0.05-0.68) 0.94 (0.5-1.2) 0.69 (0.25-1.5) 0.25 (0.0-0.53) 0.63 (0.5-1.3) 1.4 (1.0-1.6) 0.38 (0.19-0.50)

Epithelial 0.1 (0.0-0.3) 1.0 (1.0-1.5) 0.5 (0.22-1.0) 0.69 (0.16-0.94) 0.69 (0.0-2.1) 1.8 (0.38-2.0) 0.5 (0.25-0.76) 0.19 (0.10-1.6)

The inflammatory subtype is based on sputum differentials by using the following cut points: neutrophilic, greater than 61%; eosinophilic, greater than 3%. Percentages given are

derived from those subjects with valid data.

ACQ, Asthma Control Questionnaire11; BD, bronchodilator; BDP, beclomethasone dipropionate; CT, computed tomography; FVC, forced vital capacity; GINA, Global Initiative for

Asthma; NA, not available; PEFR, peak expiratory flow rate.

*Because some subjects were outliers, not all are assigned to clusters a through i.

�Values are medians with interquartile ranges, unless stated otherwise.
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TDA
To identify multidimensional features within the data sets, whichmight not

be apparent by using traditional methods, we used TDA. This is particularly

suited to complex biological data sets, representing a high-dimensional data

set as a structured 3-dimensional network. Each node comprises participants

similar to each other inmultiple dimensions. Edges connect nodes that contain

shared data points. Statistical tests can then be performed on groups or features

that emerge from the inherent structure of the data set. This technique provides

a geometric representation of the data,18,19 is independent of prior hypotheses,
and detects multidimensional features within the data that become apparent on

visualization. As a consequence, topological networks capture interesting

structure, even in very small data sets.

TDAwas performed, as previously described,10,19 by usingAyasdi Core 1.59

(Ayasdi,MenloPark,Calif), constructing networkswith the 29parameters listed

in Table E1. Variance-normalized Euclidean distance was used as a distance

metric with 2 filter functions: principal and secondary metric singular value

decomposition. Resolution was set at 30 and gain at 3 (derivation) or 4 (valida-

tion) and selected to provide network structures that permitted identification of
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subgroups. K-S tests identified parameters that differentiated each cluster from

the rest of the structure. Comparisons between multiple clusters used 1-way

ANOVA, with post hoc tests with the Bonferroni correction.
Bayesian network analysis
Interconnectivity between clinical and pathobiologic parameters was

explored by using Bayesian network analysis (Genie 2.0; Decision Systems

Laboratory, University of Pittsburgh, Pittsburgh, Pa). Data were discretized to

describe nonlinear correlations into 2 (binary variables) or 4 or 5 (continuous

variables) bins. Seventy-four parameters were included in analyses (see

Table E2) on the 173 participants (including 17 healthy control subjects) from

both cohorts with the highest quality sputum data and without imputation. The

strengths of associations found to be significant in this analysis were analyzed

by using Spearman correlations.
RESULTS
First, we investigated which of the 103 clinical, physiologic,

and pathobiologic parameters measured were associated with
severe asthma (Global Initiative for Asthma [GINA] step 4 and 5).
Features that differed significantly in K-S tests between patients
with severe asthma and healthy subjects in both the derivation
data set (n5 145 participants) and the validation data set (n5 70)
are presented in Table III. The presence of severe asthma was
associated with symptoms of anxiety and depression or nasal
dysfunction, decreased quality-of-life scores, obesity, obstructive
spirometry, and increased reversibility. Pathobiologic parameters
associated with a diagnosis of severe asthma were neutrophilic
sputum; an increase in peripheral blood neutrophil counts; serum
and sputum chitinase 3–like protein 1 (YKL-40) levels; sputum
matrix metalloproteinase (MMP) 1, MMP3, MMP8, and
MMP12 levels (P < .0001 each, Fig 1); vascular endothelial
growth factor, IL-5, IL-6, IL-8, and IL-6 soluble receptor levels;
and a decrease in sputum macrophage counts and levels of tissue
inhibitor of metalloproteinases 1, fibroblast growth factor, IL-1
receptor antagonist, and IL-2.
TDA to identify clusters
Next, we applied TDA to the Southampton cohort (derivation)

data sets to identify multidimensional clinicopathobiologic
clusters. The network was generated by using only 29 clinical,
physiologic, and cellular parameters (see Table E1) with the
potential to be available to a tertiary care clinician. Subsequent
cluster analyses were then performed on data available from all
103 parameters. Eight clusters of asthmatic patients (A-H) were
identified, as described in Tables I and IV and Fig 2. Of these, 6
clusters (A-C, E, F, and H) were subsequently replicated when
the same analysis was applied to the geographically distinct
Portsmouth (validation) cohort (Tables II and IV and see Figs
E2-E4 in this article’s Online Repository at www.jacionline.
org), which also identified a small additional cluster (cluster i)
not present in the Southampton cohort. Healthy control subjects
formed distinct clusters in both analyses.
Of the 6 clusters replicated in both data sets, cluster

