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Classical integral geometry takes place in Euclidean space, but one
can attempt to imitate it in any other metric space. In particular,
one can attempt this in R" equipped with the metric derived from
the p-norm. This has, in effect, been investigated intensively for
1 < p < oo, but not for p =1. We show that integral geometry
for the 1-norm bears a striking resemblance to integral geometry
for the 2-norm, but is radically different from that for all other
values of p. We prove a Hadwiger-type theorem for R" with
the 1-norm, and analogues of the classical formulas of Steiner,
Crofton and Kubota. We also prove principal and higher kinematic
formulas. Each of these results is closely analogous to its Euclidean
counterpart, yet the proofs are quite different.

© 2012 Elsevier Inc. All rights reserved.

0. Introduction

Classical integral geometry provides definite answers to natural questions about convex subsets of
Euclidean space. The Cauchy formula, for instance, tells us that the surface area of a convex body
in R3 is proportional to the expected area of its projection onto a random plane. The Crofton formula
states that it is also proportional to the measure of the set of affine lines that meet the body. The
Steiner formula gives the volume of the set of points within a specified distance of a given convex
body. The kinematic formula tells us the probability that a randomly-placed convex body X meets
another body Y, given that it meets a larger body Z D Y.
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It is so successful a theory that one naturally seeks to imitate it elsewhere. This has been done in
several ways. For example, Alesker [3,4] (foreshadowed by Fu [9]) has developed integral geometry for
manifolds, while Bernig and Fu [7] have developed Hermitian integral geometry. Others have extended
integral geometry to finite-dimensional real Banach spaces, and more generally to projective Finsler
spaces: see for instance Schneider and Wieacker [21] and Schneider [19,20]. (This includes R" with
the 1-norm [20], but it is a different generalization from that presented here.) An important role is
played there by Holmes-Thompson valuations, comparable to intrinsic volumes in Euclidean space:
see Schneider [18], Alvarez Paiva and Fernandes [5], and Bernig [6].

But one simple setting in which integral geometry seems not to have been fully developed is that
of ordinary metric spaces. A natural notion of convexity is available there: a subset X of a metric
space A is geodesic if for any two points x,x’ € X, say distance D apart, there exists an isometry
y :[0, D] - X with y(0) =x and y (D) = x'. Using this, we can extend to an arbitrary metric space
A the fundamental notion of continuous invariant valuation on convex sets. And just as for Euclidean
space, the continuous invariant valuations form a vector space, Val(A), indexing all the ways of mea-
suring the size of geodesic subsets of A.

Every metric space therefore poses a challenge: classify its continuous invariant valuations. A cel-
ebrated theorem of Hadwiger answers the challenge for Euclidean space R", stating that Val(R") is
(n + 1)-dimensional, with a basis Vg, ..., V, in which V; is homogeneous of degree i. The valuations
V; are the intrinsic volumes (also known, with different normalizations, as the quermassintegrals or
Minkowski functionals). When n = 2, for instance, they are Euler characteristic, half of perimeter, and
area.

More ambitiously, we can attempt to reproduce in an arbitrary metric space—or one with as lit-
tle structure as possible—the classical results of integral geometry in the tradition of Crofton and
Blaschke. For example, we can seek analogues of the formulas listed in the first paragraph. To do
this, we will need our metric space to carry an affine structure; and among the most important
such spaces are the Banach spaces E’;, that is, R" equipped with the metric induced by the p-norm
lIxllp = (X %))/ (p € [1, 00)).

What is known about the integral geometry (in the sense just described) of the metric spaces £}?
Let p € [1, 00). The case p =2 is the classical Euclidean theory. For p # 1, the space eg is strictly con-
vex, so the only geodesic subsets are the convex sets. On the other hand, for p # 2, the isometry group
of E’; is very small, generated by permutations of coordinates, reflections in coordinate hyperplanes,
and translations. So if p #1, 2 then 6'}3 has the same geodesic subsets as ¢7, but far fewer isometries.

Hence Val(Eg) is much bigger than Val(¢}) = R"1: indeed, it is infinite-dimensional. Much is known
about the structure of Val(Z’;) for p # 1, 2; this is essentially the theory of translation-invariant valu-
ations on convex subsets of R" [14,15,1,2].

But the case p =1 has until now been overlooked, and turns out to contain a surprise. As we shall
see, the metric space ¢} behaves very much like ¢35, but very much unlike all the other spaces £}. For
example, there is a Hadwiger-type theorem stating that Val(¢]) = R™1, Furthermore, Val(£]) has a
basis V(’), ..., V] of valuations, the ¢;-intrinsic volumes, where Vl./ is homogeneous of degree i. Hence
there is a canonical isomorphism Val(¢}) = Val(¢})—despite the fact that ¢} and ¢} have neither the
same geodesic subsets nor the same isometry group.

The resemblance goes deeper still: as we demonstrate, all the standard Euclidean integral-
geometric formulas have close analogues in ¢]. Nevertheless, the proofs are quite different: just as
the classical proofs exploit special features of Euclidean geometry, ours exploit special features of ¢4
geometry.

A mystery remains: why are the results for ¢} and ¢} so similar to each other, yet so different
from those for E'; when p € (1,2) U (2, 00)? There is no obvious common generalization of the cases
p=1 and p =2. Yet a common generalization must surely exist.

