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Abstract Lygeum spartum L. (Poaceae) is a plant of commercial relevance used as raw material for

manufacturing paper. This species is a newly found salt tolerant species, but its physiological

responses to salinity are poorly understood. The effect of salt stress (50 and 100 mM NaCl) on

growth, leaf water relations, soluble sugars and free amino acids in L. spartum has been investi-

gated. Fresh and dry weights were reduced significantly above 50 mM NaCl. Transpiration, water

potential (Wx) and osmotic potential (Wp) decreased with elevated NaCl. No change was observed

in the turgor potential (Ws). Subsequently, the composition of free amino acids estimated by high

pressure liquid chromatography (HPLC) indicated a significant increase in free amino acid content.

It appears that valine was the main amino acid accumulated significantly by the plants for both

NaCl treatments. However, tyrosine levels decrease by salt treatment compared to control. Con-

tents of Na+ and Cl� increased with an increase in salinity. The concentration of Na+ of salinized

plants (100 mM NaCl) was �70-fold greater than that measured in control plants, and this was

associated with significant reductions in leaf K+ and Ca2+ concentrations. In addition, a significant

accumulation of soluble sugars, probably associated with osmotic adjustment and protection of
liquid chromatography; Wp,

Wx, water potential.
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Figure 1 Lygeum spartu
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membrane stability, occurred in roots of salinized plants. Based upon these results, a possible phys-

iological role of soluble sugars and free amino acids was suggested in L. spartum to maintain turgor.

ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Salinity is an important factor limiting agricultural productiv-

ity in arid and semiarid regions of Algeria (Nedjimi and
Daoud, 2009a). Reclaiming these lands for forage crops is
too costly for most countries to afford. A declining base of ara-

ble farmland and an increasing demand for forage and fibre
warrant the need for utilization of the naturally salt tolerant
species in irrigated and non-irrigated agriculture (Reddy

et al., 2008).
Plants exposed to salt stress undergo changes in their envi-

ronment. The ability of plants to tolerate salt is determined by

the multiple biochemical pathways that facilitate retention
and/or acquisition of water, protect chloroplast functions,
and maintain ion homeostasis. Essential pathways include
those that lead to synthesis of osmotically active metabolites,

specific proteins, and certain free radical scavenging enzymes
that control ion and water flux and support scavenging of oxy-
gen radicals (Parida and Das, 2005).

Many plant species respond rapidly to stressors by increas-
ing the concentration of compatible solutes involved in osmo-
regulation and in protection of proteins and membranes in

conditions of low water potential (Munns and Tester, 2008).
The direct domestication of salt tolerant plants represents

an alternative approach to expand cultivation onto unfavour-

able land, and it can be envisioned as a strategy complementary
to the genetic engineering of salt tolerance in glycophytes.
Therefore, for most species, their potential economic use as cul-
tivated plants and their adaptability to agronomic conditions

have not been fully assessed.
Lygeum spartum L. (Poaceae) is a native species in the Alge-

rian salt steppes (Fig. 1). The plant is of interest because of its

tolerance to environmental stresses and its use as a fodder
grass for livestock in low-rainfall Mediterranean areas (Nedj-
imi, 2009). This species can tolerate extreme conditions of arid-

ity, salinity and high temperatures (Le Houérou, 1995). Its
extensive root system plays a significant role in preventing
desertification by stabilizing the sand (Pugnaire and Haase,
m L. (Poaceae).
1996). It may thus be a suitable candidate for the phytostabi-
lization of acid mine tailings (Conesa et al., 2007). It has been

used as a fodder for domestic livestock and for rehabilitation
of degraded lands (gypsum and calcareous soils) (Garcia-
Fuentes et al., 2001). In North Africa, it was used as raw mate-

rial for manufacturing paper (FAO, 1992).
L. spartum adapts very well to arid and semi-arid soils and

shows high growth capacity under these conditions (Nedjimi,
2009; Nedjimi et al., 2010). However, physiological response

of L. spartum to salt stress is not well understood although
salinity is often associated with the environment where it is
grown. In previous works, Nedjimi (2009) demonstrated L.

spartum as moderately tolerant to salinity. Until now, such a
comprehensive investigation on L. spartum possible compati-
ble solutes has not been done. The hypotheses tested were

