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Hyperoxaluria leads to urinary calcium oxalate (CaOx)

supersaturation, resulting in the formation and retention of

CaOx crystals in renal tissue. CaOx crystals may contribute to

the formation of diffuse renal calcifications (nephrocalcinosis)

or stones (nephrolithiasis). When the innate renal defense

mechanisms are suppressed, injury and progressive

inflammation caused by these CaOx crystals, together with

secondary complications such as tubular obstruction, may

lead to decreased renal function and in severe cases to

end-stage renal failure. For decades, research on

nephrocalcinosis and nephrolithiasis mainly focused on both

the physicochemistry of crystal formation and the cell

biology of crystal retention. Although both have been

characterized quite well, the mechanisms involved in

establishing urinary supersaturation in vivo are insufficiently

understood, particularly with respect to oxalate. Therefore,

current therapeutic strategies often fail in their compliance or

effectiveness, and CaOx stone recurrence is still common.

As the etiology of hyperoxaluria is diverse, a good

understanding of how oxalate is absorbed and transported

throughout the body, together with a better insight in the

regulatory mechanisms, is crucial in the setting of future

treatment strategies of this disorder. In this review, the

currently known mechanisms of oxalate handling in relevant

organs will be discussed in relation to the different etiologies

of hyperoxaluria. Furthermore, future directions in the

treatment of hyperoxaluria will be covered.
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Oxalate (C2O4
2�) is the salt-forming ion of oxalic acid

(C2H2O4) that is widely distributed in both plants and
animals. Oxalic acid may form oxalate salts with various
cations, such as sodium, potassium, magnesium, and
calcium. Although sodium oxalate, potassium oxalate, and
magnesium oxalate are water soluble, calcium oxalate (CaOx)
is nearly insoluble.1 Excretion of oxalate occurs primarily by
the kidneys via glomerular filtration and tubular secretion.2–4

As oxalate can bind with calcium in the kidney, increased
urinary oxalate excretion (hyperoxaluria) leads to urinary
CaOx supersaturation, resulting in the formation and
putative retention of CaOx crystals in renal tissue.5 These
CaOx crystals may contribute to the formation of diffuse
renal calcifications (nephrocalcinosis) and stones (nephro-
lithiasis). Moreover, when the innate renal defense mecha-
nisms6,7 are suppressed, injury and progressive inflammation
caused by these CaOx crystals,8–14 together with secondary
complications such as tubular obstruction, may lead to
decreased renal function15,16 and in severe cases even to end-
stage renal failure.6,17,18

In the last decades, mechanistic research on nephrocal-
cinosis and nephrolithiasis mainly focused on understanding
both the physicochemistry of intratubular (urinary) crystal
formation and the cell biology of renal crystal retention19–25

(as this falls beyond the scope of this article, the reader is
referred to some recent reviews on this matter18,25–27).
Although this research contributed significantly to our
understanding of renal biomineralization, until now many
(if not all) preventive or therapeutic strategies fail in their
compliance or effectiveness. Hence, stone recurrence is still
very common.28 As the condition sine qua non of renal
calcification is crystal formation driven by supersaturation,
preventing the latter would be an effective approach. Although
supersaturation and crystal formation in tubular fluid and
urine have been characterized quite well, the mechanisms
involved in establishing this supersaturated state in vivo are
insufficiently understood, particularly with respect to oxalate.
In this regard, a good understanding of how oxalate is
transported throughout the body and how this transport is
regulated is crucial. In this review, the current knowledge of
the mechanisms of renal and gastrointestinal oxalate transport
will be discussed in relation to the different etiological types of
hyperoxaluria. Furthermore, potential interventional strategies
to prevent urinary oxalate supersaturation will be covered.
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SOURCES OF OXALATE

Urinary oxalate is derived from both exogenous and
endogenous sources that, depending on dietary intake,
may equally contribute to urinary oxalate excretion.29

Oxalate is an unavoidable component of the human diet as
it is a ubiquitous component of plants and plant-derived
foods.29–31 Endogenous oxalate synthesis (see Figure 1)
primarily occurs in the liver32 with glyoxylate as an
immediate oxalate precursor.33,34 Glyoxylate is derived from
oxidation of glycolate by glycolate oxidase or by catabolism of
hydroxyproline, a component of collagen.35–38 Transamina-
tion of glyoxylate with alanine, by alanine/glyoxylate
aminotransferase (AGT), results in the formation of pyruvate
and glycine. Excess glyoxylate, however, will be converted to
oxalate by glycolate oxidase or lactate dehydrogenase, of
which the latter most likely catalyzes the bulk of this
reaction.6,33,39 It has been suggested that increased fructose
intake may increase endogenous oxalate synthesis33 and
hence urinary oxalate excretion, thereby increasing the risk of
incident kidney stones.40 However, conflicting results have
been reported about the relationship between fructose and
oxalate synthesis.41,42 Very recently, it was shown that in
healthy individuals consuming controlled diets, increasing
fructose concentrations had no effect on the excretion of
oxalate, calcium, or uric acid. Moreover, cultured liver cells
incubated with 13C-labeled sugars did not convert fructose

to oxalate in vitro.43 The contribution of ascorbate catabolism
to urinary oxalate is controversial.44–49 An important reason
for this may be the fact that ascorbate converts to oxalate
nonenzymatically (pH 44.0) during sample processing,
leading to an overestimation of the urinary oxalate concen-
tration.50,51 Other oxalate precursors are xylitol52 and a
number of amino acids.5,53

