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we obtain a representation for the Drazin inverse of a 2 × 2 com-

plex block matrix in terms of the individual blocks, under certain

conditions.
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1. Introduction

LetA be a complex Banach algebra with unit 1. Wewrite ρ(a) and σ(a) for the resolvent set and the

spectrum of a ∈ A, respectively. The set of all quasinilpotent elements of A will be denoted by Aqnil .

Banach algebras basic definitions can be found in [24, Chapter 10].

An element a ∈ A is said to have a g-Drazin inverse if there exists x ∈ A such that

xa = ax, x = ax2, a − a2x ∈ Aqnil
. (1.1)
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If such element x exists, then it is unique and is denoted by aD. We denote by AD the set of all

g-Drazin invertible elements ofA. We observe that, if a ∈ Aqnil then aD = 0 and if a is nonsingular then

aD = a−1. We recall that if a, b ∈ Aqnil and ab = ba = 0 or ab = 0, then a + b ∈ Aqnil .

The g-Drazin inverse was studied by Koliha [18] in Banach algebras and by Koliha and Patrício

[20] in rings. Harte gave an alternative definition of a generalized Drazin inverse in a ring [14], which

coincidewith the g-Drazin in the context of Banachalgebras. A linkbetweenDrazin andMoore-Penrose

properties in C∗-algebras and rings can be found in [19,23].

It is known that a ∈ A has a g-inverse if and only if 0 is not an accumulation point of σ(a).

When we have in (1.1) that a − a2x is k-nilpotent, which is equivalent to have ak+1x = ak , then aD

is the conventional Drazin inverse of a and the integer k is the Drazin index of a, denoted by ind(a). For

a development of the theory of the Drazin inverse and its applications we refer an interested reader to

the books [1,25].

For a, b ∈ A, ab is g-Drazin invertible if and only if ba is g-Drazin invertible and

(ab)D = a((ba)2)Db = a((ba)D)2b. (1.2)

When 0 is an isolated point of the spectrum of an element a ∈ A, we write aπ for the spectral

idempotent of a corresponding to {0}. In this case, the resolvent, R(λ, a) = (λ1 − a)−1, has a Laurent

series [18]

R(λ, a) =
∞∑
n=1

λ−nan−1aπ −
∞∑
n=0

λn
(aD)n+1, (1.3)

on some punctured disc {λ : 0< |λ|< r}, r>0.

Some recent papers deal with the problem of finding an explicit expression for the g-Drazin inverse

of a + b in terms of a, b aD, and bD. In [12], it was solved under assumption that ab = 0 in the context

of the Banach algebra of all bounded linear operators on a complex Banach space, and for complex

matrices in [16]. In [5,10], expressions for (a + b)Dweregivenunderdifferent setsof conditions, relaxing

condition ab = 0. Formulas for the Drazin inverse of the sum of four complex square matrices were

obtained in [8]. The papers [6,7] deal with the subject of perturbation analysis of the Drazin inverse,

which is connected with additive results.

Our aim in this paper is to investigate the existence of the g-Drazin inverse of the sum a + b and

to give explicit expression for (a + b)D. We pay special attention to the case in which either a or b is

quasinilpotent and the case in which both of them are quasinilpotent. We note that if a, b ∈ Aqnil , then

aD = bD = 0, and, thus, we would need to introduce an element different from a, b, and its g-Drazin

inverses, in the desired formula for (a + b)D. One goal was to give conditions underwhich the g-Drazin

inverse of a + bwith a ∈ Aqnil could be expressed in terms of a, b, ab, bD, and (ab)D. With this in mind,

we first assume that b and ab are g-Drazin invertible elements, and conditions a2b = ab2 = 0, and

we conclude that a + b is g-Drazin invertible and obtain an explicit expression for (a + b)D. This result

appears inSection3and it extends to the settingofBanachalgebras themain result of [3] established for

bounded linear operators. Theorem3.1was used to prove Theorem3.2, inwhich theweaker conditions

aDb = 0, a2baπ = ab2aπ = 0 are assumed. The auxiliary results used in our development involve the

resolvent of a 2 × 2 matrix with entries in a Banach algebra, and the square of its g-Drazin inverse

and they are presented in Section 2. Several specializations of our main result are given in Section 4

and, finally, we show in Section 5 an application of our results to obtain representations of the Drazin

inverse of a 2 × 2 complex block matrix M =
[
A B
C D

]
in terms of the individual blocks, under some

conditions. In respect of this, Theorem 5.2 generalizes the result given in [15] for the case BC = 0,

BD = 0 and D nilpotent, and it is an extension of the well known result for block triangular matrices

[22]. Formulas for the Drazin inverse of 2 × 2 blockmatrices under other conditions are given in [9,26].

