Integral geometry for the 1-norm

Tom Leinster ${ }^{1}$
School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK

A R T I C L E I N F O

Article history:

Received 8 January 2012
Accepted 27 February 2012
Available online 22 March 2012

MSC:

primary 53C65
secondary 52A01, 52A21, 52A30, 51F99

Keywords:

1-norm
Taxicab metric
Valuation
Convex set
Geodesic space
Metric space
Hadwiger's theorem
Steiner's theorem
Crofton formula
Kinematic formula

Abstract

Classical integral geometry takes place in Euclidean space, but one can attempt to imitate it in any other metric space. In particular, one can attempt this in \mathbb{R}^{n} equipped with the metric derived from the p-norm. This has, in effect, been investigated intensively for $1<p<\infty$, but not for $p=1$. We show that integral geometry for the 1 -norm bears a striking resemblance to integral geometry for the 2 -norm, but is radically different from that for all other values of p. We prove a Hadwiger-type theorem for \mathbb{R}^{n} with the 1 -norm, and analogues of the classical formulas of Steiner, Crofton and Kubota. We also prove principal and higher kinematic formulas. Each of these results is closely analogous to its Euclidean counterpart, yet the proofs are quite different.

© 2012 Elsevier Inc. All rights reserved.

0. Introduction

Classical integral geometry provides definite answers to natural questions about convex subsets of Euclidean space. The Cauchy formula, for instance, tells us that the surface area of a convex body in \mathbb{R}^{3} is proportional to the expected area of its projection onto a random plane. The Crofton formula states that it is also proportional to the measure of the set of affine lines that meet the body. The Steiner formula gives the volume of the set of points within a specified distance of a given convex body. The kinematic formula tells us the probability that a randomly-placed convex body X meets another body Y, given that it meets a larger body $Z \supseteq Y$.

[^0]It is so successful a theory that one naturally seeks to imitate it elsewhere. This has been done in several ways. For example, Alesker [3,4] (foreshadowed by Fu [9]) has developed integral geometry for manifolds, while Bernig and Fu [7] have developed Hermitian integral geometry. Others have extended integral geometry to finite-dimensional real Banach spaces, and more generally to projective Finsler spaces: see for instance Schneider and Wieacker [21] and Schneider [19,20]. (This includes \mathbb{R}^{n} with the 1 -norm [20], but it is a different generalization from that presented here.) An important role is played there by Holmes-Thompson valuations, comparable to intrinsic volumes in Euclidean space: see Schneider [18], Álvarez Paiva and Fernandes [5], and Bernig [6].

But one simple setting in which integral geometry seems not to have been fully developed is that of ordinary metric spaces. A natural notion of convexity is available there: a subset X of a metric space A is geodesic if for any two points $x, x^{\prime} \in X$, say distance D apart, there exists an isometry $\gamma:[0, D] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(D)=x^{\prime}$. Using this, we can extend to an arbitrary metric space A the fundamental notion of continuous invariant valuation on convex sets. And just as for Euclidean space, the continuous invariant valuations form a vector space, $\operatorname{Val}(A)$, indexing all the ways of measuring the size of geodesic subsets of A.

Every metric space therefore poses a challenge: classify its continuous invariant valuations. A celebrated theorem of Hadwiger answers the challenge for Euclidean space \mathbb{R}^{n}, stating that $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ is $(n+1)$-dimensional, with a basis V_{0}, \ldots, V_{n} in which V_{i} is homogeneous of degree i. The valuations V_{i} are the intrinsic volumes (also known, with different normalizations, as the quermassintegrals or Minkowski functionals). When $n=2$, for instance, they are Euler characteristic, half of perimeter, and area.

More ambitiously, we can attempt to reproduce in an arbitrary metric space-or one with as little structure as possible-the classical results of integral geometry in the tradition of Crofton and Blaschke. For example, we can seek analogues of the formulas listed in the first paragraph. To do this, we will need our metric space to carry an affine structure; and among the most important such spaces are the Banach spaces ℓ_{p}^{n}, that is, \mathbb{R}^{n} equipped with the metric induced by the p-norm $\|x\|_{p}=\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}(p \in[1, \infty))$.

What is known about the integral geometry (in the sense just described) of the metric spaces ℓ_{p}^{n} ? Let $p \in[1, \infty)$. The case $p=2$ is the classical Euclidean theory. For $p \neq 1$, the space ℓ_{p}^{n} is strictly convex, so the only geodesic subsets are the convex sets. On the other hand, for $p \neq 2$, the isometry group of ℓ_{p}^{n} is very small, generated by permutations of coordinates, reflections in coordinate hyperplanes, and translations. So if $p \neq 1,2$ then ℓ_{p}^{n} has the same geodesic subsets as ℓ_{2}^{n}, but far fewer isometries. Hence $\operatorname{Val}\left(\ell_{p}^{n}\right)$ is much bigger than $\operatorname{Val}\left(\ell_{2}^{n}\right) \cong \mathbb{R}^{n+1}$; indeed, it is infinite-dimensional. Much is known about the structure of $\operatorname{Val}\left(\ell_{p}^{n}\right)$ for $p \neq 1,2$; this is essentially the theory of translation-invariant valuations on convex subsets of $\mathbb{R}^{n}[14,15,1,2]$.

But the case $p=1$ has until now been overlooked, and turns out to contain a surprise. As we shall see, the metric space ℓ_{1}^{n} behaves very much like ℓ_{2}^{n}, but very much unlike all the other spaces ℓ_{p}^{n}. For example, there is a Hadwiger-type theorem stating that $\operatorname{Val}\left(\ell_{1}^{n}\right) \cong \mathbb{R}^{n+1}$. Furthermore, $\operatorname{Val}\left(\ell_{1}^{n}\right)$ has a basis $V_{0}^{\prime}, \ldots, V_{n}^{\prime}$ of valuations, the ℓ_{1}-intrinsic volumes, where V_{i}^{\prime} is homogeneous of degree i. Hence there is a canonical isomorphism $\operatorname{Val}\left(\ell_{1}^{n}\right) \cong \operatorname{Val}\left(\ell_{2}^{n}\right)$-despite the fact that ℓ_{1}^{n} and ℓ_{2}^{n} have neither the same geodesic subsets nor the same isometry group.

The resemblance goes deeper still: as we demonstrate, all the standard Euclidean integralgeometric formulas have close analogues in ℓ_{1}^{n}. Nevertheless, the proofs are quite different: just as the classical proofs exploit special features of Euclidean geometry, ours exploit special features of ℓ_{1} geometry.

A mystery remains: why are the results for ℓ_{1}^{n} and ℓ_{2}^{n} so similar to each other, yet so different from those for ℓ_{p}^{n} when $p \in(1,2) \cup(2, \infty)$? There is no obvious common generalization of the cases $p=1$ and $p=2$. Yet a common generalization must surely exist.

The case $p=\infty$ appears not to have been investigated either. Since ℓ_{∞}^{2} is isometric to ℓ_{1}^{2}, the vector space $\operatorname{Val}\left(\ell_{\infty}^{2}\right)$ is 3 -dimensional, like $\operatorname{Val}\left(\ell_{1}^{2}\right)$ and $\operatorname{Val}\left(\ell_{2}^{2}\right)$ but unlike $\operatorname{Val}\left(\ell_{p}^{2}\right)$ for $p \in(1,2) \cup$ $(2, \infty)$. It is natural to conjecture that $\operatorname{Val}\left(\ell_{\infty}^{n}\right) \cong \mathbb{R}^{n+1}$ for all $n \geqslant 0$.

This paper is organized as follows. We begin by establishing the fundamental facts about geodesic subsets of ℓ_{1}^{n}, here called ℓ_{1}-convex sets. (They include the convex sets, but are much more general.)

Almost immediately we encounter a stark difference between ℓ_{1}^{n} and ℓ_{2}^{n} : the intersection of ℓ_{1}-convex sets need not be ℓ_{1}-convex. And yet, there is a more subtle sense in which the two situations are precisely analogous (Remark 1.10). Guided by this analogy, we prove ℓ_{1} versions of all the elementary laws governing intersections, projections and Minkowski sums of ordinary convex sets (Sections 1 and 2). We also prove a result that has no clear analogue in ℓ_{2}^{n} : if the union of two ℓ_{1}-convex sets is ℓ_{1}-convex, then so is its intersection.

Having described the algebra of the space of ℓ_{1}-convex sets, we turn to its topology (Sections 3 and 4). We show that it has a dense subspace consisting, roughly, of the ℓ_{1}-convex unions of cubes. We then generalize the theorem of McMullen [14] that a monotone translation-invariant valuation on convex sets is continuous. Our generalization implies both McMullen's theorem and its ℓ_{1} counterpart.

