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Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for
U-Pb geochronology. However, linking monazite U-Pb ages with the PT evolution of the rock is not always
straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from
greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene
Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and

ﬁg:;ozrifg' U-Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with
Allanite particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and
SHRIMP U-Pb geochronology xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite
Alaska is absent. In lower amphibolites facies schists (~550-650 °C and >3.4 kbar), small, medium-Y monazite is

Chugach Metamorphic Complex wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and an-
dalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a
third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption.
U-Pb SHRIMP analysis of the second and third monazite generations yields ages of ~55-50 Ma. Monazite
became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde

muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth

and dissolution during a single, relatively short-lived metamorphic cycle.

© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Monazite is a common accessory mineral in various metamorphic
and magmatic rocks, particularly in rocks of felsic compositions, and
it is an important LREE carrier (e.g. Corrie and Kohn, 2008; Spear,
2010; Spear and Pyle, 2002). Monazite incorporates relatively high
concentrations of U and Th, has typically low concentrations of com-
mon Pb and is highly resistant to diffusive Pb-loss, and is thus well-
suited for U-Pb geochronology (e.g. Harrison et al., 2002; Parrish,
1990). However, linking monazite ages with the PT evolution of the
host rock is not always straightforward (e.g. Vance et al., 2003).

Monazite may occur as detrital grains below or at greenschist
facies, and is stable as metamorphic monazite in rocks of appropriate
bulk composition up to ultra-high temperature conditions (e.g.
Goncalves et al., 2004; Spear and Pyle, 2002). Numerous studies
have investigated monazite stability in metasedimentary metamor-
phic rocks with variable whole rock composition and metamorphic
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grade, and different monazite-producing reactions have been pro-
posed (Budzyn et al., 2011; Fitzsimons et al., 2005; Foster et al.,
2000; 2004; Gibson et al., 2004; Harlov and Hetherington, 2010;
Janots et al., 2006, 2008, 2009; Kim et al., 2009; Kingsbury et al.,
1993; Kohn and Malloy, 2004; Kohn et al., 2005; Rasmussen et al.,
2006; Rubatto et al., 2001; Smith and Barreiro, 1990; Williams et al.,
2007; Wing et al., 2003). These studies highlight the importance of
understanding the stability of monazite and other LREE minerals
(e.g. allanite, xenotime) within a particular metamorphic sequence
before a meaningful interpretation of U-Pb monazite formation
dates can be obtained.

In this contribution, we present the results of an investigation of
monazite stability within a single-cycle, metasedimentary sequence
evolving from upper greenschist facies phyllites to amphibolite facies
schists into upper-amphibolite facies migmatites. The investigated
sequence is exposed along the southern Alaskan margin within a
Late Cretaceous to Paleocene accretionary prism and is termed the
Chugach Metamorphic Complex (CMC, Hudson and Plafker, 1982;
Sisson et al., 1989; Gasser et al.,, 2011). We describe the textural rela-
tionships of monazite in samples of differing bulk rock composition
and metamorphic grade, with particular focus on the relationship of
monazite to other REE-bearing minerals such as allanite and xeno-
time. The composition of monazite from the two metamorphic
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zones where monazite is stable is monitored, and U-Pb SHRIMP dates
for selected monazite samples are used to constrain the age of differ-
ent monazite growth events. Our study documents the complexity of
monazite growth and recrystallisation during a single-cycle, relatively
short-lived metamorphic event.

2. Geology of the Chugach Metamorphic Complex

The southern Alaskan margin is dominated by a large-scale, com-
plexly deformed Cretaceous to Paleogene accretionary prism which
stretches ~2200 km from Sanak Island in the west to Baranof Island
in the east (the Chugach and Prince William terranes, Fig. 1a,
Plafker et al., 1994). This accretionary prism mainly consists of turbi-
ditic rocks: conglomerates, impure sandstones, marls and claystones,
which are locally intercalated with mafic volcanic rocks (e.g. Bruand
etal, 2011; Nielsen and Zuffa, 1982; Sample and Reid, 2003). The ac-
cretionary prism is mainly metamorphosed in phrenite-pumpellyite
to greenschist facies, but it is metamorphosed to upper amphibolite
facies within the Chugach Metamorphic Complex (CMC, Fig. 1b,
Bruand et al., 2011; Gasser et al., 2011; Hudson and Plafker, 1982;
Pavlis and Sisson, 1995; Sisson et al., 1989).