In the following, we introduce a class of matrices with elements in a Banach algebra which will

be use to proof the main result of this paper. We consider the system of complementary idempotents

P = (p1, p2) where p1 = 1 − aπ = aaD and p2 = aπ. The set of matrices

M2(A,P) =
{[

x11 x12
x21 x22

]
P

: xij ∈ piApj , for all i, j ∈ {1, 2}
}
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is a Banach algebra with the usual matrix operations, with the unit
[
p1 0
0 p2

]
P
. For brevity, we denote

Ai = piApi which is an algebra with unit pi, i = 1, 2.

We may work with matrix representations of elements in A by identifying a ∈ A with the matrix

in M2(A,P) defined as
[
p1ap1 p1ap2
p2ap1 p2ap2

]
P
.

It is known that a ∈ AD has the following matrix representation

a =
[
a1 0

0 a2

]
P
, a1 ∈ A−1

1 and a2 ∈ Aqnil
2

,

and the generalized Drazin inverse of a is given by

aD =
[
a−1
1

0

0 0

]
P
,

where the inverse a−1
1

is taken in A1.

The proof of the following result can be found in [5, Theorem 2.3], and will be needed in Section 3.

Theorem 1.1. Let a ∈ A be represented as a =
[
x 0
z y

]
P

. If x ∈ AD
1 , y ∈ AD

2 , then a ∈ AD and

aD =
[
xD 0

u yD

]
P
, (1.4)

where

u =
∞∑
i=0

(yD)i+2zxixπ +
∞∑
i=0

yπyiz(xD)i+2 − yDzxD. (1.5)

Moreover, if a ∈ AD and x ∈ AD
1 , then y ∈ AD

2 and aD is given by (1.4) and (1.5).

2. Preleminary results

By M2(A) we denote the set of all 2 × 2 matrices with entries in A which is a complex Banach

algebra (usual matrix operations) with unit I =
[
1 0
0 1

]
, under the operator norm. Throughout this

paper whenever the lower limit of a sum is bigger than its upper limit, it is assumed that the sum is

equal 0.

The proof of the following theorem is similar to the proof of an analogous result for operatormatrix

[17, Proposition 1.1].

Theorem 2.1. Let A =
[
a b
c d

]
∈ M2(A). The following conditions are equivalent

(i) λ ∈ ρ(A) ∩ ρ(a).

(ii) λ ∈ ρ(d + cR(λ, a)b) ∩ ρ(a).

Moreover, in this case, by denoting S(λ) = λ1 − d − cR(λ, a)b, we have

R(λ,A) =
[
R(λ, a)(1 + bS(λ)−1cR(λ, a)) R(λ, a)bS(λ)−1

S(λ)−1cR(λ, a) S(λ)−1

]
. (2.1)

Now, we establish a crucial auxiliary result.

Theorem 2.2. Let A =
[
a c
1 b

]
, where a, b, c ∈ A are such that ac = 0 and cb = 0. Then � := {λ /= 0 : λ ∈

ρ(a) ∩ ρ(b) and λ2 ∈ ρ(c)} ⊆ ρ(A), and for λ ∈ � we have
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R(λ,A) =
[

2R(λ2, c)R(λ, a) cR(λ2, c)
2R(λ, b)R(λ2, c)R(λ, a) 2R(λ, b)R(λ2, c)

]
. (2.2)

Proof. First, since ac = 0 it follows that R(λ, a)c = λ−1c for λ ∈ ρ(a) \ {0}. Analogously, since cb = 0we

get cR(λ, b) = λ−1c for λ ∈ ρ(b) \ {0}. Now, let S(λ) = λ1 − b − R(λ, a)c. Then S(λ) = λ1 − b − cλ−1 =
λ−2

(λ21 − c)(λ1 − b) for λ ∈ ρ(a) \ {0}. Hence, we have that S(λ)−1 = λ2R(λ, b)R(λ2, c) on the set �.

Applying Theorem 2.1, we obtain that if λ ∈ � then λ ∈ ρ(A) and, in this case, (2.1) holds. Finally,

substituting S(λ)−1 by λ2R(λ, b)R(λ2, c) in (2.1) after simplifications we get (2.2). �

Using the previous result we obtain the following lemma.