These results provide the tools that enable us to develop the integral geometry of the metric space ℓ_{1}^{n}. The ℓ_{1}-intrinsic volumes are defined by a Cauchy-type formula, adapted to the smaller isometry group of ℓ_{1}^{n}. We prove analogues of the core theorems of Euclidean integral geometry: first a Hadwiger-type theorem, then analogues of the Steiner, Crofton, Kubota and kinematic formulas (Sections 5-8). While Sections 1-4 depend heavily on specific features of the geometry of ℓ_{1}^{n}, Sections 5-8 are formally close to their Euclidean counterparts. Even the constants appearing in the formulas are analogous: one simply replaces the flag coefficients [12] in the Euclidean formulas by the corresponding binomial coefficients.

As this suggests, the integral geometry of ℓ_{1}^{n} can be regarded as a cousin of the integral geometry of Euclidean space. It is more simple analytically, because of the smaller isometry group of ℓ_{1}^{n}. But since there are many more geodesic sets in ℓ_{1}^{n} than in ℓ_{2}^{n}, it is also more complex geometrically.

Conventions. \mathbb{R}^{n} denotes real n-dimensional space as a set, topological space or vector space, but with no implied choice of metric except when $n=1$. We allow $n=0$. Lebesgue measure on \mathbb{R}^{n} is written as Vol_{n} or Vol. The metric on a metric space is usually written as d.

1. ℓ_{1}-Convexity

Here we define ℓ_{1}-convexity and give some useful equivalent conditions. We also discuss the class of intervals in \mathbb{R}^{n}, dual in a certain sense to the class of ℓ_{1}-convex sets. Along the way, we review some standard material on abstract metric spaces; this can be found in texts such as Gromov [10, Chapter 1] and Papadopoulos [16].

Definition 1.1. A path in a metric space X is a continuous map $\gamma:\left[c, c^{\prime}\right] \rightarrow X$, where c and c^{\prime} are real numbers with $c \leqslant c^{\prime}$; it joins $\gamma(c)$ and $\gamma\left(c^{\prime}\right)$. It is distance-preserving if $d\left(\gamma(t), \gamma\left(t^{\prime}\right)\right)=\left|t-t^{\prime}\right|$ for all $t, t^{\prime} \in\left[c, c^{\prime}\right]$.

Definition 1.2. A metric space X is geodesic if for all $x, x^{\prime} \in X$, there exists a distance-preserving path joining x and x^{\prime}.

For example, a subspace of Euclidean space is geodesic if and only if it is convex.
Definition 1.3. A subset of \mathbb{R}^{n} is ℓ_{1}-convex if it is geodesic when given the subspace metric from ℓ_{1}^{n}.
A convex subset of \mathbb{R}^{n} is ℓ_{1}-convex, but not conversely. For example, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing continuous function: then the graph $\{(x, f(x)): x \in \mathbb{R}\} \subseteq \ell_{1}^{2}$ is ℓ_{1}-convex. An ℓ_{1}-convex set need not even have positive reach: consider an L-shaped subset of ℓ_{1}^{2}.

Definition 1.4. Let $\gamma:\left[c, c^{\prime}\right] \rightarrow X$ be a path in a metric space X. The length of γ is the supremum of $\sum_{r=1}^{k} d\left(\gamma\left(t_{r-1}\right), \gamma\left(t_{r}\right)\right)$ over all partitions $c=t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{k}=c^{\prime}$.

When speaking of functions $\left[c, c^{\prime}\right] \rightarrow \mathbb{R}$, we use the terms increasing and decreasing in the nonstrict sense. (For example, a constant function is both.) A real-valued function is monotone if it is increasing or decreasing.

Definition 1.5. A path $\gamma:\left[c, c^{\prime}\right] \rightarrow \mathbb{R}^{n}$ is monotone if each of its components $\gamma_{i}:\left[c, c^{\prime}\right] \rightarrow \mathbb{R}(1 \leqslant i \leqslant n)$ is monotone.

Let X be a metric space and $x, x^{\prime} \in X$. A point $y \in X$ is between x and x^{\prime} if $d\left(x, x^{\prime}\right)=d(x, y)+$ $d\left(y, x^{\prime}\right)$, and strictly between if also $x \neq y \neq x^{\prime}$. When $X=\ell_{1}^{n}$, a point y is between x and x^{\prime} if and only if for all $i \in\{1, \ldots, n\}$, either $x_{i} \leqslant y_{i} \leqslant x_{i}^{\prime}$ or $x_{i}^{\prime} \leqslant y_{i} \leqslant x_{i}$.

Definition 1.6. A metric space is Menger convex if for all distinct points x, x^{\prime} there exists a point strictly between x and x^{\prime}.

We will repeatedly use the following characterization theorem for ℓ_{1}-convex sets.

Proposition 1.7. Let $X \subseteq \ell_{1}^{n}$. The following are equivalent:
(i) X is ℓ_{1}-convex,
(ii) every pair x, x^{\prime} of points of X can be joined by a path of length $d\left(x, x^{\prime}\right)$,
(iii) every pair of points of X can be joined by a monotone path in X.

When X is closed, a further equivalent condition is that X is Menger convex.

Proof. A metric space is geodesic if and only if each pair of points x, x^{\prime} can be joined by a path of length $d\left(x, x^{\prime}\right)$ [16, Proposition 2.2.7]. This proves the equivalence of (i) and (ii).

For (ii) \Leftrightarrow (iii), a path $\gamma:\left[c, c^{\prime}\right] \rightarrow \ell_{1}^{n}$ has length $d\left(\gamma(c), \gamma\left(c^{\prime}\right)\right.$) if and only if

$$
\begin{equation*}
\left|\gamma_{i}(t)-\gamma_{i}\left(t^{\prime}\right)\right|+\left|\gamma_{i}\left(t^{\prime}\right)-\gamma_{i}\left(t^{\prime \prime}\right)\right|=\left|\gamma_{i}(t)-\gamma_{i}\left(t^{\prime \prime}\right)\right| \tag{1}
\end{equation*}
$$

whenever $1 \leqslant i \leqslant n$ and $c \leqslant t \leqslant t^{\prime} \leqslant t^{\prime \prime} \leqslant c^{\prime}$. Eq. (1) holds if and only if $\gamma_{i}\left(t^{\prime}\right)$ is between $\gamma_{i}(t)$ and $\gamma_{i}\left(t^{\prime \prime}\right)$. It follows that γ has length $d\left(\gamma(c), \gamma\left(c^{\prime}\right)\right)$ if and only if it is monotone.

The final statement follows from the fact that for a metric space in which every closed bounded set is compact, Menger convexity is equivalent to being geodesic [16, Theorem 2.6.2].

The intersection of ℓ_{1}-convex sets need not be ℓ_{1}-convex, and can in fact be highly irregular. For example, every closed subset of the line occurs, up to isometry, as the intersection of a pair of ℓ_{1}-convex subsets of the plane. Indeed, if $\emptyset \neq K \subseteq \mathbb{R}$ is closed then the sets

$$
\left\{\frac{1}{2}(x-d(x, K), x+d(x, K)): x \in \mathbb{R}\right\} \subseteq \ell_{1}^{2}, \quad\left\{\frac{1}{2}(x, x): x \in \mathbb{R}\right\} \subseteq \ell_{1}^{2}
$$

are ℓ_{1}-convex and have intersection isometric to K. We do, however, have the following.

Definition 1.8. An interval in \mathbb{R}^{n} is a subset of the form $\prod_{i=1}^{n} I_{i}$ for some (possibly empty, possibly unbounded) intervals $I_{1}, \ldots, I_{n} \subseteq \mathbb{R}$.

Corollary 1.9. The intersection of an ℓ_{1}-convex set and an interval in \mathbb{R}^{n} is ℓ_{1}-convex.
Proof. An interval I has the property that whenever $x, x^{\prime} \in I$, every monotone path from x to x^{\prime} in \mathbb{R}^{n} lies in I. The result follows from Proposition 1.7(iii).