A (young, mild, paucigranulocytic) comprises participants
with predominantly paucigranulocytic sputum, few symptoms
(the lowest ACQ7 scores, 0.8-1.6), and low serum periostin
levels who are young (lowest median ages, 34-38 years) and
more likely to be at GINA treatment step 2 (low-dosemaintenance
ICS).
Subjects in cluster B (older, sinonasal disease) have the highest
median age, more symptoms of anxiety and depression (highest
median HAD score, 12-27), more nasal symptoms (highest
Sino-Nasal Outcome Test 20 score), and high levels of serum
periostin and sputum MMP3.
Subjects in cluster C (obese, high MMP levels) have the highest

body mass index (30.9-36.4 kg/m2); increased sputum MMP1,
MMP2, andMMP8 concentrations; and low serum periostin levels.
Subjects in cluster E (steroid-resistant TH2-mediated, eosino-

philic) have high serum periostin levels, sputum eosinophilia,
sputum IL-5 levels, and fraction of exhaled nitric oxide (FENO)
levels despite high-dose ICSs (1600-2000 mg of beclomethasone
dipropionate) or oral corticosteroids (40% to 46% of
participants).
Subjects in cluster F (mixed granulocytic inflammation

with severe obstruction) have both sputum eosinophilia and
neutrophilia with lower prebronchodilator FEV1 values and
FEV1/forced vital capacity ratios associated with higher sputum
periostin and eosinophil cationic protein (ECP) levels and high
HAD scores.
Subjects in cluster H (neutrophilic disease with severe

obstruction and low periostin levels) have high sputum neutrophil
counts with fixed airflow obstruction (low prebronchodilator and
postbronchodilator FEV1) associated with very high symptom
scores (median ACQ7, 3.3-3.4) and low serum periostin levels.
Of the clusters that were not replicated in both data sets, both

clusters D and i were small (n 5 4 and 5, respectively) and
therefore might represent model overfitting. Lastly, cluster G
shared many features with cluster H, comprising a second large
cluster of participants with blood and sputum neutrophilia, high
symptom scores, and low serum periostin levels. When clusters G
and H were compared directly, cluster G had higher prebroncho-
dilator and postbronchodilator FEV1, higher sputum macrophage
counts, and higher serum periostin levels and were less neutro-
philic, with lower sputum neutrophil counts and sputum
myeloperoxidase (MPO), MMP8, and MMP9 levels (data not
shown). Thus clusters G and H could be considered to represent
milder and more severe subgroups, respectively, of neutrophilic
asthma with low periostin levels.
Features of specific interest were compared across these TDA

clusters. Serum periostin levels were significantly lower in
clusters C and H in both the training and validation cohorts (see
Fig E4). Although sputum IL-5 concentrations were significantly
increased in severe clusters B through H, sputum IL-13 concen-
trations were significantly decreased in most of the severe clusters
B, C, F, and H (see Fig E4). By contrast, no significant differences
were observed in sputum IL-17 concentrations between healthy
subjects and subjects of any cluster (data not shown).
A qualitative comparison of these clusters and clusters we have

previously identified by using similar methodology in a small and
distinct cohort, the IL-17 cohort,10 is presented in Table E3 and
Fig E5 in this article’s Online Repository at www.jacionline.
org. Clusters A, E, F, and H showed clear similarities to analogous
clusters in the IL-17 cohort, although clusters B and C did not.
Bayesian network analysis of combined data sets
Next, to investigate the interactions between the diverse

clinical, physiologic, and pathobiologic parameters in the data
sets, we applied Bayesian network analysis to 74 nonredundant
parameters in data from 173 participants from both cohorts with
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TABLE III. Clinical and pathologic features found to be associated with patients with severe asthma compared with healthy subjects