Lemma 2.3. Let A =
[
a c
1 b

]
, where a ∈ Aqnil , b, c ∈ A, such that ac = 0, cb = 0. If bD, cD exist then AD

exists and

(AD)2 =
⎡
⎣ y 0

∞∑
n=1

zn−1a
n−1 z−1

⎤
⎦ ,

where

y =
∞∑
k=0

(cD)k+1a2k , (2.3)

and for any n � 0, by denoting for νn the integer part of n/2,

zn−1 =
∞∑
k=1

(bD)n+2kck−1cπ −
νn−1∑
k=0

(bD)n−2k(cD)k+1 +
∞∑

k=νn−1+1

bπb2k−n(cD)k+1.

Proof. Since a ∈ Aqnil , then for any λ /= 0 we have

R(λ, a) =
∞∑
n=1

λ−nan−1. (2.4)

Since 0 ∈ iso σ(b) we have that R(λ, b) has a Laurent series

R(λ, b) =
∞∑
n=1

λ−nbn−1bπ −
∞∑
n=0

λn
(bD)n+1,

on some punctured disc {λ : 0< |λ|< r1}. Analogously, since 0 ∈ iso σ(c) we have

R(λ2, c) =
∞∑
n=1

λ−2ncn−1cπ −
∞∑
n=0

λ2n
(cD)n+1, (2.5)

on some punctured disc {λ : 0< |λ|2 < r2}. From Theorem 2.2 it follows that � = {λ : 0<
|λ|< min{r1,√r2}} satisfies� ⊂ ρ(A) and identity (2.2) holds for λ ∈ �. Consequently, A ∈ M2(A) has

a Laurent series as in (1.3) on some punctured disc {λ : 0< |λ|< r3}. We observe that the coefficient

of λ in R(λ,A) is given by −(AD)2.

Next, we shall obtain the coefficient of λ on the right hand side of (2.2). In view of expansions (2.4)

and (2.5), we easily see that the coefficient λ−1 in R(λ2, c)R(λ, a) is given by −y, where y is defined as

in (2.3).

On the other hand, the coefficient λ−1 in R(λ, b)R(λ2, c)R(λ, a) is given by

−
∞∑
n=1

zn−1a
n−1,

where−zn−1 is the coefficientλ
n−1 inR(λ, b)R(λ2, c). For anyn � 0,−zn−1 is obtainedeithermultiplying

the coefficient of λn−1+2k in R(λ, b) and the coefficient of λ−2k in R(λ2, c) for all k � 1 or multiplying
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the coefficient of λn−1−2k in R(λ, b) and the coefficient of λ2k in R(λ2, c) for any k � 0. Therefore, zn−1

is as in (2.3). �

3. Main result

Throughout, for any integer n, by νn we denote the integer part of n/2. First, we prove an important

special case of our main result.

Theorem 3.1. If a ∈ Aqnil , b, ab ∈ AD, and a2b = ab2 = 0, then (a + b)D exists and

(a + b)D =
∞∑
n=0

xna
n,

where, for all n � 0

xn =
∞∑
k=0

(bD)n+1+2k(ab)k(ab)π −
νn−1∑
k=0

(bD)n−2k−1((ab)D)k+1

+
∞∑

k=νn

bπb2k+1−n((ab)D)k+1.

(3.1)

Proof. In the Banach algebra M2(A), applying formula (1.2) and Lemma 2.3, we have[
a + b 0

0 0

]D
=
([

1 b

0 0

] [
a 0

1 0

])D

=
[
1 b

0 0

]([
a ab

1 b

]D)2 [
a 0

1 0

]

=
[
1 b

0 0

]⎡⎣ y 0
∞∑
n=1

zn−1a
n−1 z−1

⎤
⎦[a 0

1 0

]

=
⎡
⎣b ∞∑

n=0

zn−1a
n + ya 0

0 0

⎤
⎦ ,

where y and zn−1 are defined as in (2.3), with c = ab. Next, we note that the integers νn−1, for n � 0,

satisfy νn−1 =
{
νn, n odd

νn − 1, n even
. By denoting χn :=

{
1, n odd

0, n even
and, using that b(bD)j = (bD)j−1 for

all j � 2, we get

bzn−1 =
∞∑
k=1

(bD)n+2k−1ck−1cπ −
νn−1∑
k=0

(bD)n−2k−1(cD)k+1 − χnbb
D(cD)νn+1

+
∞∑

k=νn

bπb2k+1−n(cD)k+1 − χnb
π(cD)νn+1.

