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We show that every virtually torsion-free subgroup of the outer automorphism group of
a conjugacy separable relatively hyperbolic group is residually finite. As a direct conse-
quence, we obtain that the outer automorphism group of a limit group is residually finite.
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1. Introduction

Relatively hyperbolic groups were introduced by Gromov in [1], in order to generalize notions such as the fundamental
group of a complete, non-compact, finite volume hyperbolic manifold and to give a hyperbolic version of small cancellation
theory over free groups by adopting the geometric language of manifolds with cusps. This notion has been developed by
several authors and, in particular, various characterizations of relatively hyperbolic groups have been given (see [2–4]
and the references therein). We should mention here that Farb [5] introduced a weaker notion of relative hyperbolicity
for groups, using constructions on their Cayley graphs, as well as the Bounded Coset Penetration property, an additional
condition which makes his definition equivalent to the other definitions.
We recall here one of Bowditch’s equivalent definitions (in the case of infinite ‘‘peripheral’’ subgroups). A finitely

generated group G is hyperbolic relative to a family of finitely generated subgroups G if G admits a proper, discontinuous and
isometric action on a proper, hyperbolic path metric space X such that G acts on the ideal boundary of X as a geometrically
finite convergence group and the elements of G are the maximal parabolic subgroups of G.
Besides the fundamental groups of hyperbolic manifolds of finite volume, examples of relatively hyperbolic groups are

fundamental groups of finite graphs of finitely generated groups with finite edge groups, which are hyperbolic relative to
the family of infinite vertex groups (which may be empty, in which case the group is hyperbolic), since their action on the
Bass–Serre tree satisfies Definition 2 in [2].
Another example of relatively hyperbolic groups are limit groups. The notion of a limit group was introduced by Sela

[6,7] in his solution to Tarski’s problem for free groups. As it turned out, the family of limit groups coincides with that of
finitely generated fully residually free groups first introduced by Baumslag [8], and extensively studied by Kharlampovich
and Myasnikov [9,10]. In [11], Dahmani showed that limit groups are hyperbolic relative to their maximal non-cyclic
abelian subgroups (see also [12]). Note that each group is relatively hyperbolic to itself. So, from now on, in order to avoid
this trivial situation, we assume that all relatively hyperbolic groups properly contain the corresponding maximal parabolic
subgroups.
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In [13], it was proved that the outer automorphism group of a conjugacy separable hyperbolic group is residually finite.
This is a far-reaching generalization of a classical result of Grossman [14], which states that the mapping class group of a
closed orientable surface is residually finite. The purpose of this note is to prove the following generalization for relatively
hyperbolic groups.

Theorem 1.1. Let G be a conjugacy separable, relatively hyperbolic group. Then each virtually torsion-free subgroup of the outer
automorphism group Out(G) of G is residually finite.

As an application, we obtain:

Theorem 1.2. Let G be the fundamental group of a finite graph of groups, such that each edge group is finite and each vertex
group is polycyclic-by-finite. Then Out(G) is residually finite.

Guirardel and Levitt [15] showed that the outer automorphism group of a limit group is virtually torsion-free. More
recently, Chagas and Zalesskii [16] have shown that limit groups are conjugacy separable. Therefore, from Theorem 1.1, we
immediately deduce the following result.

Theorem 1.3. The outer automorphism group of a limit group is residually finite.

2. Proofs of the main results

A group G is conjugacy separable if for any two non-conjugate elements x and y of G, there is a finite homomorphic im-
age of G in which the images of x and y are not conjugate. An automorphism f of a group G is called conjugating if f (g) is
conjugate to g for each g ∈ G. The conjugating automorphisms of a group G form a subgroup of Aut(G), which we denote
by Conj(G). Clearly, Conj(G) is a normal subgroup of Aut(G) containing the inner automorphism group Inn(G) of G. The im-
portance of this notion to the study of residual properties of the outer automorphism group of G, arises from two facts. The
first is that if G is finitely generated and conjugacy separable, then the quotient group Aut(G)/Conj(G) is residually finite
(see [13, Lemma 2.1]). The second is the following short exact sequence

1→ Conj(G)/Inn(G) ↪→ Aut(G)/Inn(G)→ Aut(G)/Conj(G)→ 1. (1)

Thus to prove Theorem 1.1, it suffices to show that if G is relatively hyperbolic, then the quotient Conj(G)/Inn(G) is finite.
We will need the following lemma whose a more general version in the case of projections on quasiconvex subspaces

can be found in [17, Proposition 2.1, Chapter 10].