The case p = co appears not to have been investigated either. Since Ego is isometric to E%, the
vector space Val(ﬁgo) is 3-dimensional, like Val(Z%) and Val(Z%) but unlike Val(ﬁf,) for pe (1,2) U
(2, 00). It is natural to conjecture that Val(¢l,) = R™1 for all n > 0.

This paper is organized as follows. We begin by establishing the fundamental facts about geodesic
subsets of ¢7, here called £1-convex sets. (They include the convex sets, but are much more general.)
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Almost immediately we encounter a stark difference between ¢] and £3: the intersection of £-convex
sets need not be ¢1-convex. And yet, there is a more subtle sense in which the two situations are
precisely analogous (Remark 1.10). Guided by this analogy, we prove ¢1 versions of all the elementary
laws governing intersections, projections and Minkowski sums of ordinary convex sets (Sections 1
and 2). We also prove a result that has no clear analogue in £3: if the union of two £1-convex sets is
£q-convex, then so is its intersection.

Having described the algebra of the space of £1-convex sets, we turn to its topology (Sections 3
and 4). We show that it has a dense subspace consisting, roughly, of the ¢;-convex unions of cubes.
We then generalize the theorem of McMullen [14] that a monotone translation-invariant valuation on
convex sets is continuous. Our generalization implies both McMullen’s theorem and its ¢1 counterpart.

These results provide the tools that enable us to develop the integral geometry of the metric
space ¢]. The ¢;-intrinsic volumes are defined by a Cauchy-type formula, adapted to the smaller
isometry group of ¢}. We prove analogues of the core theorems of Euclidean integral geometry: first
a Hadwiger-type theorem, then analogues of the Steiner, Crofton, Kubota and kinematic formulas (Sec-
tions 5-8). While Sections 1-4 depend heavily on specific features of the geometry of £7, Sections 5-8
are formally close to their Euclidean counterparts. Even the constants appearing in the formulas are
analogous: one simply replaces the flag coefficients [12] in the Euclidean formulas by the correspond-
ing binomial coefficients.

As this suggests, the integral geometry of ¢ can be regarded as a cousin of the integral geometry
of Euclidean space. It is more simple analytically, because of the smaller isometry group of ¢]. But
since there are many more geodesic sets in £] than in £, it is also more complex geometrically.

Conventions. R" denotes real n-dimensional space as a set, topological space or vector space, but
with no implied choice of metric except when n = 1. We allow n = 0. Lebesgue measure on R" is
written as Vol, or Vol. The metric on a metric space is usually written as d.

1. £¢1-Convexity

Here we define ¢;-convexity and give some useful equivalent conditions. We also discuss the class
of intervals in R", dual in a certain sense to the class of ¢1-convex sets. Along the way, we review
some standard material on abstract metric spaces; this can be found in texts such as Gromov [10,
Chapter 1] and Papadopoulos [16].

Definition 1.1. A path in a metric space X is a continuous map y :[c, ¢'] — X, where ¢ and ¢’ are real
numbers with ¢ < ¢’; it joins y(c) and y (¢'). It is distance-preserving if d(y (t), y (t')) = |t —t'| for all
t,t' €[c,c].

Definition 1.2. A metric space X is geodesic if for all x, X' € X, there exists a distance-preserving path
joining x and x'.

For example, a subspace of Euclidean space is geodesic if and only if it is convex.
Definition 1.3. A subset of R" is £1-convex if it is geodesic when given the subspace metric from £].

A convex subset of R" is ¢1-convex, but not conversely. For example, let f :R — R be an increasing
continuous function: then the graph {(x, f(x)): x € R} C E% is £1-convex. An £1-convex set need not
even have positive reach: consider an L-shaped subset of Z%.

Definition 14. Let y :[c,c'] — X be a path in a metric space X. The length of y is the supremum of
er;] d(y (t;—1), v (tr)) over all partitions c =tp <t <--- <ty =c.
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When speaking of functions [c, ¢'] — R, we use the terms increasing and decreasing in the non-
strict sense. (For example, a constant function is both.) A real-valued function is monotone if it is
increasing or decreasing.

Definition 1.5. A path y :[c, '] — R" is monotone if each of its components y;:[c,c']—> R (1<i<n)
is monotone.

Let X be a metric space and x,x € X. A point y € X is between x and x' if d(x,x) =d(x,y) +
d(y, x'), and strictly between if also x # y # x'. When X = ¢7, a point y is between x and X’ if and only
if for all i € {1,...,n}, either x; <y; <xj or x; < y; < X;.

Definition 1.6. A metric space is Menger convex if for all distinct points x, X' there exists a point strictly
between x and x'.

We will repeatedly use the following characterization theorem for ¢1-convex sets.

Proposition 1.7. Let X C ¢1. The following are equivalent:

(i) X is £1-convex,

(ii) every pair x, X' of points of X can be joined by a path of length d(x, x'),
(iii) every pair of points of X can be joined by a monotone path in X.

When X is closed, a further equivalent condition is that X is Menger convex.
Proof. A metric space is geodesic if and only if each pair of points x, x' can be joined by a path of

length d(x, x') [16, Proposition 2.2.7]. This proves the equivalence of (i) and (ii).
For (ii) < (iii), a path y : [c, '] — £} has length d(y (c), y (c)) if and only if

i —vi(0)| + () = n ()| = y© - y(")] (1)
whenever 1 <i<n and c<t<t' <t” <. Eq. (1) holds if and only if y;(t") is between y;(t) and
yi(t"). It follows that y has length d(y (c), y(c")) if and only if it is monotone.