Derivation data set

Feature Healthy subjects Patients with severe asthma

K-S tests

K-S score P value

No.* 8 121

Increased in asthmatic patients compared with healthy subjects

Reversibility (%) 0.0 (0.0-1.8) 10 (2.9-21) 0.590 .01

BMI� 23.5 (22.4-25.6) 31.2 (26.7-37.3) 0.566 .02

HAD score 4.0 (1.8-7.8) 15 (10-22) 0.597 .01

HAD Depression score 1 (1-3) 9 (6-11) 0.680 .01

Nasal dysfunction� 0.35 (0.09-0.39) 0.48 (0.42-0.72) 0.558 .02

SNOT-20 12 (1.5-27) 35 (24-48) 0.507 .04

Serum YKL-40 (ng/mL)� 17 (13-22) 83 (55-140) 0.787 <.001

Blood neutrophil count (109/L)� 3.9 (3.2-4.5) 6.1 (4.3-8.4) 0.603 .008

Sputum neutrophil count (%) 12 (7.7-30) 51 (28-68) 0.571 .01

Sputum MMP3§ 3.7 3 1024 (3.7 3 1024-3.9 3 1024) 2.6 3 1022 (1.3 3 1022-5.9 3 1022) 0.931 <.001

Sputum MMP12§ 7.0 3 1025 (6.3 3 1026-1.4 3 1024) 1.0 3 1022 (5.9 3 1023-1.6 3 1022) 0.774 .002

Sputum MMP8§ 0.12 (0.049-0.21) 9.6 (2.2-27) 0.628 .02

Sputum MMP1§ 1.6 3 1024 (3.3 3 1025-3.6 3 1024) 1.1 3 1022 (6.2 3 1023-2.1 3 1022) 0.627 .02

Sputum VEGF� 230 (220-280) 700 (470-1100) 0.814 .001

Sputum IL-6 soluble receptor (pg/mL)� 41 (8.0-99) 260 (140-430) 0.607 .03

Sputum IL-6 (pg/mL)� 0.0 (0.0-0.0) 50 (17-120) 0.873 <.001

Sputum IL-5 (pg/mL)� 0.0 (0.0-0.0) 0.76 (0.18-6.4) 0.627 .02

Sputum IL-8 (pg/mL)� 190 (100-420) 3300 (1000-8200) 0.676 .01

Sputum YKL-40 (ng/mL)� 3.2 (2.5-8.7) 65 (20-150) 0.647 .02

Decreased in asthmatic patients compared with healthy subjects

FEV1/FVC ratio 80 (77-83) 66 (54-72) 0.752 <.001

FEV1 (% predicted, pre-BD) 89 (84-98) 68 (49-84) 0.560 .008

FEV1 (% predicted, post-BD) 92 (84-98) 78 (58-90) 0.608 .02

AQLQ score 7 (7-7) 3.7 (3.0-4.8) 0.936 <.001

SF-36 89 (71-91) 42 (27-61) 0.776 <.001

Sputum macrophage count (%) 70 (58-85) 36 (23-56) 0.646 .001

Sputum TIMP-1 (ng/mL)� 1.7 3 105 (7.2 3 104-2.5 3 106) 1.2 3 104 (5.2 3 103-3.8 3 104) 0.725 .005

Sputum IL-2 (pg/mL)� 1.8 (0.27-2.7) 0.0 (0.0-0.0) 0.627 .02

Sputum IL-1RA (pg/mL)� 2.6 3 104 (2.4 3 104-2.8 3 104) 2.7 3 103 (0.0-1.2 3 104) 0.941 <.001

Sputum FGF (pg/mL) 53 (43-62) 0.0 (0.0-0.60) 0.941 <.001

These features were found to differ significantly between healthy subjects and patients with severe asthma (British Thoracic Society steps 4 and 5) in both training and validation

data sets.

AQLQ, Juniper Asthma Quality of Life Questionnaire; BD, bronchodilator; BDP, beclomethasone dipropionate equivalent; BMI, body mass index; FGF, fibroblast growth factor;

FVC, forced vital capacity; GINA, Global Initiative for Asthma; IL-1RA, IL-1 receptor antagonist; MPO, myeloperoxidase; SF-36, Short-Form 36 Health Survey; SNOT-20,

Sino-Nasal Outcome Test 20; TIMP-1, tissue inhibitor of metalloproteinases 1; VEGF, vascular endothelial growth factor.

*Values are medians with interquartile ranges, unless stated otherwise.

�Statistical tests were performed on transformed data.

�‘‘Nasal dysfunction’’ is a composite average score on a scale of 0 to 1 derived from SNOT-20 scores, hyposmia, and rhinosinusitis.