Remark 1.10. Corollary 1.9 might seem weak when compared with the result in Euclidean space that the intersection of any pair of convex sets is convex. But in fact, the ℓ_{1} and Euclidean results are strictly analogous-as long as one uses the correct analogy. Let A be a metric space and, for $a, a^{\prime} \in A$, write $\Gamma\left(a, a^{\prime}\right)$ for the set of distance-preserving paths joining a and a^{\prime}. For a subspace $X \subseteq A$ to be geodesic means that whenever $x, x^{\prime} \in X$,

$$
\exists \gamma \in \Gamma\left(x, x^{\prime}\right): \quad \text { image }(\gamma) \subseteq X
$$

There is a dual condition: $X \subseteq A$ is cogeodesic if whenever $x, x^{\prime} \in X$,

$$
\forall \gamma \in \Gamma\left(x, x^{\prime}\right), \quad \text { image }(\gamma) \subseteq X
$$

A subset of ℓ_{2}^{n} is cogeodesic if and only if it is convex, if and only if it is geodesic, but a subset of ℓ_{1}^{n} is cogeodesic if and only if it is an interval. It is a logical triviality that in any metric space, the intersection of a geodesic subset and a cogeodesic subset is geodesic. Applied to ℓ_{2}^{n}, this says that the intersection of two convex sets is convex. Applied to ℓ_{1}^{n}, this is Corollary 1.9.

A subset $X \subseteq \mathbb{R}^{n}$ is orthogonally convex [8] if $X \cap L$ is convex whenever L is a straight line parallel to one of the coordinate axes. Corollary 1.9 has the following special case:

Corollary 1.11. An ℓ_{1}-convex set is orthogonally convex.
On the other hand, an orthogonally convex set need not be ℓ_{1}-convex, even if it is connected. For example, choose a vector $v \in \mathbb{R}^{3}$ none of whose coordinates is 0 , and consider the set of unit-length vectors in ℓ_{2}^{3} orthogonal to v.

A coordinate subspace of \mathbb{R}^{n} is a linear subspace P spanned by some subset of the standard basis. We write π_{P} for the orthogonal projection of \mathbb{R}^{n} onto P, and P^{\perp} for the orthogonal complement of P (with respect to the standard inner product). By Proposition 1.7(iii), we have:

Corollary 1.12. Let P be a coordinate subspace of \mathbb{R}^{n}. Then the image under π_{P} of an ℓ_{1}-convex set is ℓ_{1} convex.

There is a further positive result on intersections of ℓ_{1}-convex sets.

Lemma 1.13. Let X and Y be closed subsets of \mathbb{R}^{n}. If X, Y and $X \cup Y$ are ℓ_{1}-convex, then so is $X \cap Y$.

Proof. We use the following property of ℓ_{1}^{n} : if a point a is between points x and y, and if x and y are both strictly between points z and z^{\prime}, then a is strictly between z and z^{\prime}.

We prove that $X \cap Y$ is Menger convex. Let $z, z^{\prime} \in X \cap Y$ with $z \neq z^{\prime}$. Since X and Y are Menger convex, we may choose points $x \in X$ and $y \in Y$ strictly between z and z^{\prime}. Since $X \cup Y$ is ℓ_{1}-convex, we may choose a distance-preserving path $\gamma:\left[c, c^{\prime}\right] \rightarrow X \cup Y$ joining x and y. Since X and Y are closed, we may choose $t \in\left[c, c^{\prime}\right]$ with $\gamma(t) \in X \cap Y$. Then $\gamma(t)$ is between x and y, hence strictly between z and z^{\prime}, as required.

The interior and closure of a convex set are convex. The interior of an ℓ_{1}-convex set need not be ℓ_{1}-convex: consider $[-1,0]^{2} \cup[0,1]^{2} \subseteq \mathbb{R}^{2}$. On the other hand, we have the following.

Lemma 1.14. The closure of an ℓ_{1}-convex set is ℓ_{1}-convex.
Proof. We prove that the closure \bar{X} of an ℓ_{1}-convex set X is Menger convex. Let $x, y \in \bar{X}$. Choose sequences $\left(x_{r}\right)$ and $\left(y_{r}\right)$ in X converging to x and y. Choose for each r a point $z_{r} \in X$ with $d\left(x_{r}, z_{r}\right)=$ $d\left(z_{r}, y_{r}\right)=d\left(x_{r}, y_{r}\right) / 2$. The sequence $\left(z_{r}\right)$ is bounded, so has a subsequence convergent to some point $z \in \bar{X}$. Then $d(x, z)=d(z, y)=d(x, y) / 2$.

2. Minkowski sums

In the Euclidean context [17], there are basic laws governing the algebra of intersections and Minkowski sums: (i) if X and I are convex then so is $X \cap I$; (ii) if X and I are convex then so is $X+I$; and (iii) if X, Y are closed with $X \cup Y$ convex, and I is convex, then $(X \cap Y)+I=(X+I) \cap(Y+I)$.

In the ℓ_{1} context, we already have an analogue of (i) (Corollary 1.9). Here we prove analogues of (ii) and (iii). As in Remark 1.10, the analogy entails replacing some occurrences of the term 'convex set' by ' ℓ_{1}-convex set', and others by 'interval'.

First we note that the class of ℓ_{1}-convex sets is not closed under Minkowski sums.
Example 2.1. Given $x, y \in \mathbb{R}^{n}$, write $[x, y]$ for the closed straight line segment between x and y. Given also $z \in \mathbb{R}^{n}$, write $[x, y, z]=[x, y] \cup[y, z]$. Define $X, Y \subseteq \mathbb{R}^{3}$ by

$$
X=[(0,0,0),(2,0,0),(2,2,-1)], \quad Y=[(0,0,0),(0,-1,2),(-1,-1,2)] .
$$

Then X and Y are ℓ_{1}-convex, but $X+Y$ is not. Indeed, $(0,0,0)$ and (1, 1, 1) are points of $X+Y$ distance 3 apart in ℓ_{1}^{3}, but there is no point of $X+Y$ distance $3 / 2$ from each of them.

To prove our analogue of (ii), we use the following sufficient condition for ℓ_{1}-convexity of a Minkowski sum.

Lemma 2.2. Let $X \subseteq \mathbb{R}^{n}$ be a closed set and $I \subseteq \mathbb{R}^{n}$ a compact interval. Suppose that for every $x, x^{\prime} \in X$ satisfying $(x+I) \cap\left(x^{\prime}+I\right)=\emptyset$, there exists a point of X strictly between x and x^{\prime} in the ℓ_{1} metric. Then $X+I$ is ℓ_{1}-convex.

Proof. The topological hypotheses imply that $X+I$ is closed, so by Proposition 1.7, it is enough to prove that $X+I$ is Menger convex. Let y and y^{\prime} be distinct points of $X+I$. Write $\llbracket y, y^{\prime} \rrbracket$ for the interval consisting of the points between y and y^{\prime}. Since X is closed and I is compact, we may choose $x, x^{\prime} \in X$ such that $y \in x+I, y^{\prime} \in x^{\prime}+I$, and $d\left(x, x^{\prime}\right)$ is minimal for all such pairs (x, x^{\prime}).

The proof is in two cases. First suppose that $(x+I) \cap\left(x^{\prime}+I\right)=\emptyset$. By hypothesis, we may choose a point $z \in X$ strictly between x and x^{\prime}. By minimality, $y \notin z+I$ and $y^{\prime} \notin z+I$. Also, $y \in x+I$, $y^{\prime} \in x^{\prime}+I$, and z is between x and x^{\prime}, from which it follows that $\llbracket y, y^{\prime} \rrbracket \cap(z+I) \neq \emptyset$. Any point in this intersection is strictly between y and y^{\prime}.

Now suppose that $(x+I) \cap\left(x^{\prime}+I\right) \neq \emptyset$. If y or y^{\prime} is in $(x+I) \cap\left(x^{\prime}+I\right)$ then $\left(y+y^{\prime}\right) / 2$ is a point of $X+I$ strictly between y and y^{\prime}. If not, it is enough to prove that

$$
\llbracket y, y^{\prime} \rrbracket \cap(x+I) \cap\left(x^{\prime}+I\right) \neq \emptyset .
$$

This follows from the fact that if J_{1}, J_{2}, J_{3} are intervals in \mathbb{R}^{n} whose pairwise intersections are all nonempty, then $J_{1} \cap J_{2} \cap J_{3}$ is also nonempty.

Proposition 2.3. The Minkowski sum of a closed ℓ_{1}-convex set and an interval is ℓ_{1}-convex.
Proof. Let $X \subseteq \mathbb{R}^{n}$ be a closed ℓ_{1}-convex set, and let $I \subseteq \mathbb{R}^{n}$ be an interval. We may write I as a union of compact subintervals $I^{1} \subseteq I^{2} \subseteq \cdots$. By Lemma 2.2, $X+I^{r}$ is ℓ_{1}-convex for each $r \geqslant 1$. But the class of ℓ_{1}-convex sets is closed under nested unions, so $\bigcup_{r}\left(X+I^{r}\right)=X+I$ is ℓ_{1}-convex.

Here is our analogue of law (iii). The proof is similar to the proof of the Euclidean case (Lemma 3.1.1 of [17]).

