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The concept of p-convergence in fuzzy metric spaces, in George and Veeramani’s sense,
has been recently given by D. Mihet in [D. Mihet, On fuzzy contractive mappings in
fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007) 915–921]. In this note we study
some aspects relative to this concept and characterize those fuzzy metric spaces, that we
call principal, in which the family of p-convergent sequences agrees with the family of
convergent sequences. Also a non-completable fuzzy metric space, which is not principal,
is given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The problem of constructing a satisfactory theory of fuzzy metric spaces has been investigated by several authors from
different points of view. Here we use the concept of fuzzy metric space that George and Veeramani [2,4] introduced and
studied with the help of continuous t-norms. In [3,5], it is proved that the class of topological spaces which are fuzzy
metrizable agrees with the class of metrizable spaces. This result allows to restate some classical theorems on metrics in
the realm of fuzzy metric spaces. Nevertheless, the theory of fuzzy metric completion is, in this context, very different from
the classical theory of metric completion. Indeed, there exist fuzzy metric spaces which are non-completable [6,7].

This class of fuzzy metrics can be easily included within fuzzy systems since the value given by them can be directly
interpreted as a fuzzy certainty degree of nearness, and in particular, recently, they have been applied to colour image
filtering, improving some filters when replacing classical metrics [1,9,10].

Since this class of fuzzy metrics includes in its definition a parameter t , it allows to introduce novel (fuzzy metric)
concepts with respect to the classical metric concepts. In this sense, in [8] the author modified the definition of convergence
and obtained a more general concept which is called p-convergence. In this paper we characterize those fuzzy metric spaces,
that we call principal, in which both concepts agree. Most of the well-known fuzzy metrics of the literature are principal.
Later, following the suggestions of the author in [8], we introduce and study the concept of p-Cauchy sequence and we
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show that p-Cauchy sequence and Cauchy sequence are two different concepts even in principal fuzzy metric spaces. Some
illustrative examples, including a non-principal fuzzy metric space, which is non-completable, are given.

2. Preliminaries

Definition 1. ([2]) A fuzzy metric space is an ordered triple (X, M,∗) such that X is a (nonempty) set, ∗ is a continuous
t-norm and M is a fuzzy set on X × X × ]0,+∞[ satisfying the following conditions, for all x, y, z ∈ X, s, t > 0 :

(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1 if and only if x = y;
(GV3) M(x, y, t) = M(y, x, t);
(GV4) M(x, y, t) ∗ M(y, z, s) � M(x, z, t + s);
(GV5) M(x, y, _) : ]0,+∞[ → ]0,1] is continuous.

If (X, M,∗) is a fuzzy metric space we say that (M,∗) or M is a fuzzy metric on X . Also, we say that (X, M) or, simply,
X is a fuzzy metric space.

Let (X,d) be a metric space. Denote by a · b the usual multiplication for all a,b ∈ [0,1], and let Md be the fuzzy set
defined on X × X × ]0,+∞[ by

Md(x, y, t) = t

t + d(x, y)
.

Then (Md, ·) is a fuzzy metric on X called standard fuzzy metric space [2].
George and Veeramani proved in [2] that every fuzzy metric M on X generates a topology τM on X which has as a base

the family of open sets of the form {B M(x, ε, t): x ∈ X, 0 < ε < 1, t > 0}, where BM(x, ε, t) = {y ∈ X: M(x, y, t) > 1 − ε}
for all x ∈ X , ε ∈ ]0,1[ and t > 0.

A sequence (xn) in X converges to x if and only if limn M(xn, x, t) = 1, for all t > 0.

Definition 2. ([4]) A sequence (xn)n∈N in a fuzzy metric space (X, M) is said to be Cauchy if for each ε ∈ ]0,1[ and each
t > 0 there is n0 ∈ N such that M(xn, xm, t) > 1 − ε for all n,m � n0. X is called complete if every Cauchy sequence in X is
convergent with respect to τM . In such a case M is called complete.

Definition 3. ([6]) Let (X, M) and (Y , N) be two fuzzy metric spaces. A mapping f from X to Y is called an isometry if
for each x, y ∈ X and t > 0, M(x, y, t) = N( f (x), f (y), t) and, in this case, X and Y are called isometric. A fuzzy metric
completion of (X, M) is a complete fuzzy metric space (X∗, M∗) such that (X, M) is isometric to a dense subspace of X∗ .
X is called completable if it admits a fuzzy metric completion.