§MMPs are expressed as a ratio to tissue inhibitor of metalloproteinases values; statistical tests were performed on transformed data.
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the highest quality sputum data (Fig 3). This Bayesian network
provides a graphic representation of the probabilistic depen-
dencies among the parameters and arises from the data by using
machine learning inferred from the joint probability distributions
of the data. In the figure the breadth of each line represents the
strength of the interaction (Euclidean distance). Forty-one of
the parameters were included in the model by the analysis,
whereas 33 parameters without strong interactions were
excluded from the model, including sex, FENO values, revers-
ibility, peripheral blood counts, and serum periostin levels (see
Table E2). Within the network, strong associations were observed
between clinical parameters, and separately, strong associations
were observed between pathobiologic parameters. However, a
prominent feature of the network is a lack of associations between
pathobiologic parameters and clinical parameters, with the
exceptions of fibroblast growth factor, which is strongly
negatively correlated with GINA treatment step, and atopic status,
which is positively associated with sputum IL-2 levels.
Sputum YKL-40 levels are highly connected within the

network, particularly with levels of sputum MPO (Spearman
rs 5 0.884, P < .0001), IL-8 (rs 5 0.837, P < .0001), and sputum
IL-6 soluble receptor (rs 5 0.758, P < .0001; Fig 4, A, B, and E).
Sputum YKL-40 levels correlated moderately with sputum
neutrophil counts (rs 5 0.484, P < .0001; Fig 4, G) and were
increased more in patients with neutrophilic versus eosinophilic
disease (see Fig E6, A, in this article’s Online Repository at



Validation data set

Healthy subjects Patients with severe asthma

K-S tests

K-S score P value

13 50

0.0 (0.0-0.0) 8.8 (3.3-14) 0.841 <.001

24.3 (21.9-28.4) 29.0 (26.0-32.2) 0.452 .03

3.0 (0.0-5.0) 16 (9.0-25) 0.637 <.001

2 (0-2) 8.5 (5.3-12) 0.734 <.001

0.0 (0.0-0.43) 0.39 (0.13-0.53) 0.708 <.001

0.0 (0.0-3.0) 37 (20-53) 0.739 <.001

27 (19-37) 110 (67-160) 0.739 <.001

2.9 (2.7-4.0) 5.6 (4.4-8.5) 0.545 .004

18 (11-33) 45 (29-67) 0.732 <.001

1.6 3 1024 (9.9 3 1025-2.3 3 1024) 3.2 3 1022 (1.5 3 1022-5.9 3 1022) 0.902 <.001

3.7 3 1025 (1.2 3 1025-5.5 3 1025) 1.0 3 1022 (5.1 3 1023-1.9 3 1022) 0.878 <.001

0.04 (0.030-0.077) 21 (5.4-28) 0.854 <.001

5.7 3 1025 (3.6 3 1025-1.5 3 1024) 1.2 3 1022 (6.7 3 1023-2.0 3 1022) 0.732 <.001

580 (520-710) 1000 (620-1300) 0.519 .02

130 (100-215) 480 (260-840) 0.623 .002

10 (2.3-19) 55 (15-170) 0.567 .007

0.0 (0.0-0.080) 3.1 (0.72-9.8) 0.714 <.001

620 (380-880) 4000 (2100-7100) 0.756 <.001

21 (14-31) 150 (48-270) 0.738 <.001

85 (84-88) 66 (58-74) 0.785 <.001

100 (96-108) 60 (49-75) 0.918 <.001

100 (96-110) 68 (52-81) 0.857 <.001

7.0 (7.0-7.0) 4.1 (3.1-4.9) 0.959 <.001

89 (85-92) 46 (33-65) 0.841 <.001

82 (69-89) 30 (19-52) 0.837 <.001

4.7 3 105 (2.3 3 105-1.5 3 106) 1.7 3 104 (6.3 3 103-3.8 3 104) 0.860 <.001

0.95 (0.0-3.1) 0.0 (0.0-0.0) 0.612 .003

2.6 3 104 (2.2 3 104-3.5 3 104) 1.4 3 104 (1.1 3 104-1.8 3 104) 0.745 <.001

48 (44-57) 1.2 (2.5 3 1023-1.2) 0.860 <.001

TABLE III. (Continued)
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www.jacionline.org). Sputum YKL-40 levels negatively
correlated with lung function, particularly postbronchodilator
FEV1 (rs 5 20.270, P 5 .0004, data not shown). Sputum and
serum YKL-40 values are only moderately correlated
(rs5 0.434, P <.0001; Fig 4, H), which has implications for their
utility as a serum biomarker.
Levels of sputum MPO and sputum elastase, markers of