(1) that free amino acid accumulates in stressed L. spartum
to high levels which can be important for osmotic adaptation,
and (2) that salinity was able to induce soluble sugar accumu-

lation in this species. The study aims to add arguments in fa-
vour of a significant contribution of osmolytes to the salinity
tolerance of L. spartum.
2. Materials and methods

2.1. Plant material and growth conditions

The seeds of L. spartum were collected from the area of Aı̈n
Maâbed in the province of Djelfa (Algeria) (2�390E longitude,

34�500N latitude and 934 m elevation). Seeds were pre-hy-
drated with aerated, de-ionised water for 12 h and germinated
in vermiculite, at 28 �C in an incubator, for 2 d. They were

then transferred to a controlled-environment chamber with a
16 h light–8 h dark cycle and air temperatures of 25 and
20 �C, respectively. The relative humidity (RH) was 60%

(day) and 80% (night) and photosynthetically active radiation
(PAR) was 400 lmol m�2 s�1, provided by a combination of
fluorescent tubes (Philips TLD 36 W/83, Germany and Sylva-
nia F36 W/GRO, USA) and metal halide lamps (Osram

HQI.T 400 W, Germany).
After 7 d, the seedlings were placed in 15-L containers (six

plant per container) with continuously aerated, modified Hoa-

gland nutrient solution (Hoagland and Arnon, 1938):
Ca(NO3)2 (2 mM), K2HPO4 (0.5 mM), MgSO4 (0.5 mM),
H3BO3 (25 lM), MnSO4 (2 lM), ZnSO4 (2 lM), CuSO4

(0.5 lM), (NH4)6Mo7O24 (0.5 lM), Fe-EDDHA [Fe-ethylen-
diamino-di(o-hydroxyphenylacetic) acid] (20 lM).

The solution was replaced completely every week. After

13 d (when plants were 20 d-old), plants were treated with 0,
50 and 100 mM NaCl. The experiment was set up as a ‘‘Com-
pletely Randomized Design’’. Each treatment was replicated
five times and each replicate included six plants (i.e., 30 plants

per treatment). Dry and fresh weights, water potential (Wx),
osmotic potential (Wp), turgor potential (Ws) and amino acids
were measured after 30 d of the treatments, when plants were

50 d.
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2.2. Measurement of fresh and dry weights

Plants were harvested and total fresh weight (FW) was deter-
mined. The total dry weight (DW) was measured after the sam-
ples had been dried at 65 �C for 72 h.

2.3. Plant transpiration

For plant transpiration measurement, each pot containing one
plant was covered with a plastic bag, secured around the stem

base. The water transpired was estimated under controlled
light from the weight loss over a 6-h period (10:00–16:00 h)
corresponding to high natural sunlight period. The mean tran-

spiration rate (per g FW) was calculated based on the amount
of transpired water and total fresh weight at sampling time.

2.4. Leaf water relations

The leaf water potential (Wx) of the most recent fully-ex-
panded leaves was measured using the pressure chamber tech-

nique (Turner, 1988). The same leaves were put into plastic
bags and rapidly frozen with liquid nitrogen. They were subse-
quently thawed and pressed to extract the cell sap. The osmotic
potential (Wp) of the leaf sap was calculated after measuring

sap osmolarity using an automatic, freezing-point depression
osmometer (Digital Osmometer, Roebling, Berlin), by van’t
Hoff equation (Nobel, 1991):

Wp ¼ nRT:

where n = mosmol, R = 0.083 and T = ta ambient tempera-
ture (K).

Turgor potential (Ws) was calculated as the difference be-

tween leaf water potential and osmotic potential.

2.5. Chemical analysis

Leaves samples were put in Eppendorf tubes with holes at the
bottom and rapidly frozen with liquid nitrogen. These tubes
were then centrifuged twice into assay tubes, at 4000 g for
4 min (4 �C), in such a way that all the sap was extracted from

the samples. For the ion analysis, 25 lL of cell sap was filtered,
diluted and injected into a Dionex-D-100 ion chromatograph
with an Ionpac AS124-4 mm (10–32) column and an AG 14

(4 · 50 mm) guard column. Chloride (Cl�) was measured with
Chromeleon/Peaknet 6.40 chromatography software, by com-
paring peak areas with those of known standards. The sodium

(Na+), potassium (K+) and calcium (Ca2+) concentration in
the cell sap, determined by atomic absorption spectrometry
(905AA, GBC, Australia), was measured for extract aliquots

diluted with a LaCl3 + CsCl solution.