Proposition 2.4. Let $X, Y, I \subseteq \mathbb{R}^{n}$. Then

$$
(X \cup Y)+I=(X+I) \cup(Y+I) .
$$

If X and Y are closed with $X \cup Y \ell_{1}$-convex, and I is an interval, then also

$$
(X \cap Y)+I=(X+I) \cap(Y+I)
$$

Proof. The first equation is trivial. In the second, the left-hand side is certainly a subset of the righthand side. For the converse, let $z \in(X+I) \cap(Y+I)$, writing

$$
z=x+a=y+b
$$

$(x \in X, y \in Y, a, b \in I)$. Choose a monotone path $\gamma:[0,1] \rightarrow X \cup Y$ joining x and y. Define a path $\alpha:[0,1] \rightarrow \mathbb{R}^{n}$ by $\alpha(t)=z-\gamma(t)$. Since I is an interval and α is a monotone path whose endpoints are in I, the whole image of α lies in I. Since X and Y are closed, there exists $t \in[0,1]$ such that $\gamma(t) \in X \cap Y$. Then $z=\gamma(t)+\alpha(t) \in(X \cap Y)+I$, as required.

Example 6.1 shows that the second part of Proposition 2.4 can fail when I is merely ℓ_{1}-convex.

Corollary 2.5. Let $X, Y \subseteq \mathbb{R}^{n}$ and let P be a coordinate subspace of \mathbb{R}^{n}. Then

$$
\pi_{P}(X \cup Y)=\pi_{P} X \cup \pi_{P} Y
$$

If X and Y are closed and $X \cup Y$ is ℓ_{1}-convex then also

$$
\pi_{P}(X \cap Y)=\pi_{P} X \cap \pi_{P} Y
$$

Proof. This follows from Proposition 2.4, since $\pi_{P} Z=\left(Z+P^{\perp}\right) \cap P$ for all $Z \subseteq \mathbb{R}^{n}$.

3. Approximation of ℓ_{1}-convex sets

Essential to our proof of the ℓ_{1} Hadwiger theorem is the result, proved in this section, that a compact ℓ_{1}-convex set can be approximated arbitrarily well by a finite union of cubes that is itself ℓ_{1}-convex.

Write $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ for the unit n-cube, and $\mathbf{H}=\left\{m+\frac{1}{2}: m \in \mathbb{Z}\right\}$ for the set of half-integers. Given $X \subseteq \mathbb{R}^{n}$ and $\lambda \geqslant 0$, write $\lambda X=\{\lambda x: x \in X\}$. When $\lambda>0$, write

$$
X_{\lambda}=\bigcup\left\{\lambda\left(h+C_{n}\right): h \in \mathbf{H}^{n} \text { with } \lambda\left(h+C_{n}\right) \cap X \neq \emptyset\right\} \supseteq X
$$

Proposition 3.1. Let $X \subseteq \mathbb{R}^{n}$ be an ℓ_{1}-convex set and $\lambda>0$. Then X_{λ} is ℓ_{1}-convex.

Proof. Assume without loss of generality that $\lambda=1$. Put

$$
L=\left\{h \in \mathbf{H}^{n}:\left(h+C_{n}\right) \cap X \neq \emptyset\right\},
$$

so that $X_{1}=L+C_{n}$. We show that the closed set L and the interval C_{n} satisfy the conditions of Lemma 2.2. The result will follow.

Let $h, h^{\prime} \in L$ with $\left(h+C_{n}\right) \cap\left(h^{\prime}+C_{n}\right)=\emptyset$, assuming without loss of generality that $h_{1}+\frac{1}{2}<h_{1}^{\prime}-\frac{1}{2}$. Choose $x \in\left(h+C_{n}\right) \cap X$ and $x^{\prime} \in\left(h^{\prime}+C_{n}\right) \cap X$. Then

$$
x_{1} \leqslant h_{1}+\frac{1}{2}<h_{1}^{\prime}-\frac{1}{2} \leqslant x_{1}^{\prime}
$$

By ℓ_{1}-convexity, there exists a monotone path from x to x^{\prime} in X; this contains a point z with $h_{1}+\frac{1}{2}<$ $z_{1}<h_{1}^{\prime}-\frac{1}{2}$. Since z is between x and x^{\prime}, we have $z \in k+C_{n}$ for some $k \in \mathbf{H}^{n}$ between h and h^{\prime}. Then $k \in L$. The constraints on z_{1} force $h_{1}<k_{1}<h_{1}^{\prime}$, so $h \neq k \neq h^{\prime}$.

For $\lambda>0$, let us say that a subset of \mathbb{R}^{n} is λ-pixellated if it is a finite union of cubes of the form $\lambda\left(h+C_{n}\right)\left(h \in \mathbf{H}^{n}\right)$. A set is pixellated if it is λ-pixellated for some $\lambda>0$. The role of pixellated sets in the ℓ_{1} theory is similar to that of polyhedra in the Euclidean theory. Proposition 3.1 implies:

Theorem 3.2. The set of pixellated ℓ_{1}-convex subsets of \mathbb{R}^{n} is dense in the space of compact ℓ_{1}-convex subsets of \mathbb{R}^{n}, with respect to the Hausdorff metric.

In a later proof, we will use a hyperplane to divide a pixellated ℓ_{1}-convex set into two smaller sets. We will need the following lemma.

Lemma 3.3. Let $\lambda>0$ and let $X \subseteq \mathbb{R}^{n}$ be a λ-pixellated ℓ_{1}-convex set. Write

$$
\begin{aligned}
& X^{+}=\bigcup\left\{\lambda\left(h+C_{n}\right): h \in \mathbf{H}^{n} \text { with } \lambda\left(h+C_{n}\right) \subseteq X \text { and } h_{1}>0\right\}, \\
& X^{-}=\bigcup\left\{\lambda\left(h+C_{n}\right): h \in \mathbf{H}^{n} \text { with } \lambda\left(h+C_{n}\right) \subseteq X \text { and } h_{1}<0\right\} .
\end{aligned}
$$

Then X^{+}, X^{-}and $X^{+} \cap X^{-}$are all ℓ_{1}-convex.
Proof. X^{+}is the closure of $X \cap\left((0, \infty) \times \mathbb{R}^{n-1}\right)$, so is ℓ_{1}-convex by Corollary 1.9 and Lemma 1.14. Similarly, X^{-}is ℓ_{1}-convex. Now $X^{+} \cup X^{-}=X$, and X is ℓ_{1}-convex, so $X^{+} \cap X^{-}$is ℓ_{1}-convex by Lemma 1.13.

The following result will not be needed later, but is of independent interest. It generalizes the classical fact that compact convex sets are Jordan measurable.

Proposition 3.4. Every compact ℓ_{1}-convex subset of \mathbb{R}^{n} is Jordan measurable.
Proof. Let $X \subseteq \mathbb{R}^{n}$ be a compact ℓ_{1}-convex set. For $\lambda>0$, write

$$
D(\lambda)=\bigcup\left\{\lambda\left(h+C_{n}\right): h \in \mathbf{H}^{n} \text { with } \lambda\left(h+C_{n}\right) \cap X \neq \emptyset \text { and } \lambda\left(h+C_{n}\right) \nsubseteq X\right\} .
$$

Write ∂X for the topological boundary of X. Then $\partial X \subseteq D(\lambda)$ for all $\lambda>0$, and we have to show that $\operatorname{Vol}(\partial X)=0$.

For $\lambda>0$ and $h \in \mathbf{H}^{n}$, the set $D(\lambda)$ cannot contain all 3^{n} of the cubes $\lambda\left(h+\sigma+C_{n}\right)$ with $\sigma \in$ $\{-1,0,1\}^{n}$. Indeed, if $D(\lambda)$ contains all 2^{n} corner cubes then X has nonempty intersection with all the corner cubes, and then it follows from ℓ_{1}-convexity that X contains the whole central cube $\lambda\left(h+C_{n}\right)$; hence $D(\lambda)$ does not contain the central cube.

We therefore have

$$
\operatorname{Vol}(D(\lambda)) \leqslant\left(\left(3^{n}-1\right) / 3^{n}\right) \operatorname{Vol}(D(3 \lambda))
$$

for all $\lambda>0$. Thus, $\inf _{\lambda>0} \operatorname{Vol}(D(\lambda))=0$, giving $\operatorname{Vol}(\partial X)=0$.

4. Valuations

Here we generalize the theorem of McMullen [14, Theorem 8] that a monotone translationinvariant valuation on convex sets is continuous. This will make numerous continuity checks very easy.