neutrophilic airways inflammation, are highly connected within
the network (Fig 3 and see Fig E7 in this article’s Online
Repository at www.jacionline.org).MMP12 levels are also highly
connected, being positively associated with MMP1, MMP3,
MMP8, and MMP13 levels (Fig 3 and see Fig E8 in this article’s
Online Repository at www.jacionline.org). Because MMP8
can induce the decoy receptor IL-13 receptor a2,20 a negative
association between MMP concentrations and free IL-13 might
be expected. Indeed, concentrations of these MMPs correlate
negatively with sputum IL-13 levels (rs 5 20.371 to 20.452,
see Fig E9 in this article’s Online Repository at www.
jacionline.org) but positively with sputum IL-5 levels
(rs5 0.481 to 0.559,P <.0001; see Fig E10 in this article’s Online
Repository at www.jacionline.org). MMP/tissue inhibitor of
metalloproteinases 1 ratios are also associated with body mass
index, particularly MMP1, MMP3, and MMP12 (rs 5 0.373,
0.303, and 0.311, respectively; P < .0001 each; data not shown).
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FIG 1. Protease/antiprotease balance in asthmatic patients. MMP/tissue inhibitor of metalloproteinases

(TIMP-1) ratios in sputum in asthmatic patients compared with healthy subjects for MMP1 (A), MMP3 (B),

MMP8 (C), and MMP12 (D) are shown. Horizontal lines show medians. Statistical comparisons were done

with Student t tests on log-transformed data.
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Although sputum IL-5 levels are strongly associated with
sputum eosinophilia (rs 5 0.572, P < .0001) and sputum ECP
levels (rs 5 0.604, P < .0001, see Figs E6 and E11 in this
article’s Online Repository at www.jacionline.org), sputum
IL-13 levels are not highly correlated with sputum IL-5
levels (P 5 .6) and, conversely, are suppressed in both patients
with neutrophilic and those with eosinophilic asthma (see
Fig E6, D), suggesting that IL-13 production, which is strongly
associated with GINA treatment step, is more steroid
responsive than IL-5. These differences between associations of
sputum ECP, IL-5, and IL-13 levels are further explored in
Figs E11-E15 in this article’s Online Repository at
www.jacionline.org, which reveal that IL-5 is associated with a
wider range of inflammatory markers than IL-13, including
makers of neutrophilic inflammation (IL-8 and YKL-40). Thus
disparities between IL-5 and IL-13 can have additional causes:
given the association of IL-5 with ECP, which can be produced
by both neutrophils and eosinophils,21 and that the eosinophil
activation product major basic protein can increase eosinophil
IL-8 production,22 the biology is complex, and IL-5 seems to
have a broader effect than IL-13.
Fig E16 in this article’sOnlineRepository atwww.jacionline.org

presents 12 key sputum parameters stratified according to GINA
treatment group. For each of these parameters, no significant
differences were observed between distributions for GINA step 4
compared with step 5 (receiving an additional median 10 mg/d
oral prednisone), which would argue against our main observations
being attributable wholly to therapeutic corticosteroids.
DISCUSSION
We have previously demonstrated the potential utility of

topological and Bayesian analytic techniques to analyze high-
dimensional flow cytometric data from a bronchoscopy study in a
small asthma cohort in which we identified distinct multidimen-
sional clinicopathologic clusters.10 Here we apply the same
analytic approach to 2 much larger severe asthma cohorts,
clustering patients by using only real-world assays already
accessible to clinicians in tertiary referral centers for severe
asthma. This provides endotypes that both relate to the underlying
biology and are clinically meaningful.
In addition to the large study size and the statistically unbiased

approach, a major strength of this study is the use of 2
geographically distinct cohorts. This provides true external
validation of the derivation cohort model in contrast to
studies that simply use a random split of a single data set, which
provides only a weak and inefficient form of internal validation.23

The focus of our analyses is on differences within the
spectrum of asthma. Although the number of healthy control
subjects included is only modest, this has little effect on the
identity of these endotypes, which are defined by comparison
with all other subjects in the study. Although a larger
sample size would enable a more detailed description of the
clusters, the sensitivity of TDA to detect structure in small data
sets and the external validation provide statistical confidence in
the features described. A further strength of this study is the
breadth of additional data on serum and airway inflammatory
mediators also available for analysis, providing new insights
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TABLE IV. Definitions of clusters in the derivation and validation data sets

Derivation data set Validation data set

Cluster

Features

of cluster

K-S tests

Comments Cluster

Features

of cluster

K-S tests

CommentsK-S score P value K-S score P value

A Young, mild,

paucigranulocytic

a

Lower serum

periostin level

0.365 .003 More likely GINA

step 2 (P < .001)

Lower serum

periostin

level

0.758 .03 More likely

GINA step 2

(P 5 .001)

Predominantly

paucigranulocytic

sputum (P < .001)

Predominantly

paucigranu-

locytic

sputum

(P 5 .04)

Lowest median

ACQ7 score (1.6)

Lowest

median

ACQ7

score (0.8)

Youngest median

age (38 y)

Youngest

median age

(34 y)