2.6. Free amino acids analysis

The analyses were carried out with an HPLC/MS system con-

sisting of an Agilent 1100 series HPLC (Agilent Technologies,
Santa Clara, CA, USA), l-well plate auto-sampler and a cap-
illary pump, connected to an Agilent Ion Trap XCT Plus Mass

Spectrometer (Agilent Technologies) using an electrospray
(ESI) interface.

Standards, with known concentrations of each amino acid

(0.1, 0.5, 1, 10, 25 and 50 lM), and samples were prepared in
the mobile phase A, consisting of water/acetonitrile/formic acid
(89.9:10:0.1), and passed through 0.22-lm filters. Then, 5 ll of
each standard or sample was injected onto a Zorbax SB-C18

HPLC column (5 lm, 150 · 0.5 mm, Agilent Technologies),
thermostatted at 40 �C, and eluted at a flow rate of 5 ll min�1.
Themobile phase B, consisting of water/acetonitrile/formic acid

(10:89.9:0.1), was used for the chromatographic separation. The
elution consisted of 5 min of 0%B, a linear gradient from 0% to
10% B in 10 min and 10% B for 5 min. The column was equili-

brated with the starting composition of the mobile phase for
20 min before each analytical run. The UV chromatogram was
recorded at 210 nm with the DAD module (Agilent
Technologies).

The mass spectrometer was operated in the positive mode,
with a capillary spray voltage of 3500 V and a scan speed of
26,000 (mz�1) s�1 from 50 to 250 mz�1. The nebuliser gas

(He) pressure was set to 15 psi and the drying gas was set to
a flow of 5 l min�1, at 350 �C.

The chromatogram of each amino acidic ion from both

standards and samples was extracted and the peak area was
quantified using the Data Analysis programme for LC/MSD
Trap Version 3.2 (Bruker Daltonik, GmbH, Germany). The

peak area data of the standards were used for calculation of
the calibration curve, from which the concentrations of each
amino acid in the samples were obtained.

2.7. Soluble sugars analysis

Total soluble sugars content in leaf sap was measured accord-
ing to the phenol–sulfuric acid of Dubios et al. (1956) method.

2.8. Data analysis

Data were analysed statistically, using the SPSS 7.5 software

package, by ANOVA and by Tukey’s multiple range test, to
determine differences between means.

3. Results

Fresh weight (P < 0.001) and dry weight (P < 0.01) of L.
spartum plants were affected by salinity. Growth parameters

mentioned above decreased significantly at high NaCl concen-
tration. These parameters did not change significantly at
50 mM NaCl (Table 1). In addition, transpiration in L. spar-
tum L. seedlings declined significantly (P < 0.01) with the in-

crease of salinity (Table 1).
Analysis of leave sap revealed that the water potential (Wx)

(P< 0.001) and osmotic potential (Wp) (P < 0.01) were de-

creased by the high-NaCl treatment (100 mM NaCl) (Fig. 2).
However, there were no significant differences (P > 0.05) be-
tween the turgor potential (Ws) values of the control and trea-

ted plants (Fig. 2).
Salinity significantly affected Na+ (P < 0.0001), K+

(P< 0.0001), Ca2+ (P < 0.0001), and Cl� (P < 0.005) con-

tents of plants. Contents of Na+ and Cl� increased with an in-
crease in salinity. The concentration of Na+ in leaves sap of
plants treated with 100 mM NaCl was �70-fold greater than
that measured in control plants. Seedlings also accumulated

significantly higher Cl� than their corresponding controls
(Fig. 3). The calcium (Ca2+) and potassium (K+) contents
of plants decreased with an increase in salinity (Fig. 3).



Table 1 Effects of NaCl on FW and DW, transpiration and of Lygeum spartum L. grown in hydroponic conditions. Values represent

means ± standard error (n= 5).