ETIOLOGY OF HYPEROXALURIA

Depending on dietary intake, daily urinary oxalate excretion
in healthy individuals ranges between 10 and 40 mg per 24 h
(0.1–0.45 mmol per 24 h). Concentrations over 40–45 mg per
24 h (0.45–0.5 mmol per 24 h) are considered as clinical
hyperoxaluria.5,6,39 Hyperoxaluria can be generally divided
into two categories: primary and secondary hyperoxaluria.
Primary hyperoxaluria is the result of inherited (mostly)
hepatic enzyme deficiencies leading to increased endogenous
oxalate synthesis. Secondary hyperoxaluria results from
conditions underlying increased intestinal oxalate absorp-
tion, such as (1) a high-oxalate diet, (2) fat malabsorption
(enteric hyperoxaluria), (3) alterations in intestinal oxalate-
degrading microorganisms, and (4) genetic variations of
intestinal oxalate transporters. Furthermore, it is worth
mentioning that hyperoxaluria may also occur following
renal transplantation because of rapid clearance of accumu-
lated oxalate (see below).
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Figure 1 | Overview of endogenous oxalate synthesis pathways. PH I–III, primary hyperoxaluria types I–III.

Kidney International (2011) 80, 1146–1158 1147

S Robijn et al.: Hyperoxaluria: a gut–kidney axis? r e v i e w



Primary hyperoxaluria

The primary hyperoxalurias type I–III (PH I–III) are relatively
rare autosomal recessive disorders of glyoxylate metabolism,
resulting in markedly increased endogenous oxalate synthe-
sis. All three types are characterized by the inability to
remove glyoxylate (see Figure 1). PH I, accounting for the
majority of all cases (70–80%),17 results from the absence or
deficiency of the peroxisomal liver enzyme AGT, of which
the activity depends on pyridoxal phosphate. As AGT
catalyzes the transamination of glyoxylate to glycine, its
deficiency in PH I allows glyoxylate to be reduced to glycolate
and to be oxidized to oxalate. PH II is a somewhat milder
variant54 resulting from the deficiency of the cytosolic liver
enzyme glyoxylate reductase/hydroxypyruvate reductase
(GRHPR).6,17,55,56 Severe hyperoxaluria is the clinical hall-
mark of these two types of PH, with reported values ranging
between 88 and 352 mg per 24 h (1–4 mmol per 24 h) for PH I
and 88 and 176 mg per 24 h (1–2 mmol per 24 h) for PH
II.6,17,54,56 Recently, a third form of PH was described, in
which patients present with normal AGT and GRHPR
enzyme activities.17,57 Studies to define the etiology of this
type of PH ruled out SLC26A6 (an oxalate transporter; see
below) as the monogenic cause in a non-PH I/PH II cohort
of eight patients,58 whereas a very recent study indicated that
mutations in DHDPSL are responsible for PH III. It is
assumed that DHDPSL encodes 4-hydroxy-2-oxoglutarate
aldolase, catalyzing the final step in the metabolism of
hydroxyproline59 (see Figure 1). However, little is known
about the long-term outcome of this form of PH, as very few
patients have been characterized to date. Furthermore, there
still are patients presenting clinical symptoms of PH, but
with negative mutation analysis for the known PH subtypes,
suggesting another or even more subtypes of PH.

PHs are among the most severe disorders causing
progressive nephrocalcinosis and/or nephrolithiasis, often
leading to early end-stage renal disease. As renal function
declines to a glomerular filtration rate of o45 ml/min per
1.73 m2, oxalate excretion becomes compromised, such that
plasma oxalate levels rise markedly (430mmol/l), thereby
exceeding the CaOx supersaturation threshold. Hence, systemic
deposition of CaOx (systemic oxalosis) occurs in extrarenal
tissues, which lead to early death when left untreated.17,55,56

All types of PH become symptomatic in early childhood
to adolescence, with about half of PH I patients exhibiting
their first symptoms by the age of 5 years, while the median
age of onset of PH II is 15 years.56 PH III patients tend to
develop severe recurrent nephrolithiasis in the first years of
life, with clinical improvement over time and a lower risk of
renal failure (personal experience). However, because of the
systemic nature of the symptoms and the heterogeneity of
disease expression in PH I, at least 35% of PH I patients
remain undiagnosed until advanced renal failure has devel-
oped, or after early failure of a kidney graft.17 This number
may even be higher for patients with PH II and III based on
the lack of significant symptoms in the long run and the
lower risk of end-stage renal disease.