For the rest of this section, let \mathscr{K} be a set of compact, orthogonally convex subsets of \mathbb{R}^{n}. We suppose that \mathscr{K} contains all singletons $\{x\}$, and that $X+I \in \mathscr{K}$ whenever $X \in \mathscr{K}$ and I is a compact interval. Then \mathscr{K} contains all compact intervals and is closed under translations. For example, \mathscr{K} might be the set \mathscr{K}_{n} of compact convex subsets of \mathbb{R}^{n}, or the set \mathscr{K}_{n}^{\prime} of compact ℓ_{1}-convex subsets of \mathbb{R}^{n} (by Corollary 1.11 and Proposition 2.3).

A valuation on \mathscr{K} is a function $\phi: \mathscr{K} \rightarrow \mathbb{R}$ such that $\phi(\emptyset)=0$ and

$$
\phi(X \cup Y)=\phi(X)+\phi(Y)-\phi(X \cap Y)
$$

whenever $X, Y, X \cup Y, X \cap Y \in \mathscr{K}$. (The hypothesis that $X \cap Y \in \mathscr{K}$ is redundant for \mathscr{K}_{n}, and also for \mathscr{K}_{n}^{\prime}, by Lemma 1.13.)

We give \mathscr{K} the Hausdorff metric induced by the ℓ_{1} metric on \mathbb{R}^{n}. This can be defined as follows. Writing B_{n} for the closed unit ball of ℓ_{1}^{n}, the Hausdorff distance between compact sets $X, Y \subseteq \mathbb{R}^{n}$ is

$$
d(X, Y)=\inf \left\{\delta>0: X \subseteq Y+\delta B_{n} \text { and } Y \subseteq X+\delta B_{n}\right\}
$$

By compactness, the infimum is attained.
A valuation ϕ is continuous if it is continuous with respect to the Hausdorff metric. The notion of continuity is unaffected by the choice of the 1 -norm over other norms on \mathbb{R}^{n}, since all such are equivalent. A valuation ϕ is increasing if $X \subseteq Y$ implies $\phi(X) \leqslant \phi(Y)$ for $X, Y \in \mathscr{K}$, and monotone if ϕ or $-\phi$ is increasing. It is translation-invariant if $\phi(X+a)=\phi(X)$ for all $X \in \mathscr{K}$ and $a \in \mathbb{R}^{n}$.

For $R \geqslant 0$, write $\mathscr{K}[R]=\left\{X \in \mathscr{K}: X \subseteq R C_{n}\right\}$.
Lemma 4.1. Let ϕ be a monotone translation-invariant valuation on \mathscr{K}. Let $R \geqslant 0$. Then

$$
\lim _{\delta \rightarrow 0} \phi\left(X+\delta C_{n}\right)=\phi(X)
$$

uniformly in $X \in \mathscr{K}[R]$.
Proof. Given $1 \leqslant i \leqslant n$, write $v_{i}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ for the embedding of \mathbb{R} as the i th coordinate axis of \mathbb{R}^{n}. Given also $X \in \mathscr{K}$, define $f_{X, i}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
f_{X, i}(\delta)=\phi\left(X+v_{i}[-\delta / 2, \delta / 2]\right)-\phi(X)
$$

For all $\delta, \delta^{\prime} \geqslant 0$, by orthogonal convexity of X and the valuation property, we have

$$
\phi\left(X+v_{i}\left[-\delta, \delta^{\prime}\right]\right)=\phi\left(X+v_{i}[-\delta, 0]\right)+\phi\left(X+v_{i}\left[0, \delta^{\prime}\right]\right)-\phi(X)
$$

So by translation-invariance, $f_{X, i}\left(\delta+\delta^{\prime}\right)=f_{X, i}(\delta)+f_{X, i}\left(\delta^{\prime}\right)$. But $f_{X, i}$ is monotone, so $f_{X, i}(\delta)=f_{X, i}(1)$. δ for all $\delta \geqslant 0$. Assume without loss of generality that ϕ is increasing. Then whenever $S \geqslant 0$ and $X \in \mathscr{K}[S]$, we have

$$
0 \leqslant f_{X, i}(1) \leqslant \phi\left(X+v_{i}\left[-\frac{1}{2}, \frac{1}{2}\right]\right) \leqslant \phi\left((S+1) C_{n}\right)
$$

so

$$
0 \leqslant f_{X, i}(\delta) \leqslant \phi\left((S+1) C_{n}\right) \cdot \delta
$$

for all $\delta \geqslant 0$.

From this estimate and the fact that $C_{n}=\sum_{i=1}^{n} v_{i}\left[-\frac{1}{2}, \frac{1}{2}\right]$, we deduce that

$$
\phi(X) \leqslant \phi\left(X+\delta C_{n}\right) \leqslant \phi(X)+n \phi\left((R+2) C_{n}\right) \cdot \delta
$$

for all $X \in \mathscr{K}[R]$ and $\delta \in[0,1]$. The result follows.
Theorem 4.2. A monotone translation-invariant valuation on \mathscr{K} is continuous.
Proof. Consider, without loss of generality, an increasing translation-invariant valuation ϕ. Let $X \in \mathscr{K}$ and $\varepsilon>0$. Choose $R \geqslant 2$ with $X \subseteq(R-2) C_{n}$. By Lemma 4.1, we may choose $\eta>0$ such that $\phi\left(Y+\eta C_{n}\right) \leqslant \phi(Y)+\varepsilon$ for all $Y \in \mathscr{K}[R]$. Put $\delta=\min \{1, \eta / 2\}$.

I claim that $|\phi(Y)-\phi(X)| \leqslant \varepsilon$ whenever $Y \in \mathscr{K}$ with $d(X, Y) \leqslant \delta$. Indeed, take such a Y. Then $Y \subseteq X+\delta B_{n}$; but also $B_{n} \subseteq 2 C_{n}$, so $Y \subseteq X+2 \delta C_{n}$. This implies that $Y \subseteq R C_{n}$, so $Y \in \mathscr{K}[R]$, and clearly $X \in \mathscr{K}[R]$ too. It also implies that $X \subseteq Y+\eta C_{n}$, giving

$$
\phi(X) \leqslant \phi\left(Y+\eta C_{n}\right) \leqslant \phi(Y)+\varepsilon .
$$

Similarly, $Y \subseteq X+\eta C_{n}$, so $\phi(Y) \leqslant \phi(X)+\varepsilon$. This proves the claim.
Corollary 4.3. (See McMullen [14].) A monotone translation-invariant valuation on \mathscr{K}_{n} is continuous.
Corollary 4.4. A monotone translation-invariant valuation on \mathscr{K}_{n}^{\prime} is continuous.
Lebesgue measure, as a real-valued function on compact subsets of \mathbb{R}^{n}, is not continuous with respect to the Hausdorff metric. It is, however, continuous when restricted to convex sets [22, Theorem 12.7]. Corollary 4.4 generalizes this classical result to the larger class of ℓ_{1}-convex sets:

Corollary 4.5. The volume function $\mathrm{Vol}: \mathscr{K}_{n}^{\prime} \rightarrow \mathbb{R}$ is continuous.

5. An analogue of Hadwiger's theorem

We are now in a position to prove ℓ_{1} analogues of the classical theorems of integral geometry. We begin with Hadwiger's theorem, adopting a strategy similar in outline to that of Klain [11].

Denote by G_{n} the isometry group of ℓ_{1}^{n}. It is generated by translations, coordinate permutations, and reflections in coordinate hyperplanes. A valuation ϕ on \mathscr{K}_{n}^{\prime} is invariant if $\phi(g X)=\phi(X)$ whenever $X \in \mathscr{K}_{n}^{\prime}$ and $g \in G_{n}$. The continuous invariant valuations on \mathscr{K}_{n}^{\prime} form a vector space Val $_{n}^{\prime}$ over \mathbb{R}.

Given $0 \leqslant i \leqslant n$, write $\mathrm{Gr}_{n, i}^{\prime}$ for the set of i-dimensional coordinate subspaces of \mathbb{R}^{n}; it has $\binom{n}{i}$ elements. Define $V_{n, i}^{\prime}: \mathscr{K}_{n}^{\prime} \rightarrow \mathbb{R}$, the i th ℓ_{1}-intrinsic volume on \mathbb{R}^{n}, by

$$
V_{n, i}^{\prime}(X)=\sum_{P \in \mathrm{Gr}_{n, i}^{\prime}} \operatorname{Vol}_{i}\left(\pi_{P} X\right)
$$

($X \in \mathscr{K}_{n}^{\prime}$). In the P-summand, Vol_{i} denotes Lebesgue measure on $P \cong \mathbb{R}^{i}$.
Examples 5.1. (i) The 0th ℓ_{1}-intrinsic volume $V_{n, 0}^{\prime}$ is the Euler characteristic χ, given by $\chi(\varnothing)=0$ and $\chi(X)=1$ whenever $X \in \mathscr{K}_{n}^{\prime}$ is nonempty.
(ii) The unit cube C_{n} has ℓ_{1}-intrinsic volumes $V_{n, i}^{\prime}\left(C_{n}\right)=\binom{n}{i}$, which are the same as its Euclidean intrinsic volumes.
(iii) Write B_{n} for the unit ball in ℓ_{1}^{n}. Then $\operatorname{Vol}\left(B_{n}\right)=2^{n} / n!$, giving $\left.V_{n, i}^{\prime}\left(B_{n}\right)=\frac{2^{i}}{i!}{ }^{n} \begin{array}{l}n \\ i\end{array}\right)$. Taking $n=2$ and $i=1$ shows that the ℓ_{1} - and Euclidean intrinsic volumes of a convex set are not always equal (and nor are they equal up to a constant factor, by the previous example).