Finally, in view of the relation above and taking into account the following identity

ya −
∞∑
n=0

χnbb
D(cD)νn+1an =

∞∑
n=0

χnb
π(cD)νn+1an,

we conclude, after replacing c by ab, that

(a + b)D = b

∞∑
n=0

zn−1a
n + ya =

∞∑
n=0

xna
n,

where xn is defined as in (3.1) for all n � 0. �

Next we present our main theorem.
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Theorem 3.2. Assume that a, b, ab ∈ AD. If aDb = 0, a2baπ = ab2aπ = 0 then

(a + b)D = aD + (bπ − x1ab − x0a)
∞∑
i=0

(a + b)ib(aD)i+2

+ x0(a
π − baD) +

∞∑
n=1

xna
n

(
aπ −

∞∑
i=0

aib(aD)i+1

)
,

(3.2)

where, for all n � 0, xn is defined as in (3.1).

Proof. Taking into account the identificationof elements inAwithmatrices inM2(A,P) asmentioned

in the introduction, we may write

a =
[
a1 0

0 a2

]
P
, a1 ∈ A−1

1 , a2 ∈ Aqnil
2

, b =
[
b1 b12
b21 b2

]
P

.

Then,

aDb =
[
a−1
1

b1 a−1
1

b12
0 0

]
P

.

Hence, from aDb = 0 it follows that b1 = 0 and b12 = 0 and, thus,

b =
[
0 0

b21 b2

]
P
, ab =

[
0 0

a2b21 a2b2

]
P

. (3.3)

Since bD and (ab)D exist, from Theorem 1.1 we obtain that b2, a2b2 ∈ AD
2 and

bD =
[

0 0

(bD
2
)2b21 bD

2

]
P
, (ab)D =

[
0 0

((a2b2)
D)2a2b21 (a2b2)

D

]
P
,

bπ =
[

p1 0

−bD
2
b21 bπ

2

]
P
, (ab)π =

[
p1 0

−(a2b2)
Da2b21 (a2b2)

π

]
P

.

(3.4)

Expressing the conditions a2baπ = ab2aπ = 0 in matrix form, we get a2
2
b2 = a2b

2
2

= 0. Now, we

apply Theorem 3.1 to obtain that a2 + b2 ∈ AD
2 and

(a2 + b2)
D =

∞∑
n=0

x̃na
n
2, (3.5)

where, for all n � 0,

x̃n =
∞∑
k=0

(bD
2
)n+1+2k(a2b2)

k(a2b2)
π −

νn−1∑
k=0

(bD
2
)n−2k−1((a2b2)

D)k+1

+
∞∑

k=νn

bπ
2
b2k+1−n
2

((a2b2)
D)k+1.

(3.6)

On the other hand, from Theorem 1.1 it follows that (a + b)D exists and

(a + b)D =
[
a1 0

b21 a2 + b2

]D
P

=
[
a−1
1
u (a2 + b2)

D

]
P
, (3.7)

where

u = (a2 + b2)
π

∞∑
i=0

(a2 + b2)
ib21(a

−1
1

)i+2 − (a2 + b2)
Db21a

−1
1

. (3.8)

Using (3.5), condition a2
2
b2 = 0, and taking into account that p2 = aπ is the unit in A2, we get

(a2 + b2)
π = p2 − (a2 + b2)

D(a2 + b2) = p2 − x̃0b2 − x̃0a2 − x̃1a2b2 −
∞∑
n=1

x̃na
n+1
2

.



N. Castro-González, M.F. Martínez-Serrano / Linear Algebra and its Applications 432 (2010) 1885–1895 1891

With x̃0 defined as in (3.6), we have that x̃0b2 = bD
2
b2 because a2b

2
2

= 0 and, thus, (a2b2)
Db2 = 0

also holds.Moreover, a2
2
(a2 + b2)

i = ai+2
2

for all i � 0. Using the preceding relations togetherwith (3.8),

we get

u = (bπ
2

− x̃0a2 − x̃1a2b2)
∞∑
i=0

(a2 + b2)
ib21(a

−1
1

)i+2

− x̃0b21a
−1
1

−
∞∑
n=1

x̃na
n
2

(
∞∑
i=0

ai
2
b21(a

−1
1

)i+1

)
.

(3.9)

Finally, let xn be defined as in (3.1) for all n � 0, and let us introduce the notation

�1 = (bπ − x1ab − x0a)

∞∑
i=0

(a + b)ib(aD)i+2, �2 =
∞∑
n=1

xna
n

⎛
⎝aπ −

∞∑
i=0

aib(aD)i+1

⎞
⎠ .