The final statement follows from the fact that for a metric space in which every closed bounded
set is compact, Menger convexity is equivalent to being geodesic [16, Theorem 2.6.2]. O

The intersection of ¢1-convex sets need not be ¢i-conveX, and can in fact be highly irregular.
For example, every closed subset of the line occurs, up to isometry, as the intersection of a pair of
£1-convex subsets of the plane. Indeed, if # # K C R is closed then the sets

{%(X—d(x, K),x +d(x, K)): xeR} C e, {%(x,x): XER} ce?

are ¢1-convex and have intersection isometric to K. We do, however, have the following.

Definition 1.8. An interval in R" is a subset of the form I—[?:1 I; for some (possibly empty, possibly
unbounded) intervals I1,...,I; CR.

Corollary 1.9. The intersection of an £1-convex set and an interval in R" is £1-convex.

Proof. An interval I has the property that whenever x, x’ € I, every monotone path from x to X’ in R"
lies in I. The result follows from Proposition 1.7(iii). O
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Remark 1.10. Corollary 1.9 might seem weak when compared with the result in Euclidean space that
the intersection of any pair of convex sets is convex. But in fact, the ¢; and Euclidean results are
strictly analogous—as long as one uses the correct analogy. Let A be a metric space and, for a,a’ € A,
write I'(a,a’) for the set of distance-preserving paths joining a and a’. For a subspace X C A to be
geodesic means that whenever x, x’ € X,

Jy e I'(x,x): image(y) C X.

There is a dual condition: X C A is cogeodesic if whenever x, x' € X,

Vy eI'(x,x), image(y)C X.

A subset of ¢J is cogeodesic if and only if it is convex, if and only if it is geodesic, but a subset of
7 is cogeodesic if and only if it is an interval. It is a logical triviality that in any metric space, the
intersection of a geodesic subset and a cogeodesic subset is geodesic. Applied to ¢5, this says that the
intersection of two convex sets is convex. Applied to £1, this is Corollary 1.9.

A subset X C R" is orthogonally convex [8] if X N L is convex whenever L is a straight line parallel
to one of the coordinate axes. Corollary 1.9 has the following special case:

Corollary 1.11. An ¢1-convex set is orthogonally convex. O

On the other hand, an orthogonally convex set need not be £1-convex, even if it is connected. For
example, choose a vector v € R none of whose coordinates is 0, and consider the set of unit-length
vectors in Eg orthogonal to v.

A coordinate subspace of R" is a linear subspace P spanned by some subset of the standard basis.
We write 7rp for the orthogonal projection of R" onto P, and P+ for the orthogonal complement of
P (with respect to the standard inner product). By Proposition 1.7(iii), we have:

Corollary 1.12. Let P be a coordinate subspace of R". Then the image under 7wp of an £1-convex set is £1-
convex. O

There is a further positive result on intersections of £1-convex sets.
Lemma 1.13. Let X and Y be closed subsets of R™. If X, Y and X U'Y are £1-convex, thensois XNY.

Proof. We use the following property of ¢7: if a point a is between points x and y, and if x and y
are both strictly between points z and Z/, then a is strictly between z and z'.

We prove that X NY is Menger convex. Let z,Z/ € XNY with z## 7. Since X and Y are Menger
convex, we may choose points x € X and y € Y strictly between z and z'. Since XUY is £1-convex, we
may choose a distance-preserving path y :[c,c’] — X UY joining x and y. Since X and Y are closed,
we may choose t € [c, c'] with y(t) € XNY. Then y (t) is between x and y, hence strictly between z
and 7, as required. O

The interior and closure of a convex set are convex. The interior of an £1-convex set need not be
£1-convex: consider [—1,0]2 U [0, 1] € R2. On the other hand, we have the following.

Lemma 1.14. The closure of an £1-convex set is £1-convex.

Proof. We prove that the closure X of an £;-convex set X is Menger convex. Let x, y € X. Choose
sequences (x;) and (yr) in X converging to x and y. Choose for each r a point z, € X with d(x;, z;) =
d(zr, yr) =d(x;, yr)/2. The sequence (z;) is bounded, so has a subsequence convergent to some point
ze X.Then d(x,z) =d(z, y) =d(x,y)/2. O
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2. Minkowski sums

In the Euclidean context [17], there are basic laws governing the algebra of intersections and
Minkowski sums: (i) if X and I are convex then so is X NI; (ii) if X and I are convex then so is X +1;
and (iii) if X, Y are closed with X UY convex, and I is convex, then (XNY)+I=X+DNY +1).

In the ¢; context, we already have an analogue of (i) (Corollary 1.9). Here we prove analogues
of (ii) and (iii). As in Remark 1.10, the analogy entails replacing some occurrences of the term ‘convex
set’ by ‘¢1-convex set’, and others by ‘interval’.

First we note that the class of £1-convex sets is not closed under Minkowski sums.