A valuation ϕ on \mathscr{K}_{n}^{\prime} is homogeneous of degree i if $\phi(\lambda X)=\lambda^{i} \phi(X)$ for all $\lambda \geqslant 0$ and $X \in \mathscr{K}_{n}^{\prime}$. In the following lemma, we write $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ for the embedding that inserts 0 in the last coordinate.

Lemma 5.2. Let $0 \leqslant i \leqslant n$. Then:
(i) $V_{n, i}^{\prime}$ is a continuous invariant valuation on \mathscr{K}_{n}^{\prime},
(ii) $V_{n, i}^{\prime}$ is homogeneous of degree i,
(iii) $V_{n, i}^{\prime}(X)=V_{n+1, i}^{\prime}(\nu X)$ for all $X \in \mathscr{K}_{n}^{\prime}$,
(iv) $V_{n, n}^{\prime}=\mathrm{Vol}_{n}$,
(v) $V_{n, i}^{\prime}$ is increasing.

Proof. The only nontrivial part is (i). First fix $P \in \mathrm{Gr}_{n, i}^{\prime}$. By Corollary 2.5, the function $X \mapsto \operatorname{Vol}_{i}\left(\pi_{P} X\right)$ on \mathscr{K}_{n}^{\prime} is a valuation. It is also monotone and translation-invariant, and therefore continuous by Corollary 4.4. This holds for all P, and (i) follows.

Parts (i) and (iii) allow us to write $V_{n, i}^{\prime}$ as just V_{i}^{\prime} : for if $X \in \mathscr{K}_{n}^{\prime}$ and \mathbb{R}^{n} is embedded as a coordinate subspace of some larger space \mathbb{R}^{N}, then the i th ℓ_{1}-intrinsic volume of X is the same whether X is regarded as a subset of \mathbb{R}^{n} or of \mathbb{R}^{N}. This justifies the word 'intrinsic'.

The dimension of a nonempty ℓ_{1}-convex set $X \subseteq \mathbb{R}^{n}$ is the smallest $i \in\{0, \ldots, n\}$ such that $X \subseteq$ $P+q$ for some $P \in \mathrm{Gr}_{n, i}^{\prime}$ and $q \in \mathbb{R}^{n}$. A valuation ψ on \mathscr{K}_{n}^{\prime} is simple if $\psi(X)=0$ whenever $X \in \mathscr{K}_{n}^{\prime}$ is of dimension less than n.

Proposition 5.3. Let ψ be a simple continuous translation-invariant valuation on \mathscr{K}_{n}^{\prime}. Then $\psi=c \operatorname{Vol}_{n}$ for some $c \in \mathbb{R}$.

Proof. Put $\zeta=\psi-\psi\left(C_{n}\right)$ Vol $_{n}$. By Corollary 4.5, ζ is a simple continuous translation-invariant valuation with $\zeta\left(C_{n}\right)=0$. We will prove that ζ is identically zero.

By dividing cubes into smaller cubes, $\zeta\left(\lambda C_{n}\right)=0$ for all rational $\lambda>0$. By continuity, $\zeta\left(\lambda C_{n}\right)=0$ for all real $\lambda>0$.

Now I claim that $\zeta(X)=0$ whenever X is a pixellated ℓ_{1}-convex set. Suppose that X is λ pixellated, where $\lambda>0$; thus, X is a union of some finite number m of cubes of the form $\lambda\left(h+C_{n}\right)$ ($h \in \mathbf{H}^{n}$). If $m=0$ or $m=1$ then $\zeta(X)=0$ immediately.

Suppose inductively that $m \geqslant 2$. Without loss of generality, the m cubes are not all on the same side of the hyperplane $\left\{y \in \mathbb{R}^{n}: y_{1}=0\right\}$. Define sets X^{+}and X^{-}as in Lemma 3.3; thus, $X=X^{+} \cup X^{-}$, and each of the sets $X^{+}, X^{-}, X^{+} \cap X^{-}$is ℓ_{1}-convex. Then $\zeta\left(X^{+}\right)=\zeta\left(X^{-}\right)=0$ by inductive hypothesis, and $\zeta\left(X^{+} \cap X^{-}\right)=0$ since ζ is simple. Hence $\zeta(X)=0$ by the valuation property, completing the induction and proving the claim.

The result now follows from Theorem 3.2.
Theorem 5.4. The ℓ_{1}-intrinsic volumes $V_{0}^{\prime}, \ldots, V_{n}^{\prime}$ form a basis for the vector space Val $_{n}^{\prime}$ of continuous invariant valuations on ℓ_{1}-convex subsets of \mathbb{R}^{n}. In particular, $\operatorname{dim}\left(\operatorname{Val}_{n}^{\prime}\right)=n+1$.

Proof. By Lemma 5.2(iii), (iv), we have $V_{i}^{\prime}\left(C_{i}\right)=1$ whenever $0 \leqslant i \leqslant n$, and $V_{j}^{\prime}\left(C_{i}\right)=0$ whenever $0 \leqslant i<j \leqslant n$. It follows that $V_{0}^{\prime}, \ldots, V_{n}^{\prime}$ are linearly independent.

We prove by induction on n that $V_{0}^{\prime}, \ldots, V_{n}^{\prime}$ span $\mathrm{Val}_{n}^{\prime}$. This is trivial when $n=0$. Suppose that $n \geqslant 1$, and let $\phi \in \operatorname{Val}_{n}^{\prime}$. Choose some $Q \in \operatorname{Gr}_{n, n-1}^{\prime}$, and denote by ϕ^{\prime} the restriction of ϕ to ℓ_{1}-convex subsets of Q. By inductive hypothesis, there exist constants c_{0}, \ldots, c_{n-1} such that $\phi^{\prime}=\sum_{i=0}^{n-1} c_{i} V_{i}^{\prime}$. Thus, for all ℓ_{1}-convex sets $X \subseteq Q$,

$$
\begin{equation*}
\phi(X)=\sum_{i=0}^{n-1} c_{i} V_{i}^{\prime}(X) \tag{2}
\end{equation*}
$$

Since ϕ is invariant under translations and coordinate permutations, (2) holds for all $X \in \mathscr{K}_{n}^{\prime}$ of dimension less than n. Put $\psi=\phi-\sum_{i=0}^{n-1} c_{i} V_{i}^{\prime}$. Then ψ is a continuous translation-invariant valuation, which we have just shown to be simple. Proposition 5.3 implies that $\psi=c_{n} \mathrm{Vol}_{n}$ for some $c_{n} \in \mathbb{R}$. Since $\mathrm{Vol}_{n}=V_{n}^{\prime}$, the result follows.

Corollary 5.5. Let ϕ be a continuous invariant valuation on \mathscr{K}_{n}^{\prime}, homogeneous of degree $i \in \mathbb{R}$. Then $i \in$ $\{0, \ldots, n\}$ and $\phi=c V_{i}^{\prime}$ for some $c \in \mathbb{R}$.

Careful analysis of the proof of the theorem enables two refinements to be made.
First, when showing that every continuous invariant valuation ϕ on \mathscr{K}_{n}^{\prime} was a linear combination of ℓ_{1}-intrinsic volumes, we never called on the fact that ϕ was invariant under reflections in coordinate hyperplanes. Second, we did not use the full strength of the assumption that ϕ was continuous: only that ϕ was continuous from the outside, that is, $\lim _{Y \rightarrow X, Y \supseteq X} \phi(Y)=\phi(X)$ for all $X \in \mathscr{K}_{n}^{\prime}$. (The essential point is that in Proposition 3.1, the pixellated sets X_{λ} contain X.) But any linear combination of ℓ_{1}-intrinsic volumes is continuous and invariant under the full isometry group. Hence:

Corollary 5.6. Let ϕ be a valuation on \mathscr{K}_{n}^{\prime}, continuous from the outside and invariant under translations and coordinate permutations. Then ϕ is continuous and invariant.