Then, using thematrix representations (3.3) and (3.4), by a straightforward computationwe obtain

aD + �1 =
⎡
⎣ a−1

1
0

(bπ
2

− x̃0a2 − x̃1a2b2)
∞∑
i=0

(a2 + b2)
ib21(a

−1
1

)i+2 0

⎤
⎦

P
,

x0(a
π − baD) =

[
0 0

−x̃0b21a
−1
1

x̃0

]
P
,

�2 =
⎡
⎢⎣

0 0

−
∞∑
n=1

x̃na
n
2

(
∞∑
i=0

ai
2
b21(a

−1
1

)i+1

)
∞∑
n=1

x̃na
n
2

⎤
⎥⎦

P

.

Hence, in view of (3.7), (3.9), and (3.5), Eq. (3.2) follows. �

4. Special cases

In this section, we consider some specializations of our main result.

Corollary 4.1. With the conditions in Theorem 3.2, we have

(i) If b ∈ Aqnil , then xn defined in (3.1) has the form

xn =
∞∑

k=νn

b2k+1−n((ab)D)k+1, n � 0.

(ii) If ab ∈ Aqnil , then xn defined in (3.1) has the form

xn =
∞∑
k=0

(
bD
)n+1+2k

(ab)k , n � 0.

(iii) If b, ab ∈ Aqnil , then

(a + b)D = aD +
∞∑
i=0

(a + b)ib(aD)i+2.

From Theorem 3.2 we can obtain the following result which was also derived in [5, Theorem 4.1]

from a different additive result.

Corollary 4.2. Let a, b ∈ AD. If aDb = 0 and abaπ = 0, then

(a + b)D = aD +
∞∑
i=0

(
i∑

k=0

bπbkai−k

)
b(aD)i+2

+
∞∑
n=0

(bD)n+1an

(
aπ −

∞∑
i=0

aib(aD)i+1

)
.
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Proof. Firstly, we note that with the conditions of this theorem, condition ab2 = ab(aπb + aaDb) = 0

also holds. Furthermore, (ab)2 = abaaDab = 0, i.e., ab is 2-nilpotent and, thus, (ab)D = 0. Therefore, we

can apply Theorem 3.2 and thus (a + b)D admits the representation (3.2). Now, xn defined in (3.1) has

the form

xn = (bD)n+1 + (bD)n+3ab, n � 0. (4.1)

On the other hand, taking into account that ab2 = 0 and abaπ = 0 we easily prove by induction

that

(a + b)iaπ =
i∑

k=0

bkai−kaπ, i � 0

and, thus, a(a + b)ib = a(a + b)iaπb = ai+1b and ab(a + b)ib = 0 for all i � 0. Consequently,

(bπ − x1ab − x0a)(a + b)ib =
i∑

k=0

bπbkai−kb − bDai+1b, i � 0.

Byusing the latter relationand (4.1) in (3.2) onegets, after regrouping terms, the formulaestablished

in this corollary. �

The following corollary is an important case by itself because it reflects a compact formula for

(a + b)D under conditions a2b = ab2 = 0.

Corollary 4.3. Let a, b, ab ∈ AD. If a2b = ab2 = 0, then

(a + b)D =
∞∑
i=0

νi∑
j=0

bπbi−2j(ab)j(aD)i+1 +
∞∑
n=0

xna
naπ

−
∞∑
j=0

(bx1(ab)j+1aD + x1(ab)j+1)(aD)2j+1,

where, for all n � 0, xn are defined as in (3.1).

Proof. By Theorem 3.2 for the case a2b = ab2 = 0, using that (ab)Db = 0 and, thus, x0b = bDb, we have

(a + b)D = bπaD + (bπ − x1ab − x0a)
∞∑
i=1

(a + b)i−1b(aD)i+1

+
∞∑
n=0

xna
naπ − x1aba

D.

(4.2)

On the other hand, we can prove by induction that

(a + b)i−1b =
νi∑
j=0

bi−2j(ab)j , i � 1. (4.3)

Hence, it follows that, for all j � 0,

ab(a + b)2jb = 0, a(a + b)2jb = (ab)j+1,

ab(a + b)2j+1b = (ab)j+2, a(a + b)2j+1b = 0.

Further, using the relation x0 = bx1, we have

(x1ab + x0a)(a + b)2jb = bx1(ab)j+1

(x1ab + x0a)(a + b)2j+1b = x1(ab)j+2.