Definition 4. A fuzzy metric M on X is said to be stationary, [7], if M does not depend on t, i.e. if for each x, y ∈ X, the
function Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y) instead of M(x, y, t).

From now on, R+, N and Q will denote the sets of positive real numbers, positive integers and rational numbers,
respectively.

3. The results

In [8] the author give the following definition.

Definition 5. ([8]) Let (X, M) be a fuzzy metric space. A sequence (xn) in X is said to be point convergent to x0 ∈ X if
limn M(xn, x0, t0) = 1 for some t0 > 0.

In such a case we say that (xn) is p-convergent to x0 for t0 > 0, or, simply, (xn) is p-convergent.
Equivalently, (xn) is p-convergent if there exist x0 ∈ X and t0 > 0 such that (xn) is eventually in B(x0, r, t0) for each

r ∈ ]0,1[ (or, without lost of generality, in B(x0,
1
n , t0) for each n ∈ N).

Clearly (xn) is convergent to x0 if and only if (xn) is p-convergent to x0 for all t > 0. The following properties hold [8]:

(1) If limn M(xn, x, t1) = 1 and limn M(xn, y, t2) = 1 then x = y.
(2) If limn M(xn, x0, t0) = 1 then limk M(xnk , x0, t0) = 1 for each subsequence (xnk ) of (xn).

By property (1) the next corollary is obtained:

Corollary 6. If (xn) is p-convergent to x0 and it is convergent, then (xn) converges to x0 .
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Corollary 7. Let (X, M) be a completable fuzzy metric space. If (xn) is a Cauchy sequence in X, and it is p-convergent to x0 ∈ X, then
(xn) converges to x0 .

Proof. Let (X∗, M∗) be the completion of (X, M). Then there exists x∗ ∈ X∗ such that (xn) converges to x∗ .
Now, suppose that limn M(xn, x0, t0) = 1 for some t0 > 0. Then, limn M∗(xn, x0, t0) = limn M(xn, x0, t0) = 1, so (xn) is

M∗-p-convergent to x0, and by the previous corollary x∗ = x0. �
An example of a p-convergent sequence which is not convergent is given in the next example.

Example 8. ([8]) Let (xn) ⊂ ]0,1[ be a strictly increasing sequence convergent to 1 respect to the usual topology of R and
X = (xn) ∪ {1}. Define on X2 × R+ the function M given by M(x, x, t) = 1 for each x ∈ X, t > 0, M(xn, xm, t) = min{xn, xm},
for all m,n ∈ N, t > 0, and M(xn,1, t) = M(1, xn, t) = min{xn, t} for all n ∈ N, t > 0. Then (M,∗) is a fuzzy metric on X ,
where a ∗b = min{a,b}. The sequence (xn) is not convergent since limn M(xn,1, 1

2 ) = 1
2 . Nevertheless it is p-convergent to 1,

since limn M(xn,1,1) = 1.

Notice that in the above example {1} is open in τM since B(1, 1
2 , 1

2 ) = {1}. On the other hand for r ∈ ]0,1[ we have that
B(1, r,1) = {xm, xm+1, . . .} ∪ {1} where xm is the first element of (xn) such that 0 < 1 − r < xm . Hence, the family of open
balls {B(1, r,1): r ∈ ]0,1[} is not a local base at 1. This fact motivates our next definition.

Definition 9. We say that the fuzzy metric space (X, M,∗) is principal (or simply, M is principal) if {B(x, r, t): r ∈ ]0,1[} is
a local base at x ∈ X , for each x ∈ X and each t > 0.

As we have just seen, the fuzzy metric of Example 8 is not principal. Next we see some examples of principal fuzzy
metrics.

Example 10.

(a) Stationary fuzzy metrics are, obviously, principal.
(b) The well-known standard fuzzy metric is principal.

(c) M(x, y, t) = e− d(x,y)
t , where d is a metric on X , [2], is principal.

(d) M(x, y, t) = min{x,y}+t
max{x,y}+t is a fuzzy metric on R+ [11], which is principal.

Theorem 11. The fuzzy metric space (X, M) is principal if and only if all p-convergent sequences are convergent.

Proof. Suppose that M is principal and that (xn) is a sequence which is p-convergent to x0, for t0 > 0.
Let ε ∈ ]0,1[ and t > 0. Since M is principal then {B(x0,

1
n , t0): n ∈ N} is a local base at x0. Hence, we can find m ∈ N

such that B(x0,
1
m , t0) ⊂ B(x0, ε, t).