Lemma 2.1. Let (X, d) be a δ-hyperbolic metric space, let g be an isometry of X and let N be a positive real number such that
the set Y = {y ∈ X : d(y, gy) ≤ N} is nonempty. Given a point x ∈ X and a positive number M, choose y ∈ Y with d(x, y) ≤
d(x, Y )+M. Then either d(x, gx) ≥ 2d(x, y)+ d(y, gy)− 2(3δ + 2M) or d(y, gy) ≤ 3δ + 2M.

Proof. We consider a geodesic triangle with vertices x, y and gy (see Fig. 1). Let z andw be the points on the geodesics [x, y]
and [y, gy], respectively, which are at distance α from y, where α is the Gromov product of x and gy with respect to y. We
first note that w ∈ Y . Indeed, d(w, gw) ≤ d(w, gy) + d(gy, gw) = d(w, gy) + d(y, w) = d(y, gy) ≤ N . Since w ∈ Y , we
have d(w, x) ≥ d(x, Y ) ≥ d(x, y) − M and hence d(x, z) + d(z, y) = d(x, y) ≤ d(w, x) + M ≤ d(x, z) + δ + M . It follows
that α = d(z, y) ≤ δ + M . Therefore d(x, gy) = d(x, y) + d(y, gy) − 2α, where α ≤ δ + M . Similarly one can show that
d(y, gx) = d(x, y)+ d(y, gy)− 2β , where β ≤ δ +M . Now we turn our attention to a geodesic quadrilateral with vertices
x, y, gy and gx. There are two cases to consider, as shown in the following figure.
In the first case, by the four point condition we have d(x, gy)+ d(y, gx) ≤ d(x, gx)+ d(y, gy)+ 2δ. Therefore,

d(x, gx) ≥ d(x, gy)+ d(y, gx)− d(y, gy)− 2δ
= d(x, y)+ d(y, gy)− 2α + d(x, y)+ d(y, gy)− 2β − d(y, gy)− 2δ
= 2d(x, y)+ d(y, gy)− 2(α + β + δ)
≥ 2d(x, y)+ d(y, gy)− 2(3δ + 2M).

In the second case, using the four point condition again, we have d(x, gy)+ d(y, gx) ≤ d(x, y)+ d(gx, gy)+ 2δ. Thus

d(x, y)+ d(y, gy)− 2α + d(x, y)+ d(y, gy)− 2β ≤ d(x, y)+ d(gx, gy)+ 2δ

and hence d(y, gy) ≤ α + β + δ ≤ 3δ + 2M . This completes the proof. �

Lemma 2.2. Let G be a relatively hyperbolic group. Then the inner automorphism group Inn(G) of G is of finite index in Conj(G).

Proof. The proof of the lemma is a generalization of the proof of [13, Lemma 2.2]. In this case instead of the Cayley graph
of G we use the δ-hyperbolic metric space X (in the sense that every geodesic triangle in X is δ-thin) on which G acts by
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Fig. 1. The two cases of Lemma 2.1.

isometries. One essential difference between the two proofs is the existence of parabolic isometries in the case of relatively
hyperbolic groups.
Suppose on the contrary that Inn(G) is of infinite index in Conj(G) and fix an infinite sequence f1, f2, . . . , fn, . . . of

conjugating automorphisms of G representing pairwise distinct cosets of Inn(G) in Conj(G). In particular, G is neither finite
nor virtually infinite cyclic. Let λi = infx∈X maxs∈S d(x, fi(s)x), where S is a fixed finite generating set of G closed under
inverses, and let x0i ∈ X such that maxs∈S d(x

0
i , fi(s)x

0
i ) ≤ λi+

1
i . As shown in the proof of Theorem 1.2 in [18], the sequence

λi converges to infinity. Hence, for a given non-principal ultrafilter ω on N the based ultralimit (Xω, dω, x0ω) of the sequence
of based metric spaces (X, di, x0i ), where di =

d
λi
, is an R-tree. Moreover, there is an induced non-trivial isometric G-action

on (Xω, dω, x0ω) (i.e. G has no a global fixed point in Xω), given by g · (xi) =
(
fi(g)xi

)
.