B Older, sinonasal

disease

b

Higher serum

periostin level

0.746 .001 Oldest median

age (60 y)

Higher serum

periostin

level

0.709 <.001 Joint oldest

median age

(61 y)

Higher sputum

MMP3 level

0.610 .03 Highest median

HAD score (18)

Higher sputum

MMP3 level

0.562 .04 Highest median

HAD score

(27)

Higher SNOT-20

score

0.533 .04 Higher

SNOT-20

score

0.803 <.001

C Obese, high MMP

level

c

Higher sputum

MMP1 level

0.498 .02 Highest BMI (36.4) Higher sputum

MMP levels

0.735 .006 Highest BMI

(30.9) after

group i

Higher sputum

MMP8 level

0.481 .03

Higher sputum

MMP2 level

0.474 .03

Lower serum

periostin level

0.802 <.001 Lower serum

periostin level

0.746 .002

D This group was not

replicated in the

validation set

Higher serum

periostin level

0.780 .02

Higher HAD

Depression

score

0.695 .04

E Steroid resistant

TH2 mediated,

eosinophilic

e

Higher serum

periostin level

0.811 <.001 More likely

eosinophilic

sputum class

(P 5 .03)

Higher serum

periostin level

0.862 .002 Predominantly

(60%)

eosinophilic

sputum class

Higher

eosinophilia

0.524 .008 Higher

eosinophilia

0.981 .05

Higher sputum

IL-5 level

0.503 .01 Highest median FENO

value (33 ppb)

Higher sputum

IL-5 level

1.00 .04 Highest median

FENO value

(72 ppb)

(Continued)

J ALLERGY CLIN IMMUNOL

VOLUME 138, NUMBER 1

HINKS ET AL 69



TABLE IV. (Continued)

Derivation data set Validation data set

Cluster

Features

of cluster

K-S tests

Comments Cluster

Features

of cluster

K-S tests

CommentsK-S score P value K-S score P value

Youngest median age

of onset (4 y)

Youngest

median age

of onset

(13 y)

F Mixed granulocytic

inflammation with

severe obstruction

f

Higher serum

periostin level

0.781 <.001 Higher serum

periostin level

0.569 <.001

Higher sputum

ECP level

0.503 .005 Higher sputum

ECP level

0.413 .04

Higher sputum

neutrophil

count

0.465 .003 Higher sputum

neutrophil

count

0.373 .04

Higher sputum

eosinophil

count

0.391 .0197 Higher sputum

eosinophil

count

0.438 .01

Higher HAD

Depression

score

0.367 .03 Higher HAD

Depression

score

0.379 .04

Lower FEV1

(% predicted,

pre-BD)

0.495 .001 Lower FEV1

(% predicted,

pre-BD)

0.379 .04

Lower FEV1/

FVC ratio

0.479 .002 Lower FEV1/

FVC ratio

0.463 .005

Lower sputum

macrophage

counts

0.409 .01 Lower sputum

macrophage

counts

0.438 .01

G This group was not

replicated in the

validation set

Higher

neutrophilia

0.304 .05

Higher sputum

osteopontin

level

0.300 .05

Higher blood

neutrophil

count

0.292 .02

Higher ACQ7

score

0.285 .02

Lower serum

periostin level

0.426 <.001

Lower sputum

MMP9 level

0.378 .006

Lower sputum

a2M level

0.350 .01

Lower sputum

FGF level

0.303 .05

Lower SF-36

score

0.344 .003

Lower AQLQ

score

0.289 .02

H Neutrophilic disease

with severe

obstruction, low

periostin level

(Continued)
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TABLE IV. (Continued)

Derivation data set Validation data set

Cluster

Features

of cluster

K-S tests

Comments Cluster

Features

of cluster

K-S tests

CommentsK-S score P value K-S score P value

Higher sputum

neutrophil

count

0.667 <.001 More likely

neutrophilic

sputum class

(P < .0001)

Higher sputum

neutrophil

count

0.639 .003 More likely

neutrophilic

sputum class

(P 5 .005)

Lower FEV1

(% predicted,

pre-BD)

0.569 <.001 Lower FEV1

(% predicted,

pre-BD)

0.490 .04

Lower FEV1

(% predicted,

post-BD)

0.562 <.001 Very low FEV1

(44% of predicted

value, pre-BD)

Lower FEV1

(% predicted,

post-BD)

0.519 .03 Lowest FEV1

(48% of

predicted

value,

pre-BD)

Lower periostin

level

0.495 <.001 Highest median

ACQ score (3.3)