The CMC itself consists of two macroscopically different metamor-
phic zones: an outer schist zone composed of fine-grained biotite-
quartz—-plagioclase schist, which surrounds an inner gneiss zone com-
posed of layered migmatitic gneisses (Fig. 1, Hudson and Plafker,
1982). In the following, we additionally refer to the greenschist facies
phyllites outside the CMC as the phyllite zone. The distribution of
these zones is highly asymmetric: there is a wide transition from
phyllites into gneisses in the north and an abrupt transition from

gneisses to phyllites along ductile to brittle faults in the south
(Fig. 1; Gasser et al., 2011). The mineralogy observed in the different
zones varies depending on bulk rock composition and metamorphic
grade. Bulk rock compositions vary from psammites to calcareous
metapelites to metapelites (Bruand, 2011). In metapelitic rocks, an-
dalusite is wide-spread in the western and northern schist zone of
the CMC and cordierite occurs locally in the western gneiss zone.
Sillimanite occurs in the southern schist zone and is abundant over
the entire gneiss zone, but is absent in the highest-grade rocks of
the gneiss zone (Bruand, 2011; Hudson and Plafker, 1982; Pavlis
and Sisson, 1995, 2003; Sisson and Pavlis, 1993; Sisson et al., 1989).
Garnet is usually abundant in metapelitic to calcareous metapelitic
rocks in both the schist and gneiss zones, whereas K-feldspar occurs
rarely in migmatites of the gneiss zone (Bruand, 2011; Sisson et al.,
1989). Metamorphosed mafic rocks exposed along the southern
border of the CMC contain abundant amphibole and locally garnet
(Sisson et al., 2003; Bruand et al., 2011). Sisson et al. (1989) and
Bruand (2011) derived PT conditions of 400-550 °C and <4 kbar for
the phyllite zone, ~500-650 °C and ~3-7 kbar for the schist zone,
and ~650-750 °C and 4-13 kbar for the gneiss zone, with the highest
pressures occurring in the southern and eastern parts of the gneiss
zone (Fig. 1, Table 1).

The development of the CMC occurred during a remarkably short
time span. Detrital zircon within the metasediments indicates deposi-
tion after ~65-60 Ma (Gasser, 2010; Gasser et al., in press; Kochelek
etal, 2011). Based on U-Pb SHRIMP dates of thin zircon overgrowths
in the migmatites of the gneiss zone, peak metamorphic conditions
were reached ~5 m.y. later at ~55-51 Ma virtually simultaneously at
least ~300 km along-strike of the complex (Gasser et al., in press).
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Fig. 1. (a) Overview map of Alaska and Canada with the location of Fig. 1b indicated. (b) Geological overview map of the Chugach Metamorphic Complex (CMC) within the Chugach
terrane of southern Alaska. Small inset maps show stippled glacier outlines and the localities of the investigated samples as well as PT conditions for the different metamorphic
zones after Bruand (2011). Note the location of sample Loc4 outside the small inset maps. Abbreviation: BRF = Border Range Fault System.
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Table 1

List of samples and their respective mineralogy and P-T estimates.
Sample Lat (°N) Long (W) Metam. Mineralogy Mnz Mnz(i) Xtm Ap Ep/Aln Zm Im Ttn Py Hem Rt T(°C)? p (kbar)*