We shall show again that this action has a global fixed point. Suppose g is an element of G acting as a hyperbolic isometry
on Xω with translation length τω(g), and fix an element x = (xi) ∈ Xω on the axis of g . Then limω di

(
fi(g)2xi, xi

)
=

dω(g2x, x) = 2τω(g) = 2dω(gx, x) = 2 limω di
(
fi(g)xi, xi

)
and so limω

(
2di

(
fi(g)xi, xi

)
− di

(
fi(g)2xi, xi

))
= 0.

For each index i, let Yi =
{
y ∈ X : τ(fi(g)) ≤ d(y, fi(g)y) ≤ τ(fi(g))+ 1

i

}
, where τ(fi(g)) is the minimal displacement of

fi(g), and choose yi ∈ Yi such that d(xi, yi) ≤ d(xi, Yi)+ 1.
By Lemma2.1, there are non-negative constants C(δ) and K(δ), depending only on δ, such that d

(
fi(g)xi, xi

)
≥ 2d(xi, yi)+

d
(
fi(g)yi, yi

)
− K(δ) whenever d(yi, fi(g)yi) > C(δ). Let I denote the subset of N consisting of those indices i for which

d(yi, fi(g)yi) > C(δ). The maximality of ω implies that it contains exactly one of I , N− I .
We consider the two cases separately.
Case 1: I ∈ ω. In this case for each i ∈ I we have d

(
fi(g)xi, xi

)
≥ 2d(xi, yi) + d

(
fi(g)yi, yi

)
− K(δ) ≥ 2d(xi, yi) +

τ(fi(g)) − K(δ). On the other hand, d
(
fi(g)xi, xi

)
≤ 2d(xi, yi) + d

(
fi(g)yi, yi

)
≤ 2d(xi, yi) + τ(fi(g)) + 1

i . It follows that
|d

(
fi(g)xi, xi

)
− τ(fi(g))| ≤ 2d(xi, yi)+ K(δ)+ 1

i . Now, it is easy to verify that

2d
(
fi(g)xi, xi

)
− d

(
fi(g)2xi, xi

)
≥ 4d(xi, yi)+ 2τ(fi(g))− 2K(δ)− [2d(xi, yi)+ 2d

(
fi(g)yi, yi

)
]

≥ 4d(xi, yi)+ 2τ(fi(g))− 2K(δ)−
[
2d(xi, yi)+ 2τ(fi(g))+

2
i

]
= 2d(xi, yi)− 2K(δ)−

2
i
,

and hence 2d(xi, yi) ≤ 2d
(
fi(g)xi, xi

)
− d

(
fi(g)2xi, xi

)
+ 2K(δ)+ 2

i . Finally,∣∣∣∣τω(g)− τ(fi(g))λi

∣∣∣∣ ≤ ∣∣τω(g)− di(fi(g)xi, xi)∣∣+ ∣∣∣∣di(fi(g)xi, xi)− τ(fi(g))λi

∣∣∣∣
≤

∣∣τω(g)− di(fi(g)xi, xi)∣∣+ 2d(xi, yi)
λi

+
K(δ)
λi
+
1
iλi

≤ |τω(g)− di(fi(g)xi, xi)| + 2di
(
fi(g)xi, xi

)
− di

(
fi(g)2xi, xi

)
+ 3
K(δ)
λi
+
3
iλi
,

for all i ∈ I .
Since the ω-limit of the right-hand side of the above inequality is 0 and τ(fi(g)) = τ(g) for all i, fi(g) being a conjugate

of g for each i, it follows that τω(g) = 0, which contradicts the assumption that τω(g) is strictly positive.
Case 2: N − I ∈ ω. If limω di(xi, yi) < ∞, the sequence y = (yi) is a point of Xω fixed by g , since 0 ≤ dω(y, gy) =

limω di
(
yi, fi(g)yi

)
≤ limω C(δ)λi = 0, which contradicts the choice of g . Hence limω di(xi, yi) = ∞. For each i, let γi :
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[0, di(xi, yi)] → Xi be a geodesic from xi to yi. Since for every t ≥ 0 the set of indices i for which t lies in the domain
of γi, is contained in ω, we can define a geodesic ray γ : [0,∞) → Xω by γ (t) =

(
γi(t)

)
i, which is asymptotic to an ideal

point ỹ ∈ ∂Xω . We will show first that g fixes ỹ, and then that ỹ is not one of the points at infinity determined by the axis of
g , contradicting the fact that any hyperbolic isometry of a tree fixes exactly two points at infinity.