NaCl (mM) FW (g plant�1) DW (g plant�1) Transpiration (g H2O g plant�1)

0 1.61 ± 0.19 a 0.35 ± 0.05 a 0.88 ± 0.15 a

50 0.81 ± 0.22 ab 0.29 ± 0.03 ab 0.65 ± 0.13 b

100 0.67 ± 0.27 b 0.22 ± 0.03 b 0.49 ± 0.05 c

Different letters in the same column indicate significant difference at the 5% level according to the Tukey’s multiple range test.
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Figure 2 Effects of NaCl on water potential (Wx), osmotic

potential (Wp) and turgor potential (Ws) of Lygeum spartum L.

grown in hydroponic conditions. Data represent means ± SE

(n= 5). Values with different letters are significantly different

(P< 0.01, Tukey’s test).
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Figure 3 Effects of NaCl on Na+, K+, Ca+2 and Cl� contents

of Lygeum spartum L. grown in hydroponic conditions. Data

represent means ± SE (n= 5). Values with different letters are

significantly different (P < 0.01, Tukey’s test).
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Figure 4 Effects of NaCl on amino acids content of Lygeum

spartum L. grown in hydroponic conditions. Data represent

means ± SE (n= 5). Values with different letters are significantly

different (P < 0.01, Tukey’s test).
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Figure 5 Effects of NaCl on total soluble sugars content of

Lygeum spartum L. grown in hydroponic conditions.
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Amino acids were also analysed in the extract cell sap.

When individual amino acids were studied, only the amounts
of some of them changed as a consequence of the treatments
(Fig. 4). Valine was a major amino acid increased significantly
for both NaCl treatments. An increase in phenylalanine was
also observed for both treatments, compared with control
plants. However, a general and similar decrease in tyrosine lev-

els occurred in the saline treatments compared to control
(Fig. 4).

After 30 d of treatments, salinity had a significant effect on
total soluble sugars content in L. spartum plants (P < 0.05).
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Total soluble sugars content substantially increased with an in-
crease in salinity (Fig. 5).
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Figure 6 Effects of NaCl on total amino acids content of

Lygeum spartum L. grown in hydroponic conditions. Data

represent means ± SE (n= 5). Values with different letters are

significantly different (P < 0.01, Tukey’s test).
4. Discussion

The present study showed that FW and DW of L. spartum L.
were decreased significantly with the increase in NaCl treat-

ments (Table 1). Similar results have been reported for other
grasses (Bai et al., 2008; Gulzar and Khan, 2006; Muscolo
et al., 2003). Thus, the growth reduction observed in plants

subjected to salt stress often results from direct effects (toxicity
of ions accumulated in tissues) and/or from indirect effects
(limitation of mineral and water acquisition) (Nedjimi and

Daoud, 2009b; Nedjimi, 2009).
Transpiration rates of our plants decreased significantly

with the increase of salinity (Table 1). This may be due to

the possibility that lowered water potentials in the roots can
trigger a signal from root to shoot. This signal might be hydro-
static or involve organic molecules such as ABA, as previous
authors have claimed (Zhang and Davies, 1991).

Osmotic adjustment involves the net accumulation of sol-
utes in cells in response to a fall in the water potential of their
environment. As a consequence of this net accumulation, the

cell osmotic potential is lowered and turgor pressure tends to
be maintained (Marcum and Murdoch, 1992). The reductions
observed in osmotic potential (Wp), when treatments were ap-

plied, were well related to reductions in water potential (Wx),
but had no effect on turgor (Fig. 2). The fact that there were
no changes in turgor in the plants, in response to the treat-
ments of our experiment, indicates a certain level of osmotic

adjustment (Munns, 2002; Nedjimi et al., 2010).
The presence of high concentrations of Na+ and Cl� in the

nutrient solution produced a high uptake of these ions and

contributed to their increased flux into the xylem (Fig. 3), sug-
gesting that these were the inorganic solutes involved in osmo-
tic adjustment (Munns and Tester, 2008). This effect has been

reported in other Poaceae as well, e.g., in Sporobolus virginicus
(Marcum and Murdoch, 1992), Oryza sativa (Alam et al.,
2002), Hordeum vulgare (Shabala et al., 2005) and Iris lactea

(Bai et al., 2008).The reduction of growth induced by salinity
(Table 1) was probably associated with the toxic effect of the
accumulation of Na+ and Cl� in plant tissues and reduction
of absorption of K+ and Ca2+. High Na+ concentration

interferes with intracellular K+ and Ca2+ accumulation pre-
sumably by competing for the same sites of influx (Tester
and Davenport, 2003. Therefore, the key for tolerance might

be synchronisation between the high rate of ion transport to
the shoot and ion compartmentation by the leaf cells (Munns
et al., 2006).