Example 2.1. Given x, y € R", write [x, y] for the closed straight line segment between x and y. Given
also z e R, write [x, y, z] =[x, y]U[y, z]. Define X,Y C R3 by

X=[(0,0,0),(2,0,0), (2,2, -1)], Y =[(0,0,0),(0,-1,2), (-1,-1,2)].

Then X and Y are ¢1-convex, but X + Y is not. Indeed, (0,0,0) and (1,1,1) are points of X +Y
distance 3 apart in K?, but there is no point of X 4+ Y distance 3/2 from each of them.

To prove our analogue of (ii), we use the following sufficient condition for £1-convexity of a
Minkowski sum.

Lemma 2.2. Let X C R" be a closed set and I C R" a compact interval. Suppose that for every x,x’ € X
satisfying (x -+ 1) N (X' + I) = @, there exists a point of X strictly between x and X' in the £1 metric. Then X + 1
is £1-convex.

Proof. The topological hypotheses imply that X + I is closed, so by Proposition 1.7, it is enough to
prove that X + I is Menger convex. Let y and y’ be distinct points of X + I. Write [y, y'] for the
interval consisting of the points between y and y’. Since X is closed and I is compact, we may
choose x,x' € X such that y e x+1, y' e X' + 1, and d(x, x’) is minimal for all such pairs (x, X').

The proof is in two cases. First suppose that (x + I) N (x' + I) = . By hypothesis, we may choose
a point z € X strictly between x and x’. By minimality, y ¢ z+ 1 and y' ¢ z+ I. Also, y € x + I,
y' €x +1, and z is between x and X, from which it follows that [y, y'] N (z+ I) # @. Any point in
this intersection is strictly between y and y’.

Now suppose that (x+ )N +1)#@. If y or y' isin (x+1)N (X' + 1) then (y + y')/2 is a point
of X + I strictly between y and y’. If not, it is enough to prove that

[y. vy n@+Dn( +1)#0.

This follows from the fact that if Jq, J,, J3 are intervals in R" whose pairwise intersections are all
nonempty, then J1 N Jp N J3 is also nonempty. O

Proposition 2.3. The Minkowski sum of a closed ¢1-convex set and an interval is £1-convex.
Proof. Let X C R" be a closed ¢1-convex set, and let ] C R" be an interval. We may write I as a
union of compact subintervals nNcrc.... By Lemma 2.2, X + I" is £;-convex for each r > 1. But

the class of ¢;-convex sets is closed under nested unions, so |J.(X +1") =X +1 is ¢;-convex. O

Here is our analogue of law (iii). The proof is similar to the proof of the Euclidean case
(Lemma 3.1.1 of [17]).

Proposition 2.4. Let X, Y, CR". Then

(XUY)+I=X+DUY +1).
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If X and Y are closed with X U'Y £1-convex, and I is an interval, then also

XNY)+I=X+DHNY+1D.

Proof. The first equation is trivial. In the second, the left-hand side is certainly a subset of the right-
hand side. For the converse, let z € (X +I) N (Y 4+ I), writing

z=x+a=y+b
(xe X, yeY, abel). Choose a monotone path y:[0,1] - X UY joining x and y. Define a path
o :[0,1] - R" by a(t) =z — y(t). Since I is an interval and « is a monotone path whose endpoints

are in I, the whole image of « lies in I. Since X and Y are closed, there exists t € [0, 1] such that
y®)eXNY.Then z=y () +a) e (XNY)+1I, as required. O

Example 6.1 shows that the second part of Proposition 2.4 can fail when I is merely £1-convex.
Corollary 2.5. Let X, Y € R" and let P be a coordinate subspace of R". Then
ap(XUY)=mpXUmpY.

If X and Y are closed and X U'Y is £1-convex then also

ap(XNY)=mpXNmpY.
Proof. This follows from Proposition 2.4, since 7pZ = (Z+ PL)NP forall ZCR". O
3. Approximation of £1-convex sets
Essential to our proof of the ¢; Hadwiger theorem is the result, proved in this section, that a
compact ¢q-convex set can be approximated arbitrarily well by a finite union of cubes that is itself
£1-convex.

Write C, = [—%, %]” for the unit n-cube, and H= {m+ %: m € Z} for the set of half-integers. Given
X CR" and A >0, write A X = {Ax: x € X}. When A > 0, write

Xp = J{rh+Co): he H with A(h+ Ca) N X £} 2 X.
Proposition 3.1. Let X C R" be an ¢1-convex set and A > 0. Then X, is £1-convex.
Proof. Assume without loss of generality that A = 1. Put

L={heH": (h+Cy)NX#0},

so that X; =L + C,. We show that the closed set L and the interval C, satisfy the conditions of
Lemma 2.2. The result will follow.

Let h, b’ € L with (h+ Cp) N (R’ + Cy) = @, assuming without loss of generality that hy + 3 <h — 1.
Choose x € (h+ C,) N X and X' € (h' + Cy) N X. Then

/

1 1
X]<h1+z<ha—§<){1.