Secondary hyperoxaluria

High-oxalate diet. Estimates of the average daily oxalate
intake of the western population are highly variable, ranging
between 44 and 351 mg/day (0.5–4.0 mmol/day).30,60–62

Daily intake may even exceed 1000 mg/day (11.4 mmol/day)
when oxalate-rich foods, such as spinach or rhubarb, are
consumed.60 Values of up to 2000 mg (22.7 mmol) have been
reported in seasonal rural diets in India.63 However, the
fraction of dietary oxalate that will effectively be absorbed by
the intestine is highly influenced by the amount of oxalate-
binding cations, such as calcium and magnesium, in the gut.
In this context, several studies demonstrated that the
concomitant ingestion of calcium (or magnesium) with
oxalate can reduce oxaluria by forming insoluble oxalate
complexes in the gut (thereby decreasing intestinal oxalate
absorption),64–69 a process that is disturbed in the pathology
of enteric hyperoxaluria due to fat malabsorption (see
below). Among other highly variable parameters, oxalate
bioavailability, amount of oxalate precursors, inherited
oxalate absorption capacity, gastric emptying, intestinal
transit time, and the presence of oxalate-degrading
microorganisms can be named.5,60–64 Using standardized
13C-labeled oxalate absorption tests,70–75 the reference range
for intestinal oxalate absorption in healthy individuals was
reported to be between 2.2 and 18.5% of an administered
load, with values 415% considered as oxalate hyperabsorp-
tion,73 which is a risk factor for idiopathic CaOx nephro-
lithiasis.70,71,74,76 This is supported by the observation that
idiopathic CaOx stone formers absorb more oxalate than
normal individuals.70,74,77

For a long time, the contribution of dietary oxalate to
urinary oxalate was thought to be minimal (10–20%),78 as a
linear relationship between dietary oxalate intake and urinary
oxalate excretion was assumed. However, Holmes et al.29,30

identified a curvilinear relationship in normal individuals
because of higher oxalate absorption at low intakes and
established a dietary contribution of B50%, making it an
important determining factor in urinary oxalate excretion.29

A recent cross-sectional study of 3348 stone-forming and
non-stone-forming individuals challenged the impact of
dietary oxalate on 24 h urinary oxalate excretion.79 However,
in that study no postprandial urinary oxalate excretions were
investigated, which may be important as it was shown that an
oxalate load results in transiently increased plasma and urine
oxalate levels peaking 2 to 4 h post load, implying that an
oxalate-rich meal is able to induce temporary states of
hyperoxaluria, not to be noticed in 24 h urine samples.31,80

Fat malabsorption (enteric hyperoxaluria). Hyperoxaluria
due to fat malabsorption refers to a condition in which
intestinal oxalate absorption is increased as a result of two
different mechanisms: (1) both dihydroxy bile acids and fatty
acids increase the permeability of the intestinal mucosa to
oxalate and (2) complexation of fatty acids with luminal
calcium increases the amount of soluble oxalate that is
available for absorption as insoluble CaOx complexes are no
longer formed.81 It is also postulated that inhibition of
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intestinal oxalate-degrading bacteria in patients with bile acid
malabsorption might contribute to the increased intestinal
oxalate absorption, which may range from 35 to 50% of
an administered oxalate dose.81 Hyperoxaluria due to fat
malabsorption is typically seen in patients suffering from
inflammatory bowel disorders,81 after bariatric surgery
(potentially leading to kidney failure82–84)85,86 or after the
use of gastrointestinal lipase inhibitors.87,88 Daily urinary
oxalate excretion ranges between that of healthy individuals
and PH patients (44–70 mg per 24 h; 0.5–0.8 mmol per
24 h).6,17,81

Alterations in intestinal oxalate-degrading microorganisms.

One of the best-known oxalate-degrading organisms is
Oxalobacter formigenes, a Gram-negative anaerobic bacteri-
um that is found in the colon of humans and other
vertebrates and that exclusively relies on the conversion of
oxalate to formate as its energy source. Oxalate enters the
bacterium through an oxalate–formate antiporter on the cell
membrane, where it is metabolized to formate and CO2 by
the activities of two enzymes (that is, formyl-CoA transferase
and oxalyl-CoA decarboxylase), resulting in a proton
gradient used to drive ATP synthesis. Subsequently, the
formed CO2 diffuses out of the bacterium and formate exits
through the antiporter.89,90 The discovery of this bacterium
led to the hypothesis that colonization with O. formigenes
would reduce intestinal oxalate absorption, and hence
decrease urinary oxalate excretion. This hypothesis has
been confirmed in several animal and human studies.91–94

Moreover, a recent study using male Sprague–Dawley rats
showed that O. formigenes, in addition to its luminal oxalate-
degrading capacities, is able to derive oxalate from systemic
sources by inducing enteric oxalate secretion.95