Claim 1. g fixes ỹ.

Proof. It suffices to show that the geodesics gγ and γ are asymptotic, i.e. that supt dω(gγ (t), γ (t)) < ∞. Let t ≥ 0.
For each i big enough, we consider the quadrilateral defined by the geodesics fi(g)γi, γi, [xi, fi(g)(xi)] and [yi, fi(g)(yi)].
Since the space Xi is hyperbolic, there is a non-negative constant M(δ), depending only on δ, such that the side fi(g)γi
is contained in the M(δ)

λi
-neighborhood of the union of the other sides. Hence, the side fi(g)γi is contained in the R-

neighborhood of γi, where R = M(δ)
λi
+ di

(
xi, fi(g)(xi)

)
+ di

(
yi, fi(g)(yi)

)
. Let t ′ ≥ 0 be such that γi(t ′) is the projection of

fi(g)γi(t) on γi. Then t ′ = di
(
γi(t ′), γi(0)

)
≤ di

(
γi(t ′), fi(g)γi(t)

)
+ di

(
fi(g)γi(t), fi(g)γi(0)

)
+ di

(
fi(g)γi(0), γi(0)

)
and thus

t ′−t ≤ R+di
(
fi(g)xi, xi

)
. In the sameway, we obtain that t−t ′ ≤ R+di

(
fi(g)xi, xi

)
and therefore |t ′−t| ≤ R+di

(
fi(g)xi, xi

)
.

Now

di
(
fi(g)γi(t), γi(t)

)
≤ di

(
fi(g)γi(t), γi(t ′)

)
+ di

(
γi(t ′), γi(t)

)
≤ R+ |t − t ′|

≤ 2
M(δ)
λi
+ 3di

(
xi, fi(g)(xi)

)
+ 2di

(
yi, fi(g)(yi)

)
.

Taking limits, we get dω
(
gγ (t), γ (t)

)
≤ 3τω(g). This proves the claim.

Claim 2. ỹ is not one of the points at infinity determined by the axis of g.

Proof. Suppose that ỹ is one of the ends of the axis Ag of g . Since Xω is a tree, there is t0 ≥ 0 such that γ (t) ∈ Ag for all
t ≥ t0. The assumption that g acts on Ag as a translation of amplitude τω(g) implies that either gγ (t) = γ

(
t + τω(g)

)
or

g−1γ (t) = γ
(
t+τω(g)

)
for all t ≥ t0. Suppose that gγ (t) = γ

(
t+τω(g)

)
for all t ≥ t0 (the other case is handled similarly).

Then limω di
(
fi(g)γi(t), γi(t+τω(g))

)
= 0. Fixing t ≥ t0, the geodesic γi contains the point γi(t)+τω(g) for each i sufficiently

large. Thus τω(g)+ di
(
γi(t + τω(g)), yi

)
= di

(
γi(t), yi

)
= di

(
fi(g)γi(t), fi(g)yi

)
≤ di

(
fi(g)γi(t), yi

)
+ di

(
yi, fi(g)yi

)
, and so

τω(g) ≤ di
(
fi(g)γi(t), yi

)
− di

(
γi(t + τω(g)), yi

)
+ di

(
yi, fi(g)yi

)
≤ di

(
fi(g)γi(t), γi(t + τω(g))

)
+ di

(
yi, fi(g)yi

)
.