88 T. Leinster / Advances in Applied Mathematics 49 (2012) 81-96

By ¢1-convexity, there exists a monotone path from x to X’ in X; this contains a point z with hy + % <

z1 <h} — % Since z is between x and x', we have z € k + C, for some k € H" between h and h’. Then
k € L. The constraints on z; force hy <k; <h), so h#k#h. O

For A > 0, let us say that a subset of R" is A-pixellated if it is a finite union of cubes of the form
A(h+ Cp) (h e H"). A set is pixellated if it is A-pixellated for some A > 0. The role of pixellated sets in
the ¢1 theory is similar to that of polyhedra in the Euclidean theory. Proposition 3.1 implies:

Theorem 3.2. The set of pixellated £1-convex subsets of R" is dense in the space of compact £1-convex subsets
of R", with respect to the Hausdorff metric. 0O

In a later proof, we will use a hyperplane to divide a pixellated ¢1-convex set into two smaller
sets. We will need the following lemma.

Lemma 3.3. Let A > 0 and let X C R" be a A-pixellated £1-convex set. Write

X+ = J{r(h + Cp): h e H* with A.(h + Cy) € X and hy > 0},

X~ = J{rh+ Cn): h e H" with A(h + Cy) € X and hy < 0}.
Then XT, X~ and X N X~ are all £1-convex.
Proof. X is the closure of X N ((0, c0) x R*1), so is £1-convex by Corollary 1.9 and Lemma 1.14.
Similarly, X~ is £1-convex. Now XT U X~ =X, and X is ¢{-convex, so XT N X~ is £;-convex by

Lemma 1.13. O

The following result will not be needed later, but is of independent interest. It generalizes the
classical fact that compact convex sets are Jordan measurable.

Proposition 3.4. Every compact ¢1-convex subset of R" is Jordan measurable.

Proof. Let X CR" be a compact ¢;-convex set. For A > 0, write
D) = U{A(h +Cp): heH"withA(h+Cp)NX#Pand A(h+Cp) & X}.

Write 9 X for the topological boundary of X. Then dX € D(2) for all A > 0, and we have to show that
Vol(0X) =0.

For A > 0 and h € H", the set D(A) cannot contain all 3" of the cubes A(h + o + Cp) with o €
{—1,0, 1}". Indeed, if D(A) contains all 2" corner cubes then X has nonempty intersection with all the
corner cubes, and then it follows from £1-convexity that X contains the whole central cube A(h+ Cy);
hence D(1) does not contain the central cube.

We therefore have

Vol(D()) < ((3" —1)/3") Vol(D(31))
for all A > 0. Thus, infy~ Vol(D(1)) =0, giving Vol(dX) =0. O
4. Valuations
Here we generalize the theorem of McMullen [14, Theorem 8] that a monotone translation-

invariant valuation on convex sets is continuous. This will make numerous continuity checks very
easy.
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For the rest of this section, let #" be a set of compact, orthogonally convex subsets of R". We
suppose that %" contains all singletons {x}, and that X + I € # whenever X € # and I is a com-
pact interval. Then .# contains all compact intervals and is closed under translations. For example,
¢ might be the set J7; of compact convex subsets of R", or the set .%; of compact £;-convex
subsets of R" (by Corollary 1.11 and Proposition 2.3).

A valuation on ¢ is a function ¢ : # — R such that ¢ (#) =0 and

PXUY)=0¢(X)+ oY) —p(XNY)
whenever X,Y,XUY,XNY €. (The hypothesis that XNY € % is redundant for %, and also for
], by Lemma 1.13.)

We give % the Hausdorff metric induced by the ¢; metric on R". This can be defined as follows.
Writing By for the closed unit ball of £, the Hausdorff distance between compact sets X,Y CR" is

dX,Y)=inf{§ >0: XZY+JByandY C X 4+ 8Bp}.
By compactness, the infimum is attained.

A valuation ¢ is continuous if it is continuous with respect to the Hausdorff metric. The notion
of continuity is unaffected by the choice of the 1-norm over other norms on R", since all such are
equivalent. A valuation ¢ is increasing if X CY implies ¢(X) < ¢(Y) for X,Y € %, and monotone if
¢ or —¢ is increasing. It is translation-invariant if (X +a) = ¢(X) for all X € # and a e R".

For R > 0, write Z[R]={X e . #: X CRCy}.

Lemma 4.1. Let ¢ be a monotone translation-invariant valuation on .%#". Let R > 0. Then
lim ¢ (X 4+ 8Cp) = ¢ (X)
§—0

uniformly in X € Z'[R].

Proof. Given 1 <i < n, write v;:R — R" for the embedding of R as the ith coordinate axis of R".
Given also X € %, define fx ;:[0,00) — R by

fx,i(®) = ¢(X +vi[—5/2,8/2]) — p(X).

For all 8,8 > 0, by orthogonal convexity of X and the valuation property, we have

o(X +i[—8.8']) = ¢ (X + vi[—8,0]) + ¢(X + v;[0,8']) — p(X).
So by translation-invariance, fx (§+3") = fx.i(8)+ fx.i(§'). But fx ; is monotone, so fx ;(8) = fx.i(1)-

§ for all § > 0. Assume without loss of generality that ¢ is increasing. Then whenever S > 0 and
X € '[S], we have

1

1
0< fx,i(1) < ¢(x + vi[—i, 5}) <P((S+1)Cp),

SO
0< fx.i(®) <P((S+1)Cn) -6

for all § > 0.
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From this estimate and the fact that C;, = Z?:l vi[—%, %], we deduce that

P (X) <P(X +8Cn) <P(X) +np((R+2)Cp) -8
for all X € Z[R] and § € [0, 1]. The result follows. O
Theorem 4.2. A monotone translation-invariant valuation on ¢ is continuous.