Genetic variations of intestinal oxalate transporters. Recent-
ly, it was shown that deletion of the slc26a6 oxalate trans-
porter gene in mice, a species virtually insensitive to
lithogenic agents, results in hyperoxalemia, hyperoxaluria,
and CaOx urolithiasis due to a defect in intestinal oxalate
secretion.96,97 It was also suggested that differences in affinity
and electrogenicity of this transporter may partially explain
differences in species susceptibility (mice less susceptible than
humans) to nephrolithiasis.98 Furthermore, it has been
reported that polymorphisms of this transporter (V185M)
in the human population may explain accelerated litho-
genesis in distinct subpopulations.98 Taken together, these
observations suggest that alterations in intestinal oxalate
transporters might be associated with reduced intestinal
oxalate secretion and increased prevalence or severity of
nephrocalcinosis and/or nephrolithiasis, highlighting the
importance of a good understanding of oxalate transport
for future treatment and/or prevention of these disorders.

Hyperoxaluria following renal transplantation

When glomerular filtration rate declines, oxalate clearance
becomes compromised, resulting in elevated plasma oxa-
late levels that may be up to 10 times above normal in
predialysis patients: 90±6 vs. 9±2 mmol/l.99,100 As CaOx

supersaturation may already occur at plasma oxalate levels of
30 mmol/l, uremic plasma is often supersaturated, potentially
leading to systemic oxalosis.101 Moreover, a significant
correlation between plasma oxalate and time on dialysis has
been demonstrated.102 Hence, following renal transplantation
or combined liver/kidney (PH patients) transplantation, the
accumulated oxalate is rapidly released from the body,
resulting in transient hyperoxaluria and risk of CaOx
precipitation within the allograft tissue,103 especially in the
presence of allograft dysfunction.104,105

OXALATE TRANSPORT

Insights in the mediators of epithelial oxalate transport
gained a significant boost with the identification of the
solute-linked carrier 26 (SLC26) anion exchangers, which
consist of 11 members capable of transporting several anions,
including sulfate (SO4

2�), chloride (Cl�), hydroxyl (OH�),
iodide (I�), bicarbonate (HCO3

�), formate, and oxalate
(see Table 1).106–109

The first member of this family that was identified is
SLC26A1 (sulfate anion transporter 1 (SAT-1)). This
transporter is expressed in the sinusoidal membrane of rat
hepatocytes,106,107,109–112 the basolateral membrane of renal
proximal tubules,106,107,109–111,113 and enterocytes of several
mammalians.114,115 SLC26A1 has been reported to mediate
SO4

2�, Cl�, HCO3
�, glyoxylate, and oxalate trans-

port.106,107,109–111,113,115,116

SLC26A2 (diastrophic dysplasia sulfate transporter
(DTDST)) is the closest paralog of SLC26A1 and is located
at the apical membrane of rat small intestine, rat proximal
tubule, and human colon, where it appears to function as a
SO4

2�, Cl�, and oxalate exchanger.106,107,109,117

SLC26A3 (downregulated in adenoma (DRA)) is capable
of Cl�, HCO3

�, OH�, and oxalate transport and has been
shown to be present at the apical membrane of enterocytes of
humans and laboratory animals.106,107,114,118

SLC26A6 (chloride/formate exchanger (CFEX) or putative
anion transporter 1 (PAT-1)) mediates SO4

2�, Cl�, HCO3
�,

OH�, formate, and oxalate transport and is expressed at the
apical membrane of several tissues including the gastro-
intestinal tract and along the nephron.119–122

SLC26A7 is reported to transport SO4
2�, Cl�, HCO3

�, and
oxalate123–125 and may also function as an intracellular pH-
sensitive Cl� channel as was shown in Xenopus oocytes and
HEK293 cells.126 In mammalian kidney, this transporter is
expressed in proximal tubule (subapical), thick ascending
limb (basolateral), principal cells of the distal tubule
(basolateral), and intercalated cells of outer medullary
collecting duct (basolateral).123–125,127 In the gastrointestinal
tract, SLC26A7 is expressed in gastric parietal cells
(basolateral) of mice.128

SLC26A8 (testis anion transporter 1 (TAT1)) and
SLC26A9 demonstrate Cl�, SO4

2�, and oxalate transport
activities when expressed in Xenopus oocytes.125 Both
transporters show distribution in renal tissue, whereas
SLC26A9 is also expressed in rodent stomach.106,108,109
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Furthermore, besides the SLC26 transporters, other anion
exchangers may also be involved in oxalate transport. For
example, SLC4A1 (AE1; band 3), which is found in renal and
intestinal epithelia, as well as in erythrocyte plasma
membranes of both laboratory animals and humans,129 has
been shown to exhibit Cl�/oxalate exchange in human
erythrocytes.130 Moreover, this transporter seems to exhibit
altered exchange properties in CaOx stone formers.131,132 Its
contribution to renal and gastrointestinal oxalate transport,
however, needs further investigation. Finally, nonoxalate
exchanging transporters may also have a critical role in
oxalate handling by contributing to ion gradients that
influence oxalate exchangers, adding an extra level of
complexity to a full understanding of oxalate handling. In
addition, it should be noted that much information
regarding oxalate transport is derived from in vitro studies,
of which several seem to show conflicting results, likely
depending on species and experimental conditions used.
Therefore, further studies are required to get better insights
in transport properties and (pathological) physiological
contribution of these transporters in humans.