It follows that 0 < τω(g) ≤ limω di
(
fi(g)γi(t), γi(t + τω(g))

)
+ limω di

(
yi, fi(g)yi

)
= 0. This is a contradiction, proving the

claim.
So in all cases, every element of the finitely generated group G fixes some point of Xω . This implies that the action of G

on Xω has a global fixed point (see [19, Proposition II. 2.15]), which is the desired contradiction. �

Remark 2.3. It follows from the above proof that τω(g) = limω τ(fi(g))
λi

for each g ∈ G and each sequence (fi) of automor-
phisms representing pairwise distinct elements in Out(G). The proof of the lemma can be simplified if one at the beginning
makes use of the hypothesis that each fi is a conjugating automorphism.

Remark 2.4. In the proof of [13, Lemma 2.2] the points yi were chosen so that fi(g) realizes its minimal displacement at yi.
However, this random choice could give yi for which the inequality d(fi(g)xi, xi) ≥ 2d(xi, yi)+ d(fi(g)yi, yi)− K(δ) is false.
The correct way to proceed with the proof is to choose yi as above. The fact that in the case of hyperbolic groups the action
(on the Cayley graph) is free and cocompact, can be used to avoid Case 2. Indeed, in such an action the translation lengths
are bounded away from zero and therefore for each positive number K there is a positive integerm such that τ(gm) > K for
all group elements g of infinite order. Thus, by replacing each element by itsmth power, we can suppose that the translation
length of any fi(g) is big enough.

Proof of Theorem 1.1. We consider the short exact sequence (1). Since the first term is finite, each torsion-free subgroup
of Out(G) embeds in Aut(G)/Conj(G), which is residually finite by [13, Lemma 2.1]. Hence, each torsion-free subgroup of
Out(G) is residually finite, from which the theorem follows. �

Remark 2.5. Let Autn(G) be the subgroup of Aut(G) consisting of automorphisms which fix setwise every normal subgroup
of G. Obviously, Conj(G) ⊆ Autn(G). After this paper appeared as a preprint, Minasyan and Osin [20] proved (using
completely different methods than ours) that for any relatively hyperbolic group G, Inn(G) has finite index in Autn(G) and
hence in Conj(G). Moreover, if G is non-elementary and has no non-trivial finite normal subgroups, then Autn(G) = Inn(G).
Thus, in this case, the hypothesis of virtual torsion freeness can be removed in Theorem 1.1.
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To prove Theorem 1.2, we need the following result.

Theorem 2.6 ([15, Corollary 5.3]). Let G = G1 ∗ · · · ∗ Gn ∗ Fk, where each Gi is finitely generated, freely indecomposable and not
infinite cyclic, and Fk is a free group of rank k, with n+k ≥ 2. Suppose that each factor Gi contains a torsion-free, normal subgroup
of finite index Hi such that Out(Hi) is virtually torsion-free and the quotient Hi/Z(Hi) of Hi by its center Z(Hi) is torsion-free.
Then Out(G) is virtually torsion-free. �

We also need the following simple lemma, whose proof is left to the reader.

Lemma 2.7. Every polycyclic-by-finite group G has a normal, torsion-free, finite index subgroup H such that the quotient H/Z(H)
of H by its center Z(H) is also torsion-free. �

Proof of Theorem 1.2. By Dyer’s results [21], the class of conjugacy separable groups is closed under finite graphs of
groups with finite edge groups. Since polycyclic-by-finite groups are conjugacy separable [22], it follows that G is conjugacy
separable.
It remains to show that Out(G) is virtually torsion-free. By [13, Lemma 2.4], it suffices to find a normal subgroup N of

finite index in G with trivial center and virtually torsion-free outer automorphism group. Since G is conjugacy separable
(and so residually finite), it has a normal subgroup of finite index N which intersects each edge group trivially. This means
that N acts non-trivially on the corresponding tree of Gwith trivial edge stabilizers and therefore N admits a non-trivial free
product decomposition N1 ∗ · · · ∗ Nk into freely indecomposable, polycyclic-by-finite factors. In particular, the center of N
is trivial. To see that Out(N) is virtually torsion-free, note first that the outer automorphism group of a polycyclic-by-finite
group is virtually torsion-free being finitely generated and isomorphic to a subgroup of GLn(Z), for some positive integer n
(see [23]). Thus, in viewof Lemma2.7, the hypotheses of Theorem2.6 are satisfied and soOut(N) is virtually torsion-free. �
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