Proof. Consider, without loss of generality, an increasing translation-invariant valuation ¢. Let X € Z
and ¢ > 0. Choose R > 2 with X C (R — 2)C;;. By Lemma 4.1, we may choose 7 > 0 such that
o (Y +nCyp) < oY)+ ¢ for all Y € Z[R]. Put § = min{1, n/2}.

I claim that |¢(Y) — ¢(X)| < & whenever Y € % with d(X,Y) <. Indeed, take such a Y. Then
Y € X 4 8By; but also B, € 2Cy, so Y C X + 28Cy,. This implies that Y € RCp, so Y € Z[R], and
clearly X € JZ[R] too. It also implies that X C Y + nCp, giving

X)) <Y +1Cr) <P(Y) +e.
Similarly, Y € X 4+ nCp, so ¢ (Y) < ¢(X) + €. This proves the claim. O
Corollary 4.3. (See McMullen [14].) A monotone translation-invariant valuation on J¢; is continuous. O
Corollary 4.4. A monotone translation-invariant valuation on %, is continuous. O

Lebesgue measure, as a real-valued function on compact subsets of R", is not continuous with
respect to the Hausdorff metric. It is, however, continuous when restricted to convex sets [22, Theo-
rem 12.7]. Corollary 4.4 generalizes this classical result to the larger class of ¢1-convex sets:

Corollary 4.5. The volume function Vol : %, — R is continuous. O

5. An analogue of Hadwiger’s theorem

We are now in a position to prove ¢1 analogues of the classical theorems of integral geometry. We
begin with Hadwiger’s theorem, adopting a strategy similar in outline to that of Klain [11].

Denote by G, the isometry group of ¢]. It is generated by translations, coordinate permutations,
and reflections in coordinate hyperplanes. A valuation ¢ on ., is invariant if ¢ (gX) = ¢ (X) whenever
X € %] and g € Gy. The continuous invariant valuations on ., form a vector space Val;, over R.

Given 0 <i < n, write Gr,’w. for the set of i-dimensional coordinate subspaces of R"; it has ('l')
elements. Define V| ;: % — R, the ith ¢;-intrinsic volume on R", by

Vii(X)= Y Voli(zpX)
PeGr,’U.

(X € /). In the P-summand, Vol; denotes Lebesgue measure on P = RE,

Examples 5.1. (i) The Oth ¢;-intrinsic volume VT’L0 is the Euler characteristic x, given by x (¥) =0
and x(X) =1 whenever X € %, is nonempty.

(i) The unit cube C, has ¢;-intrinsic volumes V/ ;(Cy) = (}), which are the same as its Euclidean
intrinsic volumes. ,

(iii) Write B, for the unit ball in ¢}. Then Vol(B,) = 2"/n!, giving V; ;(Bn) = ?—:(’:) Taking n =2
and i =1 shows that the ¢;- and Euclidean intrinsic volumes of a convex set are not always equal
(and nor are they equal up to a constant factor, by the previous example).
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A valuation ¢ on %, is homogeneous of degree i if ¢ (1X) = AMp(X) forall A >0 and X € J4]). In
the following lemma, we write v : R" — R™! for the embedding that inserts O in the last coordinate.

Lemma 5.2. Let 0 < i < n. Then:

(i) V, ; is a continuous invariant valuation on J¢/,
(ii) V; ; is homogeneous of degree i,
(iii) vV, ;(X) =V (vX) forall X € %],
(iv) Vy, =Voly,
(v) V, ; is increasing.

’
n+1,i

Proof. The only nontrivial part is (i). First fix P € Gr,’1 ;- By Corollary 2.5, the function X  Vol;(7rp X)
on ., is a valuation. It is also monotone and translation-invariant, and therefore continuous by
Corollary 4.4. This holds for all P, and (i) follows. O

Parts (i) and (iii) allow us to write V;; as just V|: for if X € %] and R" is embedded as a

coordinate subspace of some larger space RV, then the ith ¢;-intrinsic volume of X is the same
whether X is regarded as a subset of R" or of RN. This justifies the word ‘intrinsic’.

The dimension of a nonempty ¢1-convex set X C R" is the smallest i € {0,...,n} such that X C
P +q for some P € Gr,;,i and q € R™. A valuation ¢ on %, is simple if ¥ (X) =0 whenever X € %, is
of dimension less than n.

Proposition 5.3. Let i be a simple continuous translation-invariant valuation on .%;/. Then y = cVol, for
some c € R.

Proof. Put ¢ = — ¥(Cy,) Vol,. By Corollary 4.5, ¢ is a simple continuous translation-invariant valua-
tion with ¢(C,) = 0. We will prove that ¢ is identically zero.

By dividing cubes into smaller cubes, ¢(AC;) =0 for all rational A > 0. By continuity, {(ACy) =0
for all real A > 0.

Now I claim that ¢(X) = 0 whenever X is a pixellated ¢;-convex set. Suppose that X is A-
pixellated, where A > 0; thus, X is a union of some finite number m of cubes of the form A(h + Cy)
(heH"). If m=0 or m=1 then ¢(X) =0 immediately.