6. An analogue of Steiner's formula

The most obvious analogue of the classical Steiner formula would be an identity of the form

$$
\operatorname{Vol}\left(X+\lambda B_{n}\right)=\sum_{i=0}^{n} c_{i} V_{i}^{\prime}(X) \lambda^{n-i}
$$

for $X \in \mathscr{K}_{n}^{\prime}$ and $\lambda \geqslant 0$. Here B_{n} denotes the closed unit ball in ℓ_{1}^{n}, and c_{0}, \ldots, c_{n} are constants. However, there can be no such formula. For if there were then $\operatorname{Vol}\left(\cdot+B_{n}\right)$ would be a valuation on \mathscr{K}_{n}^{\prime}, and the following example demonstrates that for general n, it is not.

Example 6.1. Let $X=[0,1] \times\{0\}$ and $Y=\{0\} \times[0,1]$, both subsets of \mathbb{R}^{2}. Then $X, Y, X \cap Y$ and $X \cup Y$ are all ℓ_{1}-convex sets, and it is straightforward to calculate that

$$
\operatorname{Vol}\left((X \cap Y)+B_{2}\right)<\operatorname{Vol}\left(\left(X+B_{2}\right) \cap\left(Y+B_{2}\right)\right)
$$

But $(X \cup Y)+B_{2}=\left(X+B_{2}\right) \cup\left(Y+B_{2}\right)$ by Proposition 2.4, so $\operatorname{Vol}\left(\cdot+B_{2}\right)$ is not a valuation on \mathscr{K}_{2}^{\prime}.
There is, however, a Steiner-type formula in which the role of the ball is played by the cube C_{n}.
Theorem 6.2. Let $X \in \mathscr{K}_{n}^{\prime}$ and $\lambda \geqslant 0$. Then for $0 \leqslant k \leqslant n$,

$$
V_{k}^{\prime}\left(X+\lambda C_{n}\right)=\sum_{i=0}^{k}\binom{n-i}{n-k} V_{i}^{\prime}(X) \lambda^{k-i}
$$

In particular,

$$
\operatorname{Vol}\left(X+\lambda C_{n}\right)=\sum_{i=0}^{n} V_{i}^{\prime}(X) \lambda^{n-i} .
$$

For the left-hand side of the first equation to be defined we need $X+\lambda C_{n}$ to be ℓ_{1}-convex. This follows from Proposition 2.3.

Proof. We begin by showing that $V_{k}^{\prime}\left(\cdot+C_{n}\right)$ is a continuous invariant valuation. Proposition $2.4 \mathrm{im}-$ plies that it is a valuation, since C_{n} is an interval. It is invariant, since C_{n} is invariant under isometries fixing the origin. It is also monotone, and therefore continuous by Corollary 4.4.

By the ℓ_{1} Hadwiger Theorem 5.4, there are constants c_{i} such that $V_{k}^{\prime}\left(X+C_{n}\right)=\sum_{i=0}^{n} c_{i} V_{i}^{\prime}(X)$ for all $X \in \mathscr{K}_{n}^{\prime}$. It follows that for $\lambda>0$ and $X \in \mathscr{K}_{n}^{\prime}$,

$$
V_{k}^{\prime}\left(X+\lambda C_{n}\right)=\lambda^{k} V_{k}^{\prime}\left(\lambda^{-1} X+C_{n}\right)=\sum_{i=0}^{n} c_{i} V_{i}^{\prime}(X) \lambda^{k-i}
$$

The result follows on putting $X=C_{n}$, using Example 5.1(ii).

7. An analogue of Crofton's formula

In this section and the next, we derive ℓ_{1} analogues of Euclidean integral-geometric formulas. The formal structure is similar to that in Klain and Rota [12].

For $0 \leqslant k \leqslant n$, let Graff ${ }_{n, k}^{\prime}$ denote the set of k-dimensional affine subspaces of \mathbb{R}^{n} parallel to some k-dimensional coordinate subspace. Each element of Graff $_{n, k}^{\prime}$ is uniquely representable as $P+q$ with $P \in \mathrm{Gr}_{n, k}^{\prime}$ and $q \in P^{\perp}$.

There is a natural measure on Graff $_{n, k}^{\prime}$, invariant under isometries of ℓ_{1}^{n}. Indeed, Graff $_{n, k}^{\prime}$ is in canonical bijection with the disjoint union $\bigsqcup_{P \in \operatorname{Gr}_{n, k}^{\prime}} P^{\perp}$, each space P^{\perp} carries Lebesgue measure Vol_{n-k}, and summing gives the measure on $\mathrm{Graff}_{n, k}^{\prime}$.

Theorem 7.1. Let $X \in \mathscr{K}_{n}^{\prime}$. Then for $0 \leqslant j \leqslant k \leqslant n$,

$$
\begin{equation*}
\int_{\operatorname{Graff}_{n, k}^{\prime}} V_{j}^{\prime}(X \cap A) d A=\binom{n+j-k}{j} V_{n+j-k}^{\prime}(X) . \tag{3}
\end{equation*}
$$

In particular, for $0 \leqslant k \leqslant n$, the set

$$
\left\{A \in \operatorname{Graff}_{n, k}^{\prime}: X \cap A \neq \emptyset\right\}
$$

has measure $V_{n-k}^{\prime}(X)$.
Proof. We prove just the first statement, the second being the case $j=0$.
Write $\phi(X)$ for the left-hand side of (3). Then ϕ is a monotone invariant valuation since V_{j}^{\prime} is, and since the measure on Graff $_{n, k}^{\prime}$ is invariant. It is therefore continuous, by Corollary 4.4. Moreover, ϕ is homogeneous of degree $n+j-k$, since for $\lambda>0$ and $X \in \mathscr{K}_{n}^{\prime}$,

$$
\phi(\lambda X)=\int_{B \in \operatorname{Graff}_{n, k}^{\prime}} V_{j}^{\prime}(\lambda X \cap \lambda B) d(\lambda B)=\lambda^{j} \lambda^{n-k} \phi(X) .
$$

So by Corollary 5.5, $\phi=c V_{n+j-k}^{\prime}$ for some $c \in \mathbb{R}$.

By construction of the invariant measure,

$$
\phi\left(C_{n}\right)=\sum_{P \in \operatorname{Gr}_{n, k}^{\prime}} \int_{P \perp} V_{j}^{\prime}\left(C_{n} \cap(P+q)\right) d q .
$$

For $P \in \operatorname{Gr}_{n, k}^{\prime}$ and $q \in P^{\perp}$, identifying P^{\perp} with \mathbb{R}^{n-k}, we have

$$
V_{j}^{\prime}\left(C_{n} \cap(P+q)\right)= \begin{cases}V_{j}^{\prime}\left(C_{k}\right)=\binom{k}{j} & \text { if } q \in C_{n-k} \\ 0 & \text { otherwise }\end{cases}
$$

From this it is straightforward to deduce the value of c.
A very similar argument, left to the reader, proves the following analogue of Kubota's theorem [13,12]. It can also be deduced directly from the definition of the ℓ_{1}-intrinsic volumes. Corollary 1.12 guarantees that the left-hand side is defined.

Theorem 7.2. Let $X \in \mathscr{K}_{n}^{\prime}$. Then for $0 \leqslant j \leqslant k \leqslant n$,

$$
\sum_{P \in \mathrm{Gr}_{n, k}^{\prime}} V_{j}^{\prime}\left(\pi_{P} X\right)=\binom{n-j}{n-k} V_{j}^{\prime}(X)
$$

8. Analogues of the kinematic formulas

The classical kinematic formulas concern the intrinsic volumes of sets $g X \cap Y$, where X and Y are convex and g is a Euclidean motion. Remark 1.10 suggests that fundamentally, one of X and Y should be regarded as geodesic and the other as cogeodesic, although in the classical context the difference is invisible. This leads us to expect ℓ_{1} kinematic formulas in which X is ℓ_{1}-convex and Y is an interval.

To state the ℓ_{1} kinematic formulas, we first need a measure on the isometry group G_{n} of ℓ_{1}^{n}. This is constructed as follows. G_{n} has a subgroup H_{n}, the nth hyperoctahedral group, consisting of just the isometries fixing the origin. Each element of G_{n} is uniquely representable as $x \mapsto h(x)+q$ with $h \in H_{n}$ and $q \in \mathbb{R}^{n}$. Being a finite group, H_{n} has a unique invariant probability measure. Taking the product of this measure with Lebesgue measure on \mathbb{R}^{n} gives an invariant (Haar) measure on G_{n}.