Renal oxalate handling

It has been shown in rat and humans that renal oxalate
handling comprises glomerular filtration, tubular secretion,
and tubular reabsorption.2,133 Whereas glomerular filtration
of oxalate directly depends on plasma oxalate levels, tubular
oxalate handling is mediated by several SLC26 transporting
proteins: that is, SLC26A1, A2, A6, and A7 (see Figure 2).

SLC26A1 is reported to mainly exchange oxalate for
intracellular SO4

2� and to have a role in tubular oxalate
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Figure 2 | Proposed mechanism of renal oxalate handling.
Cl�, chloride; DCT, distal convoluted tubule; OMCD, outer medulla
collecting duct; Ox2�, oxalate; PCT, proximal convoluted tubule;
PST, proximal straight tubule; SLC26, solute-linked carrier 26;
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uptake across the basolateral membrane.110,111 Krick et al.111

calculated that with normal plasma oxalate concentrations
(usually in the 1–6mmol/l range17), the binding site of
SLC26A1 is theoretically 1.8–8.6% occupied by oxalate, so
that SLC26A1-mediated tubular oxalate uptake is likely
negligible. In PH patients in whom plasma oxalate levels
may be 4100 mmol/l,17 however, SLC26A1 occupancy
increases to 65.3% and oxalate is taken up into the tubular
cell, so that tubular oxalate secretion (facilitated by SLC26A6
at the apical membrane; see below) may occur.

In mammalian kidney, SLC26A7 is expressed in the
proximal tubule (subapical), thick ascending limb (basolat-
eral), principal cells of the distal tubule (basolateral), and
intercalated cells of outer medullary collecting duct (baso-
lateral).123,124,127 Its role in renal oxalate transport remains
unknown. Oxalate transport has also been reported across the
rabbit papillary epithelium,134 where it may be involved in the
deposition of CaOx crystals on Randall’s plaques.135 However,
the transporter involved herein has not yet been identified.

Studies in slc26a6�/� mice showed that SLC26A6 is the
dominant Cl�/oxalate exchanger at the apical membrane of
the proximal tubule, mediating the only known physio-
logical function of oxalate, namely oxalate-dependent tubular
Cl� reabsorption (tubular oxalate secretion). Cl�/oxalate
exchange occurs in parallel with a second process, namely
3Naþ /SO4

2� exchange. A third process, that is, oxalate/SO4
2�

exchange, functions as a mechanism to recycle oxalate back
into the cell and sulfate from the cell to the lumen.136 This
exchange mode is (partly) mediated by an exchanger other
than SLC26A6 as oxalate/SO4

2� exchange is only partially
defective in slc26a6�/� mice.97 As SLC26A2 is expressed at
the apical membrane of proximal tubules and reported
to transport oxalate and SO4

2�, as shown in humans and
rodents,117,137 this transporter would be a candidate for
apical oxalate/SO4

2� transport.
Apical exchange of intracellular oxalate for luminal Cl�

has also been reported in rat distal tubule.138 Human
SLC26A6 is also reported in Henle’s loop, distal tubule, and
intercalated cells of collecting ducts.127

CFTR (cystic fibrosis transmembrane conductance
regulator), a Cl� channel expressed in the apical membrane
of epithelial cells, shows reciprocal regulatory activity with
several SLC26 anion exchangers, including SLC26A6.139

Defective expression of this channel in the proximal tubule
of cystic fibrosis patients might drive SLC26A6-induced
tubular oxalate secretion, which together with increased
intestinal oxalate absorption140 might explain the mild
hyperoxaluria and increased incidence of CaOx nephrolithia-
sis in these patients.141

Under physiological conditions, oxalate is predominantly
excreted by glomerular filtration. Furthermore, given that
oxalate is a metabolic waste product, it would reasonably be
expected that tubular reabsorption does not occur. However,
in rat kidney, it was found that the S1 and S2 (convoluted)
segments of the proximal tubule show net oxalate absorp-
tion, whereas the S3 (straight) segment shows net oxalate

secretion.2,39 Tubular oxalate reabsorption may be a way
to reduce urinary CaOx supersaturation along the early
sensitive parts of the nephron. More important than reducing
urinary CaOx supersaturation, however, seems to be main-
taining relatively constant plasma oxalate levels as increased
plasma oxalate concentrations may give rise to life-threaten-
ing systemic oxalosis.17 In this context, Bergsland et al.142

very recently identified tubular oxalate secretion, next to
glomerular filtration, as a key mediator in the regulation of
plasma oxalate levels in calcium stone formers, as a strong
correlation was observed between (high) urinary oxalate
excretions and tubular oxalate secretion, whereas plasma
oxalate was similar between stone formers and controls.
The role of tubular oxalate secretion as mediator of
plasma oxalate levels is further supported by the observation
that tubular oxalate secretion is generally elevated in
PH patients.143 Moreover, the phenotypes of slc26a1�/�

(see ref. 144) and slc26a6�/� (see ref. 97) also show increased
plasma oxalate levels, next to hyperoxaluria, due to reduced
intestinal oxalate secretion (see below). As SLC26A1-mediated
oxalate uptake (basolateral) and SLC26A6-mediated oxalate
efflux (apical), hence tubular oxalate secretion, is absent
in these knockout mice, it can be suggested that under
conditions of increased intestinal oxalate supply, oxalate
elimination solely via glomerular filtration is insufficient to
maintain stable plasma oxalate levels.

Hepatic oxalate handling

As already mentioned above, endogenous oxalate synthesis
primarily occurs in hepatocytes, with glyoxylate as the
principal precursor. Under physiological conditions, the
majority of glyoxylate is converted to glycine or glycolate
by AGT and GRHPR, respectively, whereas excess glyoxylate
is metabolized to oxalate,32,33 which is secreted into the blood
across the hepatocyte sinusoidal membrane by SLC26A1,
mainly in exchange for SO4

2� and HCO3
� (see refs 110,111)

(see Figure 3). In PH patients, glyoxylate concentration rises
because of AGT, GRHPR, or 4-hydroxy-2-oxoglutarate
aldolase deficiency, leading to increased hepatic oxalate
synthesis.17,59 Interestingly, a molecular link between the
mechanism of cellular oxalate release and oxalate metabolism
has recently been described by Schnedler et al.,116 showing
that oxalate and its precursor glyoxylate increase mRNA and
protein expression of several splice variants of SLC26A1 in
hepatocytes (HepG2 cells). This appears to be a logical
observation as oxalate is a metabolic end product with
cellular toxicity of which the intracellular concentration
needs to be lowered as soon as possible. In this context, the
presentation of primary hyperoxaluria might be viewed as the
direct result of self-preservation of the hepatocyte. However,
whether glyoxylate and oxalate upregulate SLC26A1 activity
in PH patients remains to be determined.

Gastrointestinal oxalate handling

Paracellular vs. transcellular. Gastrointestinal oxalate
transport can be generally divided into two components:
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paracellular and transcellular oxalate transport, so that the
resulting unidirectional oxalate flux is the sum of both
pathways. Whereas the paracellular route is passive and
driven by electrochemical gradients across the intestinal
epithelium, transcellular transport is usually mediated and
coupled to secondary active processes providing the potential
for transport independent of the prevailing electrochemical
gradient. The relative importance of these two routes varies
per intestinal segment and with disease state. It is expected
that the paracellular route contributes more significantly to
oxalate absorption in the small intestine where junctional
resistance is low and luminal oxalate concentration is
expected to be high, in contrast to more distal intestinal
segments. Furthermore, it is known that both dihydroxy bile
acids and fatty acids increase the permeability of the
intestinal mucosa to oxalate in the setting of enteric
hyperoxaluria81 so that paracellular oxalate absorption may
become the dominant route in this pathology.114,118

Stomach. Given the acidic environment and tight epithe-
lium of the stomach, it is presumed that gastric oxalate
uptake occurs mainly via (transcellular) nonionic diffusion,
whereas oxalate efflux across the basolateral membrane may
occur by an as yet unidentified mediated transcellular
mechanism.114 As SLC26A7 is expressed in the basolateral
membrane of gastric parietal cells,128 this transporter may be
responsible for this basolateral oxalate efflux (see Figure 3).
However, it should be noted that studies on gastric oxalate
transport are very limited. To our knowledge, only two
studies describe the contribution of the stomach to gastro-
intestinal oxalate absorption. Hautmann et al.145 adminis-
tered a 5 mmol oxalate load via a nasogastric tube to six
patients while blocking gastric emptying by an intrapyloric
balloon. With increasing gastric loading time, a linear
increase in urinary oxalate excretion was observed. Therefore,
it was concluded that the stomach seems to be an important
site for oxalate absorption and that a prolonged gastric transit
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time of an oxalate load may lead to hyperabsorption and
subsequent periods of hyperoxaluria. In line with this
research, Chen et al.146 investigated urinary oxalate excretion
after an oral spinach load (B30 mmol oxalate) in 8 patients
who underwent a total gastrectomy and compared it with
that of 10 healthy adults. Urinary oxalate excretion in the
healthy individuals showed a biphasic pattern with peaks
occurring at 40 min and 2 h after oxalate loading. Interest-
ingly, the first peak was absent in the patients with total
gastrectomy, indicating a significant contribution of the
stomach to oxalate absorption.