Suppose inductively that m > 2. Without loss of generality, the m cubes are not all on the same
side of the hyperplane {y € R": y; =0}. Define sets X* and X~ as in Lemma 3.3; thus, X = XTUX",
and each of the sets X, X=, Xt N X~ is £1-convex. Then ¢(X™) = ¢(X~) = 0 by inductive hypothesis,
and ¢(XT N X™) =0 since ¢ is simple. Hence ¢(X) =0 by the valuation property, completing the
induction and proving the claim.

The result now follows from Theorem 3.2. O

Theorem 5.4. The ¢4 -intrinsic volumes V|, ..., V}, form a basis for the vector space Val;, of continuous invari-
ant valuations on £1-convex subsets of R™. In particular, dim(Val)) =n + 1.

Proof. By Lemma 5.2(iii), (iv), we have V/(C;) =1 whenever 0 <i <n, and V}(Ci) = 0 whenever
0<i< j<n.lt follows that V|, ..., V] are linearly independent.

We prove by induction on n that V|,..., V; span Val,. This is trivial when n = 0. Suppose that
n>1, and let ¢ € Val). Choose some Q € Gr;’nfl, and denote by ¢’ the restriction of ¢ to ¢1-convex
subsets of Q. By inductive hypothesis, there exist constants cg,...,cp—1 such that ¢/ = ’17:_01 Ci Vl./.
Thus, for all £1-convex sets X C Q,

n—1

) =Y V(X (2)

i=0
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Since ¢ is invariant under translations and coordinate permutations, (2) holds for all X € % of

dimension less than n. Put ¢ = ¢ — Z?:_Ol ciV{. Then v is a continuous translation-invariant valuation,
which we have just shown to be simple. Proposition 5.3 implies that ¥ = c, Vol, for some c, € R.
Since Vol, =V}, the result follows. O

Corollary 5.5. Let ¢ be a continuous invariant valuation on .%;/, homogeneous of degree i € R. Then i €
{0,....n}and ¢ =cV] forsomeceR. O

Careful analysis of the proof of the theorem enables two refinements to be made.

First, when showing that every continuous invariant valuation ¢ on %, was a linear combination
of £q-intrinsic volumes, we never called on the fact that ¢ was invariant under reflections in coordi-
nate hyperplanes. Second, we did not use the full strength of the assumption that ¢ was continuous:
only that ¢ was continuous from the outside, that is, limy_, x yox ¢ (Y) = ¢(X) for all X € .7,/. (The es-
sential point is that in Proposition 3.1, the pixellated sets X, contain X.) But any linear combination
of ¢1-intrinsic volumes is continuous and invariant under the full isometry group. Hence:

Corollary 5.6. Let ¢ be a valuation on .%;/, continuous from the outside and invariant under translations and
coordinate permutations. Then ¢ is continuous and invariant. O

6. An analogue of Steiner’s formula
The most obvious analogue of the classical Steiner formula would be an identity of the form
n
Vol(X + ABp) =Y ¢;V{(X)A"!
i=0
for X € % and 1 > 0. Here B; denotes the closed unit ball in £}, and co,...,c, are constants.
However, there can be no such formula. For if there were then Vol(- + B;) would be a valuation on

%, and the following example demonstrates that for general n, it is not.

Example 6.1. Let X = [0, 1] x {0} and Y = {0} x [0, 1], both subsets of R%. Then X, Y, XNY and XUY
are all ¢1-convex sets, and it is straightforward to calculate that

Vol((X ny)+ Bz) < Vol((X +By)N(Y + Bz)).
But (XUY)+ By = (X + B2) U (Y + B3) by Proposition 2.4, so Vol(- + B3) is not a valuation on %
There is, however, a Steiner-type formula in which the role of the ball is played by the cube C;.
Theorem 6.2. Let X € %, and 1 > 0. Then for 0 <k <n,
k n—i ;
VX +2C) =) (n ~ k) VI(X)ak
i=0

In particular,

n
VoI(X +ACq) = D V{(X)A"".
i=0
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For the left-hand side of the first equation to be defined we need X + AC, to be ¢1-convex. This
follows from Proposition 2.3.

Proof. We begin by showing that V,Q(~ + Cp) is a continuous invariant valuation. Proposition 2.4 im-
plies that it is a valuation, since Cy is an interval. It is invariant, since C, is invariant under isometries
fixing the origin. It is also monotone, and therefore continuous by Corollary 4.4.

By the ¢; Hadwiger Theorem 5.4, there are constants ¢; such that V (X + Cp) = Yioci V{(X) for
all X € %,/ It follows that for A > 0 and X € %,

n
VX +2Cn) =2V (ATTX +Ca) =D aViCOA
i=0

The result follows on putting X = Cp, using Example 5.1(ii). O
7. An analogue of Crofton’s formula

In this section and the next, we derive £; analogues of Euclidean integral-geometric formulas. The
formal structure is similar to that in Klain and Rota [12].
For 0 <k <n, let Graff;hk denote the set of k-dimensional affine subspaces of R" parallel to some

k-dimensional coordinate subspace. Each element of Graff;Lk is uniquely representable as P + q with
PeGr,, and q € PL.

n,k
There is a natural measure on Graff; ,, invariant under isometries of ¢{. Indeed, Graff) , is in

canonical bijection with the disjoint union [[p ¢y ) P+, each space P~ carries Lebesgue measure
n,

Vol,,_k, and summing gives the measure on Graff;’k.
Theorem 7.1. Let X € %,/ Then for 0 < j <k <n,

n+j—k
/ V}(XﬂA)dA:( ; >Vr/1+j—k(x)' (3)
Graff;,

In particular, for 0 < k < n, the set

{AeGraff ,: XN A0}
has measure V; _, (X).