By using these relations and (4.3) in (4.2) one gets, after regrouping terms, the formula established

in this corollary. �
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The following two corollaries can be derived either from the previous one or from Theorem 3.1.

Corollary 4.4. If a, b ∈ Aqnil , ab ∈ AD, and a2b = ab2 = 0 then

(a + b)D =
∞∑
n=0

∞∑
k=νn

b2k+1−n((ab)D)k+1an.

Corollary 4.5. Let b ∈ AD, a, ab ∈ Aqnil , and a2b = ab2 = 0 then

(a + b)D =
∞∑
n=0

∞∑
k=0

(bD)n+1+2k(ab)kan.

With Corollary 4.3 we recover the case ab = 0 studied in [12] for bounded linear operators.

Corollary 4.6. Let a, b ∈ AD. If ab = 0, then

(a + b)D =
∞∑
n=0

bπbn(aD)n+1 +
∞∑
n=0

(bD)n+1anaπ.

Proof. The result follows from Corollary 4.3 taking into account that under condition ab = 0 we have

xn = (bD)n+1. �

5. Application to complex block matrices

In this section, we get a representation for the Drazin inverse of 2 × 2 complex block matrices with

application of our previous results. Let M =
[
A B
C D

]
∈ Cn×n, where A and D are square. For a block

triangular matrix we have the following well-known result [22]. Specific information about the index

of block triangular matrices can be found in [2].

Lemma 5.1. If M =
[
A 0
C D

]
, r = ind(A), and s = ind(D), then

MD =
[
AD 0

Z1 DD

]
,

where

Z1 =
r−1∑
i=0

(DD)i+2CAiAπ + Dπ
s−1∑
i=0

DiC(AD)i+2 − DDCAD. (5.1)

Moreover, max{r, s} � ind(M) � r + s.

An open problem is to find an explicit representation for MD with arbitrary A,B,C, and D. Some

special cases were studied in [4,11,13,15,21]. In [15, Lemma 2.2, Corollary 2.3], the case BC = 0, BD = 0

and D nilpotent was studied. The following result is an extension of the one given therein.

Theorem 5.2. If B(CA + DC) = 0, BD2 = 0, and BC is t-nilpotent, then

MD =
t−1∑
k=0

[
(AD)2k+1(BC)k (AD)2k+2(BC)kB + (AD)2k+3(BC)kBD

Z2k+1(BC)k DD + Z2k+2(BC)kB + Z2k+3(BC)kBD

]
,

where Z1 is defined as in (5.1) and Zl =
l−1∑
j=0

(DD)l−1−jZ1(A
D)j for all l � 1.
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Proof. ConsiderM = M1 + M2, where M1 =
[
0 B
0 0

]
andM2 =

[
A 0
C D

]
. We have

M1M
2
2 =

[
B(CA + DC) BD2

0 0

]
, (M1M2)

k =
[
(BC)k (BC)k−1BD

0 0

]
, k � 1.

Since M1M
2
2

= 0 and M1 is 2-nilpotent, then we can apply Theorem 3.1 in the Banach algebra of

complex matrices of order nwith M1 in the place of a andM2 in the place of b to obtain

MD = X0 + X1M1, (5.2)

where, taking into account that M1M2 is nilpotent of index either t or t + 1 because BC is t-nilpotent,

Xn =
t+1∑
k=0

(MD
2 )n+1+2k(M1M2)

k , n = 0, 1. (5.3)

From Lemma 5.1 we get

MD
2 =

[
AD 0

Z1 DD

]
, (MD

2 )l =
[
(AD)l 0

Zl (DD)l

]
,

where Z1 is defined as in (5.1) and Zl =
l−1∑
j=0

(DD)l−1−jZ1(A
D)j for all l � 1. By using the block representa-

tions of the powers ofMD
2
andM1M2 in (5.3) we obtain for n = 0, 1,

Xn =
[
(AD)n+1 0

Zn+1 (DD)n+1

]
+

t∑
k=1

[
(AD)n+1+2k(BC)k (AD)n+1+2k(BC)k−1BD

Zn+1+2k(BC)k Zn+1+2k(BC)k−1BD

]
.

Hence

X1M1 =
t−1∑
k=0

[
0 (AD)2+2k(BC)kB

0 Z2+2k(BC)kB

]

and by substituting the latter identity and the former for the case n = 0 in (5.2) we get the formula

given in the statement of this theorem. �

We note that we might obtain other representations for complex block matrices, under new con-

ditions, taking a different splitting and applying our results like in the previous theorem.
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