In our experiments, L. spartum accumulated a large amount
of Na+ and Cl� ions and lower amount of Ca2+ and K+.
First the similar physicochemical structures of Na+ and K+

mean that Na+ competition at transport sites for K+ entry

into the symplast may result in K+ deficiency. Secondly, cyto-
plasmic Na+ competes for K+ binding sites and hence inhibits
metabolic processes that crucially depend on K+ (Maathius

and Amtmann, 1999). Under saline conditions, high levels of
external Na+ not only interfere with Ca2+ acquisition by the
roots, but also may disrupt the integrity of root membranes

and alter their selectivity (Grattan and Grieve, 1999). Since
maintaining an adequate supply of Ca2+ in saline soil solu-
tions is an important factor in controlling the severity of spe-
cific ion toxicities, particularly in crops which are susceptible
to Na+ and Cl� injury (Nedjimi and Daoud, 2009b).

Osmotic adjustment, which is necessary for growth in a sal-

ine environment, may be accomplished by accumulation of
inorganic and organic solutes. Inorganic ions are believed to
be sequestered in the vacuoles, while organic solutes are as-

sumed to be compartmentalised in the cytoplasm to balance
the low osmotic potential in the vacuole (Munns and Tester,
2008). Massive accumulation of free amino acids under salt

stress has been reported in many graminaceous species (Lutts
et al., 1999; Morant-Manceau et al., 2004; Wang et al.,
2007). In the present experiment with L. spartum, salinity in-
creased the total amino acids, compared with the control

plants (Fig. 6). However, when individual amino acids were
studied, only an increase in leaf sap valine concentrations, to
values nearly double those observed in control plants were re-

ported (Fig. 5). The increase of valine was positively related to
Cl� (r = 0.93, data not shown) and Na+ (r= 0.85, data not
shown) accumulations.

Amino acids have been reported to accumulate in higher
plants under salinity stress (Ashraf, 1994). The important ami-
no acids include alanine, arginine, asparagines, glycine, serine,

and leucine, together with the amino acid, proline, and the
non-protein amino acids, citrulline and ornithine (Ashraf
and Harris, 2004). Valine was also been reported to accumu-
late in plants in response to salt stress such as strawberry

(Keutgen and Pawelzik, 2008), Beta vulgaris (Gzik, 1996)
and Phragmites australis (Hartzendorf and Rolletschek, 2001).

Free amino acid accumulation in plants under salt stress

has often been attributed to alterations in biosynthesis and
degradation processes of amino acids and proteins (Hare
et al., 1998). Considering that salinity increased the free amino

acid content in sap leaves (Fig. 6), our results could be related
to an increase in amino acid degradation or inhibition in syn-
thesis jointly with reductions in degradation or increases in
protein synthesis.

In this work, the contribution of total soluble sugars accu-
mulation to osmotic adjustment was significant, since the total
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soluble sugars content increased with an increase in salinity
(Fig. 5). Similar results were obtained by Morant-Manceau
et al. (2004), who reported that the concentrations of sugars

change in response to salt stress in Triticum dicoccum. Carbo-
hydrates such as soluble sugars (glucose, fructose, sucrose,
fructans) accumulate under salt stress to accommodate the io-

nic balance in the vacuoles (Parida and Das, 2005; Ashraf and
Harris, 2004). Their major functions are osmoprotection, os-
motic adjustment, carbon storage, radical scavenging and sta-

bilization of the structure of proteins such as Rubisco
(Rejsiková et al., 2007). The activity of sucrose phosphate syn-
thase increases under salt stress, whereas starch phosphorylase
activity decreases (Dubey and Singh, 1999). Soluble sugar

accumulation may be due to further transformation of starch
to sugars or less consumption of carbohydrates by the tissues
in saline conditions (Hare et al., 1998).

To conclude, the strategies of salt tolerance in L. spartum
involve a delicate balance among ion accumulation, osmotic
adjustment, soluble sugars and amino acids production and

maintenance of pressure potential. Further studies on enzy-
matic and growth hormones are required to elucidate the bio-
chemical mechanisms implied.
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