Lower periostin

level

0.639 .003 High median

ACQ score

(3.4)

i This group was

not replicated

in the validation

set

Higher SNOT-20

score

0.677 .03

Higher sputum

macrophage

counts

0.631 .05

Lower AQLQ

emotional

score

0.677 .03

Lower periostin

level

0.646 .04

Features of clusters were identified in the training and validation sets by using TDA. Features are listed that differ significantly in the cluster when compared with all other subjects

in the same cohort.

a2M, a2-Macroglobulin; AQLQ, Juniper Asthma Quality of Life Questionnaire; BD, bronchodilator; BDP, beclomethasone dipropionate equivalent; BMI, body mass index;

FGF, fibroblast growth factor; FVC, forced vital capacity; GINA, Global Initiative for Asthma; MPO, myeloperoxidase; SNOT-20, Sino-Nasal Outcome Test 20.
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into the roles of YKL-40 and MMPs in patients with severe
asthma.
Several previous studies have investigated the existence of

endotypes by using predominantly clinical parameters, which are
straightforward to apply.3,7,24 Other studies have incorporated the
additional dimension of sputum cell differential.5,6,8 Haldar et al6

observed 2 clusters characterized by discordance between
symptoms and eosinophilic inflammation. Likewise, Wu et al5

included peripheral blood counts and bronchoalveolar lavage
cell differentials when conducting a machine learning approach
to analyze Severe Asthma Research Programme (SARP) data,
identifying 6 asthma clusters. However, their analysis did not
include induced sputum, and the composition of the clusters
was again influenced mostly by clinical parameters because the
selected markers of eosinophilic or neutrophilic inflammation
provided only modest discriminating power in the model
(INFOGAIN value, 0.12-0.16). Our analyses included sputum
eosinophil and neutrophil counts; sputum subclass determination;
measurement of FENO, periostin, high-sensitivity C-reactive
protein, and serum IgE levels; and a restricted number of
clinical parameters found to be nonredundant and have strong
discriminatory power in our previous study.10 We identified 6
endotypes that could be replicated robustly in the validation
cohort. The 2 dimensions of neutrophilic and eosinophilic
inflammation are strongly influential in defining the shape of
the data set and the composition of these clusters. As is clear
from the Bayesian analysis, airway neutrophilia and eosinophilia
represent 2 distinct inflammatory networks that likely contribute
separately to asthma symptoms, again underlining the importance
of considering these 2 specific dimensions when phenotyping an
individual patient.
It is interesting that we identified more than 1 eosinophilic or

neutrophilic cluster. Although airway eosinophilia and high
periostin levels were common to clusters E and F, cluster F had
the additional component of neutrophilic inflammation, leading
to higher symptom scores and a mixed granulocytic subtype.25

Sputum ECP levels were significantly increased in group F
(Table IV). ECP is a basic protein released during eosinophil
degranulation and is highly correlated in our Bayesian
analysis with both neutrophilic (sputum myeloperoxidase) and
eosinophilic (sputum eosinophils and IL-5) inflammation (Fig 3
and see Fig E11). In the derivation cohort an additional
neutrophilic cluster (ie, cluster G) was identified but not
replicated, likely because of the small sample size, perhaps
representing a milder spectrum of neutrophilic asthma with low
periostin levels.



FIG 2. Multidimensional clinicopathological clusters in asthmatic patients in the derivation data set

(Southampton cohort). A topological network generated by using 22 clinical and pathological features

together identifies 1 healthy (in blue) and 8 distinct clinicopathobiologic asthma clusters (A-H). The network

is colored according to ACQ7 scores, with themost symptomatic subjects in red. The TDA used 145 subjects

with the most complete data: metric, variance-normalized Euclidean; lenses, principal and secondary

singular value decomposition (resolution, 30; gain, 3.0/3.03, equalized) and presence/absence of asthma;

node size, proportional to the number of subjects in the node. Color bars: red, highest ACQ7 score; blue,

healthy participants. Features in boldface were replicated in the validation data set. GINA, Global Initiative

for Asthma.
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Similarities highlighted between clusters A, E, F, and H and
analogous clusters we previously described in a separate cohort10

suggest our analytic approach produces consistent findings and
that these clusters are likely related to fundamental differences
in underlying disease mechanisms. The previous study aimed to
investigate the full spectrum of clinical asthma. Thus 2 clusters
of moderate disease in the IL-17 cohort were not replicated in
the current study, which enrolled very few patients with moderate
asthma, focusing instead on severe asthma, which is typical of our
difficult asthma clinics.
How might our clusters relate to possible treatments? Our

description of group E is consistent with descriptions by Haldar
et al,6 Newby et al,8Wu et al,5 Fingleton et al,9 andHinks et al10 of
a cluster of highly atopic, early-onset, eosinophilic asthma with
high FENO values. We have shown this group to be characterized
by high serum periostin and sputum IL-5 levels (see Fig E4 and
Hinks et al10) despite high-dose corticosteroids, suggesting a
likely response to agents, such as mepolizumab, targeting the
IL-5 pathway. That the type 2 cytokines IL-5 and IL-13 are not
associated in the Bayesian network and were not correlated in
sputum suggests IL-13 is more susceptible to steroid therapy.10