Intestinal tract. As in the organs mentioned above, trans-
cellular intestinal oxalate transport is mediated by members
of the SLC26 anion exchanging family (see Figure 3).
SLC26A1 is expressed on the basolateral membrane of
human small intestine and colon. SLC26A2 is relatively
abundant on the apical membrane of human colonocytes and
less in small intestine. In mice and rats, SLC26A3 is expressed
on the apical membrane of colon and less in small intestine,
which is the opposite of SLC26A6 being abundant on the
apical membrane of small intestine but less in colon.118

For a long time it has been thought that oxalate trans-
port across the intestinal tract could only function in
absorptive mode and that the kidney was the sole route
for oxalate excretion. However, it has been shown in
rabbits,147,148 rats,149 and mice96,97 that oxalate handling
across the intestine is segment specific with net oxalate
secretion in the small intestine and proximal colon and net
oxalate absorption in the distal colon. In humans, intestinal
oxalate secretion seems to be less pronounced as fecal
excretion of an intravenously administered 14C-oxalate dose
was negligible in dialysis patients.150 However, it was shown
in PH patients that net intestinal oxalate secretion can
be induced by O. formigenes, possibly by contributing to
a transepithelial gradient favoring intestinal secretion of
endogenous oxalate.91

Segment and species differences in oxalate handling across
the intestine have been related to spatial distribution
(abundant in small intestine but less in colon) and transport
characteristics of SLC26A6. Recently, it was observed that
slc26a6�/� mice present a reduced ileal96 and duodenal97

serosa-to-mucosa oxalate flux compared with wild-type mice,
leading to the conversion of net oxalate secretion to net
absorption and subsequent increased plasma oxalate levels
and hyperoxaluria. This corroborates the fact that SLC26A6 is
a major oxalate-secreting transporter and that intestinal
secretion may have an important role in the prevention of
hyperoxaluria and related CaOx stone disease. Interestingly, it
was shown that human and mouse SLC26A6 show different
anion transport properties. In contrast to mice, human
SLC26A6 has lower affinity for extracellular Cl�, and Cl�/
oxalate exchange appears to be electroneutral, suggesting that
human intestinal oxalate secretion is less efficient relative to
that of mice.98,151 These variations might explain why
humans are more susceptible to nephrocalcinosis/nephro-
lithiasis when compared with mice.

Furthermore, the recent finding that slc26a1�/� (Sat1�/�)
mice also exhibit hyperoxaluria with hyperoxalemia, nephro-
calcinosis, and CaOx stones added new insights in trans-
epithelial oxalate transport.144 These animals show reduced
oxalate transport in basolateral membrane vesicles of
distal intestinal segments (distal ileum, cecum, and proximal
colon), suggesting that the hyperoxalemia and hyperoxaluria
are the result of reduced intestinal oxalate secretion, as is
observed in slc26a6�/� mice.96,97,152 As SLC26A1 is expressed
on the basolateral membrane, these data suggest that
SLC26A1 mediates basolateral oxalate uptake, which together
with apical oxalate efflux via SLC26A6 facilitates intestinal
oxalate secretion.

SLC26A3 is currently thought to be responsible for apical
oxalate uptake in the intestine as it was preliminarily
observed that both slc26a3þ /� and slc26a3�/� mice present
a significantly reduced mucosa-to-serosa oxalate flux in distal
ileum and distal colon and significantly lower urinary oxalate
excretions when compared with wild-type mice.118

The role of SLC26A2 in intestinal oxalate transport is not
yet clear; however, this transporter may be responsible for the
residual intestinal oxalate secretion observed in slc26a6�/�

mice.117,122

Interestingly, it is known for rodents that intestinal oxalate
secretion can be enhanced when renal function is compro-
mised or in other conditions characterized by elevated
plasma oxalate levels.149,153 Whereas the distal colon in rats
with normal renal function shows net oxalate absorption, this
is reversed to angiotensin II-mediated net oxalate secretion in
chronic renal failure rats. An elevated plasma oxalate level
alone (in the absence of chronic renal failure) may lead to
angiotensin II-independent intestinal oxalate secretion,
possibly mediated by cAMP-dependent pathways.148,154,155

The exact mechanism by which net intestinal oxalate
secretion in humans is induced remains unknown.

TREATMENT OF HYPEROXALURIA
Lowering urinary CaOx supersaturation, enhancing AGT
activity, and dietary restrictions

Treatment should be initiated as soon as the underlying
pathology of hyperoxaluria is known, with a large daily fluid
intake (43 l per 1.73 m2) being essential in all types of
hyperoxaluria. The placement of a gastrostomy tube should
be considered to ensure adequate fluid administration in
small children with PH.17 In case of fever, vomiting, diarrhea,
or other significant fluid losses, patients should receive
intravenous fluids.