Since limn M(xn, x0, t0) = 1 we can find δ ∈ ]0,1[, with δ < 1
m , and n1 ∈ N such that xn ∈ B(x0, δ, t0) for all n � n1, and

thus xn ∈ B(x0, ε, t) for all n � n1.
Hence, M(xn, x0, t) > 1 − ε for all n � n1, and so limn M(xn, x0, t) = 1. The above argument is valid for all t > 0, then (xn)

converges to x0.
For the converse, assume that M is not principal. We will construct a p-convergent sequence which is not convergent.
If M is not principal we can find x0 ∈ X and t > 0 such that {B(x0,

1
n , t0): n ∈ N} is not a local base at x0. Then, we can

find t > 0 and r ∈ ]0,1[ such that B(x0,
1
n , t0) � B(x0, r, t) for all n ∈ N.

Now, by induction, we form the sequence (xn) as follows. For each n ∈ N we take xn ∈ B(x0,
1
n , t0) \ B(x0, r, t). Now, given

ε ∈ ]0,1[ we choose n1 ∈ N with 1
n1

< ε. Hence, for m � n1 we have

M(xm, x0, t0) > 1 − 1

m
> 1 − 1

n1
> 1 − ε

and, since ε is arbitrary, limn M(xn, x0, t0) = 1, and so (xn) is p-convergent to x0.
On the other hand, by construction xn ∈ X \ B(x0, r, t) for all n ∈ N, and so (xn) does not converge to x0 and, by Corol-

lary 6, (xn) is not convergent. �
Next examples illustrate the last theorem.

Example 12. Let ϕ : R+ → ]0,1[ be an increasing continuous function. Define the function M on X2 × R+ by

M(x, y, t) =
{

1, x = y,

ϕ(t), x �= y.
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It is easy to verify that (M, ·) is a fuzzy metric on X . Now, for each x ∈ X and t > 0 we have B(x,1 − ϕ(t), t) = {x} and so
M is principal. Further, τM is the discrete topology, and then only the constant sequences are convergent, so they are the
only p-convergent sequences in X .

Next we give an example of a complete fuzzy metric space which is not principal.

Example 13. Let X = R+ and let ϕ : R+ → ]0,1] be a function given by ϕ(t) = t if t � 1 and ϕ(t) = 1 elsewhere. Define the
function M on X2 × R+ by

M(x, y, t) =
{

1, x = y,
min{x,y}
max{x,y} · ϕ(t), x �= y.

It is easy to verify that (M, ·) is a fuzzy metric on X and, since M(x, y, t) < t , whenever t ∈ ]0,1[ and x �= y, it is obvious
that the only Cauchy sequences in X are the constant sequences and so, X is complete.

This fuzzy metric is not principal. In fact, notice that B(x, 1
2 , 1

2 ) = {x} for each x ∈ X and so τM is the discrete topology.
Now, if we set x = 1 and t = 1 we have B(1, r,1) = ]1 − r, 1

1−r [ for all r ∈ ]0,1[ and so {B(1, r,1): r ∈ ]0,1[} is not a local
base at x = 1, since {1} is open.

Now, consider the sequence (xn) in X given by xn = 1 − 1
n , n ∈ N. We have M(xn,1,1) = 1 − 1

n for all n ∈ N, so
limn M(xn,1,1) = 1 and (xn) is p-convergent to 1, but (xn) is not convergent.

In the next example, (X, M) is a fuzzy metric space which is not principal and non-completable.

Example 14. Let X = ]0,1], A = X ∩ Q, B = X \ A. Define the function M on X2 × R+ by

M(x, y, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{x,y}
max{x,y} , x, y ∈ A or x, y ∈ B, t > 0,

min{x,y}
max{x,y} , x ∈ A, y ∈ B or x ∈ B, y ∈ A, t � 1,

min{x,y}
max{x,y} · t, elsewhere.

It is easy to verify that (M, ·) is a fuzzy metric on X . Now, we will show that M is not principal. For it, we will see that
{B(1, r,1): r ∈ ]0,1[} is not a local base at x = 1.