Proof. We prove just the first statement, the second being the case j=0.
Write ¢ (X) for the left-hand side of (3). Then ¢ is a monotone invariant valuation since Vj. is, and

since the measure on Grafﬂ1 « 1s invariant. It is therefore continuous, by Corollary 4.4. Moreover, ¢ is

homogeneous of degree n +’j —k, since for A >0 and X € .7,

dOX) = / Vi(AX NAB)d(AB) = MA" ¥ (X).

BeGraft’nvk

So by Corollary 5.5, ¢ =cV/

ntj—k for some c € R.
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By construction of the invariant measure,

sco= Y [vicnera)ds

PEGI‘;J{ pL

For P € Gr,, and g € P+, identifying P~ with R"*, we have

_(k .
Vi(Ca N (P +q) = { ViC=(j) ifqeCax
0

otherwise.

From this it is straightforward to deduce the value of c. O

A very similar argument, left to the reader, proves the following analogue of Kubota’'s theorem
[13,12]. It can also be deduced directly from the definition of the £¢1-intrinsic volumes. Corollary 1.12
guarantees that the left-hand side is defined.

Theorem 7.2. Let X € .%%;. Then for 0 < j <k <n,

/ Tl—j /
Z Vj(rrpX)=<n_k)Vj(X). o

PeGr”Lk

8. Analogues of the kinematic formulas

The classical kinematic formulas concern the intrinsic volumes of sets gX NY, where X and Y are
convex and g is a Euclidean motion. Remark 1.10 suggests that fundamentally, one of X and Y should
be regarded as geodesic and the other as cogeodesic, although in the classical context the difference is
invisible. This leads us to expect ¢1 kinematic formulas in which X is £1-convex and Y is an interval.

To state the ¢; kinematic formulas, we first need a measure on the isometry group G, of ¢f.
This is constructed as follows. G, has a subgroup H,, the nth hyperoctahedral group, consisting of
just the isometries fixing the origin. Each element of G, is uniquely representable as x — h(x) + ¢q
with h € H, and q € R". Being a finite group, H, has a unique invariant probability measure. Tak-
ing the product of this measure with Lebesgue measure on R" gives an invariant (Haar) measure
on Gp.

We also need a result on products. First observe that if X CR™ and Y C R" are ¢;-convex then
X x Y, viewed as a subset of R™*™" | is also £1-convex.

Proposition 8.1. Let X € %, Y € %/, and 0 < k < m+n. Then

VX xY)= Y VIX)Vi(Y)
i+j=k

where 0 < i <mand 0 < j <ninthe summation.

Proof. By definition of the ¢1-intrinsic volumes,

ViXxY)= Y > Voliyj(Tpxq (X x Y))

i+j=k PeGr;m-, Q eGr;lyj



T. Leinster / Advances in Applied Mathematics 49 (2012) 81-96 95

> > Vol;(7rp X) Vol (g Y)

i+j=k PeGry, ;. Q eGr;l,j

Yo Vixviy). o

i+j=k

Example 8.2. Let [ =17 x --- x I be a nonempty compact interval. Then V;.(I) is the jth elementary

symmetric polynomial in the lengths of I, ..., I, (also equal to the jth Euclidean intrinsic volume
of I).

We now state the principal kinematic formula for £f.

Theorem 8.3. Let X € %, and let I be a compact interval in R". Then the set

{geCGn: gXNI#V} (4)
has measure
N
> () ViOViD.
L 1
i+j=n

Proof. Fix I. Write ¢ (X) for the measure of the set (4): then ¢(X) = fcn x(gX NlI)dg. This ¢ is

a monotone invariant valuation on .%;, and is therefore continuous by Corollary 4.4. So by the ¢;
Hadwiger theorem,

p=> cVi (5)
i=0

for some real numbers c;. We compute ¢; by evaluating ¢(AC,) for A > 0. By construction of the
invariant measure on Gy,

1
BOC) = D /X((h(ACn)—i-q)ﬂI)dq.

hEHan

But AC, is Hy-invariant, so ¢ (ACy) is the Lebesgue measure of the set

{geR™ ACh+q) N1 #0). (6)

If I = then the theorem holds trivially; suppose that I # ¢. Write I = []_; Ir, and write u, for the
length of the interval I,. Then the set (6) is a product of intervals of lengths A + u,. Hence

n

pOC) =] [ +u) =" +2Tu) =2"Y Vi) =D vimar,
j=0 j=0

r=1 r=1

using nonemptiness of I and Example 8.2. On the other hand, we may compute ¢ (ACy) using (5), and
comparing coefficients gives ¢; = (’,7)_] v (. O

Higher kinematic formulas for ¢] can be deduced from Theorems 7.1 and 8.3 by an argument
formally identical to that in Section 10.3 of [12]:
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Theorem 8.4. Let 0 < k <n, let X € %, and let I be a compact interval in R". Then

-1 ,.
/v,g(gxm)dgz > <'Z> <I]<> [V

i+j=n+k

Gn

where 0 <i<nandO0< j<ninthesummation. O
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