Alkali citrate treatment aims to reduce urinary CaOx
supersaturation.156 Citrate is metabolized to bicarbonate in the
liver and this alkali load reduces intratubular citrate reabsorp-
tion and therefore increases urinary citrate excretion. Citrate
forms a complex with calcium, thereby reducing precipitation
of calcium with other substances such as oxalate.157 The
therapeutic effect of orthophosphate is comparable to that of
alkali citrate, and long-term follow-up reports of orthophos-
phate treatment suggest efficacy for PH patients.158
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A second treatment strategy is to enhance the reduced
activity of AGT in PH I patients. Pyridoxal phosphate is an
essential cofactor of AGT, and pharmacological doses of
pyridoxine reduce hyperoxaluria in B30% of PH I patients.56

Pyridoxine responsiveness can be predicted with mutation
analysis.159,160 The ultimate strategy to restore hepatic AGT
activity is of course liver transplantation. Combined liver/
kidney transplantation is performed in patients with an
already compromised renal function.

Dietary oxalate restriction is of limited benefit in PH as
only a very small proportion of urinary oxalate is derived
from the diet in these patients.71 Patients with secondary
hyperoxaluria should be recommended to avoid food with
very high oxalate content (for example, spinach, rhubarb), in
order to avoid disturbances of the intestinal interplay of ions
resulting in increased intestinal calcium absorption. In
addition, a diet high in calcium or oral administration of
calcium supplements to bind oxalate in the intestine
theoretically might be an efficient strategy to lower oxalate
absorption; however, this should be administered with
caution because of the potential risk associated with
absorption of excess free calcium.161

Strategies to alter intestinal oxalate handling

As the role of the intestine in oxalate metabolism is becoming
better understood (see paragraph intestinal oxalate trans-
port), modern treatment strategies focus on manipulating
intestinal oxalate handling.

A first strategy is the use of oxalate-degrading bacteria,
such as O. formigenes, that harbor the colon and reduce
luminal oxalate concentrations and thus absorption. More-
over, it was shown in rats that O. formigenes is able to
promote intestinal oxalate secretion.95 Promising results of a
pilot study showing a reduction of plasma oxalate levels and
urinary oxalate excretion in the majority of PH patients
treated orally with O. formigenes91 could not be unequiv-
ocally confirmed in a recent multicenter trial in 42 PH
patients;162 ad hoc analyses of a subset of the most compliant
ones, however, suggested an effect on oxalate/creatinine ratio.

It was shown that a mixture of freeze-dried lactic acid
bacteria is also able to degrade oxalate, as it reduced urinary
oxalate excretion in patients with idiopathic CaOx stone
disease and mild hyperoxaluria,163 as well as in patients with
enteric hyperoxaluria.164 However, a recent study showed no
effect on urinary oxalate excretion and CaOx supersaturation
in patients with mild hyperoxaluria on controlled diets.
Hence, it is speculated that the diet has a more important role
than administration of a probiotic in reducing urinary
oxalate excretion.165

Although treatment with oxalate-degrading enzymes
instead of using intact bacteria could also be beneficial, as
was shown in laboratory animals,166,167 a phase-1 trial of such
a preparation (ALTU-237) in healthy volunteers on a high-
oxalate diet did not result in significant reduced urinary
oxalate excretions (http://www.medicalnewstoday.com/articles/
109956.php; 22 March 2011).

It is hypothesized that patients with secondary hyper-
oxaluria may also benefit from orally administered oxalate-
binding compounds, analogous to the phosphate binders
used to correct for hyperphosphatemia in patients with
chronic renal failure. One study reported a significant
decrease in urinary oxalate excretion in patients with chronic
kidney disease,168 which was greater after calcium carbonate
(41.2±17.4%) than after sevelamer hydrochloride treatment
(30.4±23.8%), whereas another study using the latter
compound only showed a nonsignificant reduction of
urinary oxalate excretion (17%) in patients with enteric
hyperoxaluria without reduction in urinary CaOx super-
saturation.169 In this context, lanthanum carbonate showed
promising results in a rat model of hyperoxaluria (S Robijn,
BA Vervaet, PC D’Haese, A Verhulst, unpublished results).

Finally, a future treatment target for patients with
secondary hyperoxaluria may be the inhibition of oxalate
absorption by using specific inhibitors of the major oxalate-
absorbing transporters (SLC26A3?), as is currently being
investigated for sodium-dependent phosphate cotransport
inhibitors in the treatment of hyperphosphatemia.170

CONCLUSION

Insights in the manner in which oxalate is handled
throughout the body have gained a significant boost over
the last decade, especially after the discovery of the SLC26
oxalate exchangers. It is important, however, to be aware of
species differences upon interpretation of transport proper-
ties. Therefore, further studies are required to get better
insights in transport properties and (pathological) physio-
logical contribution of these transporters in humans.
Furthermore, an intriguing question remains as to whether
oxalate handling is merely the consequence of concentration
gradients across an epithelium or the result of oxalate-
mediated regulation of anion exchangers. The observation
that intestinal oxalate secretion may be induced or enhanced
to divert endogenous oxalate to the feces instead of to the
urine may have important consequences for future hyperox-
aluria treatment strategies.
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