In fact, B(1, r,1) = ]1 − r,1] for all r ∈ ]0,1[. Now, since 1 ∈ A we have {y ∈ B: M(1, y, 1
2 ) > 1 − 1

2 } = ∅, so B(1, 1
2 , 1

2 ) =
] 1

2 ,1] ∩ Q and clearly B(1, r,1) � B(1, 1
2 , 1

2 ) for all r ∈ ]0,1[, and then M is not principal.
Now, it is easy to verify that for n � 2,

B

(
x,

1

n
,

1

n

)
=

{ ]x − x
n , nx

n−1 [ ∩ A, x ∈ A,

]x − x
n , nx

n−1 [ ∩ B, x ∈ B,

and clearly τM is not the discrete topology, although it is finer than the usual topology of R relative to X .
Finally, let (xn) be an increasing sequence contained in B which converges to 1 for the usual topology of R relative

to X . Thus, for each r ∈ ]0,1[ there exists n1 ∈ N such that xn ∈]1 − r,1[ for all n � n1, and by the definition of M we have
M(xn,1,1) > 1 − r, for all n � n1, and so limn M(xn,1,1) = 1, since r is arbitrary. Then, (xn) is p-convergent to 1. Further,
(xn) is a Cauchy sequence. Indeed, since M(xn, xm, t) = min{xn,xm}

max{xn,xm} for all t > 0, we have that M(xn, xm, t) � xn1 > 1 − r, for

all t > 0, and so (xn) is a Cauchy sequence. Now, (xn) is not convergent since xn /∈ B(1, 1
2 , 1

2 ), for all n ∈ N and then by
Corollary 7, (X, M) is non-completable.

Continuing the above study we give the next definition.

Definition 15. Let (X, M) be a fuzzy metric space. A sequence (xn) in X is said to be p-Cauchy if for each ε ∈ ]0,1[ there
are n0 ∈ N and t0 > 0 such that M(xn, xm, t0) > 1 − ε for all n,m � n0, i.e. limm,n M(xn, xm, t0) = 1 for some t0 > 0.

In such a case we say that (xn) is p-Cauchy for t0 > 0, or, simply, (xn) is p-Cauchy.
Clearly (xn) is a Cauchy sequence if and only if (xn) is p-Cauchy for all t > 0 and, obviously, p-convergent sequences are

p-Cauchy.

Definition 16. The fuzzy metric space (X, M) is called p-complete if every p-Cauchy sequence in X is p-convergent to some
point of X . In such a case M is called p-complete.

Obviously, p-completeness and completeness are equivalent concepts in stationary fuzzy metrics, and it is easy to verify
that the standard fuzzy metric Md is p-complete if and only if Md is complete.
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Proposition 17. Let (X, M) be a principal fuzzy metric space. If X is p-complete then X is complete.

Proof. Let (xn) be a Cauchy sequence in X . Then (xn) is p-Cauchy and so (xn) p-converges to some point x0 ∈ X , and, since
X is principal, (xn) converges to x0. �

The assumption that X is principal cannot be removed in the last proposition as shows the next example.

Example 18. Consider the fuzzy metric space (X, M,∗) of Example 8. The sequence (xn) satisfies limm,n M(xn, xm, t) = 1 for
all t > 0, so (xn) is a Cauchy sequence and in consequence X is not complete, since (xn) is not convergent.

Next we show that X is p-complete.
Let (xn) be a p-Cauchy sequence in X . Then, with an easy argument one can verify that (xn) must be a convergent

sequence to 1 with respect to the usual topology of R relative to X . Now, limn M(xn,1,1) = limn xn = 1 and hence (xn) is
p-convergent to 1.

One could expect p-Cauchy sequences to be Cauchy sequences in principal fuzzy metric spaces. In fact, this property is
satisfied by all examples of Example 10. Nevertheless, as shows the next example, it is not true, in general, for any principal
fuzzy metric and, in consequence, the converse of the above proposition is not true.

Example 19. Let X = ]0,1[ and define the function M on X2 × R+ by

M(x, y, t) =
{1, x = y,

xyt, x �= y, t � 1,

xy, x �= y, t > 1.

It is easy to verify that (M, ·) is a fuzzy metric on X . Now, let x ∈ X and t > 0. If we take r ∈ ]0,1[ such that 1 − r > x
then B(x, r, t) = {x} and so M is principal. Further, τM is the discrete topology and then the only convergent sequences or
(by Theorem 11) p-convergent sequences, are the constant sequences.

Now, X does not have Cauchy sequences, since M(x, y, 1
2 ) � 1

2 for each x, y ∈ X , and so X is complete.
Let (xn) be a strictly increasing sequence convergent to 1 in the usual topology of R, relative to X . We have

limm,n M(xn, xm,1) = 1 and then (xn) is p-Cauchy. Nevertheless (xn) is not p-convergent since (xn) is not constant, and
thus X is not p-complete.

It is an open problem to characterize those fuzzy metric spaces where the family of p-Cauchy sequences and Cauchy
sequences agree, or further, when it is satisfied that completeness is equivalent to p-completeness.
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