We also need a result on products. First observe that if $X \subseteq \mathbb{R}^{m}$ and $Y \subseteq \mathbb{R}^{n}$ are ℓ_{1}-convex then $X \times Y$, viewed as a subset of \mathbb{R}^{m+n}, is also ℓ_{1}-convex.

Proposition 8.1. Let $X \in \mathscr{K}_{m}^{\prime}, Y \in \mathscr{K}_{n}^{\prime}$, and $0 \leqslant k \leqslant m+n$. Then

$$
V_{k}^{\prime}(X \times Y)=\sum_{i+j=k} V_{i}^{\prime}(X) V_{j}^{\prime}(Y)
$$

where $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n$ in the summation.
Proof. By definition of the ℓ_{1}-intrinsic volumes,

$$
V_{k}^{\prime}(X \times Y)=\sum_{i+j=k} \sum_{P \in \operatorname{Gr}_{m, i}^{\prime}, Q \in \operatorname{Gr}_{n, j}^{\prime}} \operatorname{Vol}_{i+j}\left(\pi_{P \times Q}(X \times Y)\right)
$$

$$
\begin{aligned}
& =\sum_{i+j=k} \sum_{P \in \operatorname{Gr}_{m, i}^{\prime}, Q \in \operatorname{Gr}_{n, j}^{\prime}} \operatorname{Vol}_{i}\left(\pi_{P} X\right) \operatorname{Vol}_{j}\left(\pi_{Q} Y\right) \\
& =\sum_{i+j=k} V_{i}^{\prime}(X) V_{j}^{\prime}(Y)
\end{aligned}
$$

Example 8.2. Let $I=I_{1} \times \cdots \times I_{n}$ be a nonempty compact interval. Then $V_{j}^{\prime}(I)$ is the j th elementary symmetric polynomial in the lengths of I_{1}, \ldots, I_{n} (also equal to the j th Euclidean intrinsic volume of I).

We now state the principal kinematic formula for ℓ_{1}^{n}.
Theorem 8.3. Let $X \in \mathscr{K}_{n}^{\prime}$ and let I be a compact interval in \mathbb{R}^{n}. Then the set

$$
\begin{equation*}
\left\{g \in G_{n}: g X \cap I \neq \emptyset\right\} \tag{4}
\end{equation*}
$$

has measure

$$
\sum_{i+j=n}\binom{n}{i}^{-1} V_{i}^{\prime}(X) V_{j}^{\prime}(I)
$$

Proof. Fix I. Write $\phi(X)$ for the measure of the set (4): then $\phi(X)=\int_{G_{n}} \chi(g X \cap I) d g$. This ϕ is a monotone invariant valuation on \mathscr{K}_{n}^{\prime}, and is therefore continuous by Corollary 4.4. So by the ℓ_{1} Hadwiger theorem,

$$
\begin{equation*}
\phi=\sum_{i=0}^{n} c_{i} V_{i}^{\prime} \tag{5}
\end{equation*}
$$

for some real numbers c_{i}. We compute c_{i} by evaluating $\phi\left(\lambda C_{n}\right)$ for $\lambda>0$. By construction of the invariant measure on G_{n},

$$
\phi\left(\lambda C_{n}\right)=\frac{1}{\left|H_{n}\right|} \sum_{h \in H_{n}} \int_{\mathbb{R}^{n}} \chi\left(\left(h\left(\lambda C_{n}\right)+q\right) \cap I\right) d q .
$$

But λC_{n} is H_{n}-invariant, so $\phi\left(\lambda C_{n}\right)$ is the Lebesgue measure of the set

$$
\begin{equation*}
\left\{q \in \mathbb{R}^{n}:\left(\lambda C_{n}+q\right) \cap I \neq \emptyset\right\} . \tag{6}
\end{equation*}
$$

If $I=\emptyset$ then the theorem holds trivially; suppose that $I \neq \emptyset$. Write $I=\prod_{r=1}^{n} I_{r}$, and write u_{r} for the length of the interval I_{r}. Then the set (6) is a product of intervals of lengths $\lambda+u_{r}$. Hence

$$
\phi\left(\lambda C_{n}\right)=\prod_{r=1}^{n}\left(\lambda+u_{r}\right)=\lambda^{n} \prod_{r=1}^{n}\left(1+\lambda^{-1} u_{r}\right)=\lambda^{n} \sum_{j=0}^{n} V_{j}^{\prime}\left(\lambda^{-1} I\right)=\sum_{j=0}^{n} V_{j}^{\prime}(I) \lambda^{n-j},
$$

using nonemptiness of I and Example 8.2. On the other hand, we may compute $\phi\left(\lambda C_{n}\right)$ using (5), and comparing coefficients gives $c_{i}=\binom{n}{i}^{-1} V_{n-i}^{\prime}(I)$.

Higher kinematic formulas for ℓ_{1}^{n} can be deduced from Theorems 7.1 and 8.3 by an argument formally identical to that in Section 10.3 of [12]:

Theorem 8.4. Let $0 \leqslant k \leqslant n$, let $X \in \mathscr{K}_{n}^{\prime}$, and let I be a compact interval in \mathbb{R}^{n}. Then

$$
\int_{G_{n}} V_{k}^{\prime}(g X \cap I) d g=\sum_{i+j=n+k}\binom{n}{i}^{-1}\binom{j}{k} V_{i}^{\prime}(X) V_{j}^{\prime}(I)
$$

where $0 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$ in the summation.

Acknowledgments

I thank Andreas Bernig, Joseph Fu, Daniel Hug, Mark Meckes, Rolf Schneider and the anonymous referee for helpful conversations and suggestions.

References

[1] S. Alesker, On P. McMullen's conjecture on translation invariant valuations, Adv. Math. 155 (2000) 239-263.
[2] S. Alesker, Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture, Geom. Funct. Anal. 11 (2001) 244-272.
[3] S. Alesker, Theory of valuations on manifolds: a survey, Geom. Funct. Anal. 17 (2007) 1321-1341.
[4] S. Alesker, Valuations on manifolds and integral geometry, Geom. Funct. Anal. 20 (2010) 1073-1143.
[5] J.-C. Álvarez Paiva, E. Fernandes, Crofton formulas in projective Finsler spaces, Electron. Res. Announc. Amer. Math. Soc. 4 (1998) 91-100.
[6] A. Bernig, Valuations with Crofton formula and Finsler geometry, Adv. Math. 210 (2007) 733-753.
[7] A. Bernig, J. Fu, Hermitian integral geometry, Ann. of Math. 173 (2011) 907-945.
[8] E. Fink, D. Wood, Restricted-Orientation Convexity, Monogr. Theoret. Comput. Sci., Springer, Berlin, 2004.
[9] J. Fu, Kinematic formulas in integral geometry, Indiana Univ. Math. J. 39 (1990) 1115-1154.
[10] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 2001.
[11] D.A. Klain, A short proof of Hadwiger's characterization theorem, Mathematika 42 (1995) 329-339.
[12] D.A. Klain, G.-C. Rota, Introduction to Geometric Probability (Lezioni Lincee), Cambridge University Press, Cambridge, 1997.
[13] T. Kubota, Über konvex-geschlossene Mannigfaltigkeiten im n-dimensionalen Raume, Sci. Rep. Tôhoku Univ. 14 (1925) 8599.
[14] P. McMullen, Valuations and Euler-type relations on certain classes of convex polytopes, Proc. Lond. Math. Soc. 35 (1977) 113-135.
[15] P. McMullen, Continuous translation-invariant valuations on the space of compact convex sets, Arch. Math. 34 (1980) 377384.
[16] A. Papadopoulos, Metric Spaces, Convexity, and Nonpositive Curvature, European Mathematical Society, Zürich, 2005.
[17] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1993.
[18] R. Schneider, Intrinsic volumes in Minkowski spaces, Rend. Circ. Mat. Palermo (2) Suppl. 50 (1997) 355-373.
[19] R. Schneider, On integral geometry in projective Finsler spaces, J. Contemp. Math. Anal. 37 (2002) 30-46.
[20] R. Schneider, Crofton measures in projective Finsler spaces, in: E.L. Grinberg, S. Li, G. Zhang, J. Zhou (Eds.), Integral Geometry and Convexity, Proceedings of the International Conference, Wuhan, China, Oct. 2004, World Scientific, New Jersey, 2006, pp. 67-98.
[21] R. Schneider, J.A. Wieacker, Integral geometry in Minkowski spaces, Adv. Math. 129 (1997) 222-260.
[22] F.A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.

[^0]: E-mail address: Tom.Leinster@glasgow.ac.uk.
 1 Supported by an EPSRC Advanced Research Fellowship.