Conversely, like others,9 we found mean serum IgE levels to be
increased in all clusters, suggesting anti-IgE therapies might
benefit several phenotypes. As before,10 we found no evidence
of a significant dysregulation of airway IL-17 in any subgroup,
implying this cytokine might not be a promising target.
In contrast to recent developments of therapies targeting

TH2-mediated eosinophilic inflammation, there has been little
progress in therapeutics for neutrophilic disease. Our Bayesian
network highlights the prominent role of YKL-40 in neutrophilic
inflammation. YKL-40 is a chitinase-like protein expressed by
differentiated macrophages and is believed to regulate the magni-
tude of tissue injury and fibroproliferative repair in neutrophil
granules.26 YKL-40 polymorphisms are associated with asthma,



FIG 3. Bayesian belief network showing the strongest interactions between pathobiologic parameters

across a range of clinical severities of asthma or health. Nodes without strong interactions are excluded.

Line thickness represents the strength of the interaction (Euclidean distance). Line colors: green, positive

associations; red, negative associations; black, nonlinear associations. AQLQ, Juniper Asthma Quality of

Life Questionnaire; BD, bronchodilator; FGF, fibroblast growth factor; GCSF, Granulocyte-colony

stimulating factor; GINA, Global Initiative for Asthma; MPO, myeloperoxidase; SPT, skin prick test; VEGF,

vascular endothelial growth factor.
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bronchial hyperresponsiveness, and reduced lung function.27,28

Serum and sputum YKL-40 levels are increased in patients
with severe asthma and correlate with disease severity, airway
obstruction, and basement membrane thickness.29,30We observed
a very strong correlation between sputum YKL-40 and sputum
IL-8 levels, in addition to several other markers of neutrophilic
inflammation, which is consistent with ex vivo observations that
YKL-40 induces IL-8 from bronchial epithelia and stimulates
smooth muscle proliferation.31 In addition, airway YKL-40 level
increases in human allergen challenge and murine models impli-
cate YKL-40 in airway eosinophilia and IL-5 production.26 In our
data a moderate association (rs 5 0.477, P < .0001, data not
shown) was seen with sputum IL-5 levels. Although genetic and
in vitro data are suggestive, it remains to be determined whether
YKL-40 plays a causative role in asthma or is simply a marker
of extracellular tissue remodeling.
MMPs have also been implicated in tissue remodeling in

asthmatic patients by human genetic studies,32,33 murine emphy-
sema models,34-36 and the findings of increased bronchoalveolar
lavage MMP3 and MMP9 levels in patients with status asthmati-
cus37 and increased sputum MMP12 levels in asthmatic
smokers.38 Our study, the largest to date, confirms and extends
these findings with robust evidence of an increase in levels of
specific MMPs in patients with severe asthma. These include
MMP1, MMP3, and MMP8, the 3 secreted type 3 collagenases
able to degrade collagen at neutral pH. We show that these are
strongly associated with neutrophilic inflammation, dysregulated
in obese asthmatic patients, and correlated positively with sputum
IL-5 levels but negatively with sputum IL-13 levels, perhaps
because MMP8 cleaves the IL-13 decoy receptor (IL-13 receptor
a2).20

In conclusion, we have identified and replicated 6 clinicopa-
thobiologic clusters using assays and sputum induction available
in clinical practice. Our data underline a disconnect between
clinical features and underlying inflammation, suggest IL-5
production is relatively steroid insensitive, and highlight the roles
of YKL-40 in neutrophilic inflammation and specific MMPs in
severe asthma.
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FIG 4. Inflammatory mediators associated with sputum YKL-40 levels. Spearman correlations between

levels of sputum YKL-40 and sputummyeloperoxidase (MPO;A), IL-8 (B), vascular endothelial growth factor

(VEGF; C), elastase (D), IL-6 soluble receptor (IL-6SR; E), IL-6 (F), neutrophils (G), and serum YKL-40 (H) are

shown.
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Key messages

d We have identified and replicated 6 clinicopathobiologic
asthma endotypes.

d MMP1, MMP3, MMP8, and MMP12 levels are increased
in patients with severe asthma and associated with
sputum IL-5 levels.

d YKL-40 is strongly implicated in neutrophilic asthma.
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