zone +Qz+Pl+Bt

B43 60.9263  143.2130 Phyll. Ms-Chl-Ep X X X X X X X 515+ 50"
B44 60.9263  143.2130 Phyll. Ms-Chl-Ep X X X X X 535 4 50°
B45 60.9328  143.2025 Phyll. Ms-Chl-Ep X X X X X X 547 +50°
T28 60.6704 1429123 Phyll. Ms-Chl-Ep X X X X X X 432 +50°
Tk14 60.6941 141.5803 Phyll. Ms-Chl-Ep X X X X 536+ 50°
Tk15 60.6965 141.5739 Phyll. Ms-Chl-Ep X X X X X 526 +50°
Tk12 60.6878  141.5807 Schist And-Ms-Grt X X X X X 5434+23° 34409°
Tk10 60.6820 1415716 Schist And-Ms-Grt X X X X X X X 6454+49¢ 5942.1°
Tk9 60.6752  141.5608 Schist And-Ms-Grt X X X X X X X X >640°
Tk8 60.6731  141.5605 Schist (And)Sil-Ms-Grt X X X X X X
Tk6 60.6642  141.5488 Schist (And)Sil-Ms X X X Xr X X X
Tk3 60.6642 1415488 Schist (And)Sil-Ms-Grt X X X X X X 658 +33° 6.4414°
B39 60.8858  143.2384 Schist Grt-Sil-Ms X X X X Xp?2Xr X X X 597 +50°
B40 60.8883  143.2384 Schist Grt-Sil-Ms X X X Xr X X X
B9-2 60.8583  143.2362 Schist Grt-Sil-Ms X X X Xr X X X 632+309 6.8+1.6°
B22 60.8124  143.3148 Gneiss Grt-Sil X X X X X X 6234309 474+19¢
B23 60.8110  143.1928 Gneiss Grt-Sil X X X Xr X X X X 645 + 304
B26 60.8236  143.2033 Gneiss Grt-Sil-Ms X X X X X X 628+309 56+2°
KB1 60.7643  143.2881 Gneiss Grt-Ms X X X X X X 645+309  474+1.6°
KB2 60.7643  143.2881 Gneiss Grt X X X Xr X X X 666+309 5.1+1.6
KB5 60.7381  143.3015 Gneiss Ms X X X X X X
T27 60.7146 1429147 Gneiss Grt-Ms X X X Xr X X X 679432 734+1.1°¢
Loc4 60.5544  141.3030 Gneiss Grt-Sil-Ms X X X X X 666 +25° 8.241.2¢
B21 60.8124  143.3148 Gneiss X X X X X X
T7 60.6960  142.9031 Gneiss Grt-Amp-Ms-Chl  xu X X X X
T15a 60.6946  142.9069 Gneiss Grt-Ms-Chl X X X X,XT X X X X 683+33° 73+1.1°¢
N7 59.8116  138.8131 Gneiss Grt-Ms-Chl Xu X X X X X X
N17 59.8330 138.8322 Gneiss Grt-Ms-Chl Xu X X X X X
N38 59.7914  138.8207 Gneiss Amp-Grt Xu X X X X X 625+30¢ 8341.2¢
N39 59.7914  138.8207 Gneiss Amp-Grt X X X X X X

x = mineral is present in matrix, xu = mineral is unstable, Mnz(i) = monazite as inclusion in garnet and/or andalusite, xr = mineral occurs as retrograde fibres around monazite,
Xp = mineral is present as unstable prograde crystal. Mineral abbreviations according to Whitney and Evans, 2010

2 PT data from Bruand (2011).
b Graphite thermometry.

¢ Average PT from thermocalc.
4 Biotite-Garnet thermometry.

This short metamorphic event was followed by rapid cooling through
49Ar/29Ar muscovite and biotite closure temperatures (~480-320 °C)
at 50-45 Ma in the western and central parts of the complex and
slower cooling through these closure temperatures at 25-15 Ma in
the southeastern part of the complex (Bradley et al., 1993; Gasser
et al.,, 2011; Hudson et al., 1977a, 1977b, 1979; Sisson et al., 1989;
Sisson et al., 2003).

3. Analytical techniques

Major element whole rock compositions of all investigated sam-
ples were obtained with a Siemens Pioneer S4 WD-XRF at the Depart-
ment of Earth Sciences, University of Graz (Austria). Identification
and high-contrast back-scattered electron (BSE) imaging of accessory
minerals was done on polished thin sections at the Department of
Earth Sciences, University of Graz (Austria) with a JEOL JSM-6310
scanning electron microscope, equipped with an IDIX EDX system
for mineral identification, working at 15 kV, ~6 nA and 15 mm work-
ing distance. Element mapping and quantitative chemical analyses of
monazite grains were obtained on a JEOL JXA 8200 microprobe at the
Department for Applied Geosciences, University of Leoben (Austria).
X-ray maps of monazite grains were obtained with 30 kV, ~10 nA,
step size of ~0.2-0.4 pm and dwell times of 20-50 ms. Quantitative
analyses of monazite were obtained using synthetic and natural min-
eral standards and a ZAF data correction scheme. Accelerating voltage
was ~20 kV and beam current was 50 nA. Ko X-ray lines were used
for Si, P and Ca, Lo X-ray lines were used for Y, Ce, Dy, La, Pr, Nd,
Eu, Ho, Tb and Er, L3 X-ray lines were used for Sm and Gd and M«
X-ray lines were used for Th. U and Pb were not analysed.

Monazite grains were separated for U-Pb SHRIMP dating from
fist-sized samples by crushing, sieving, magnetic and heavy liquid
separation, and then handpicked, mounted in epoxy and polished to
expose the grain centres. BSE imaging of the separated monazite
grains was done at the Electron Microscope Unit, Australian National
University (ANU), with a Cambridge S360 scanning electron micro-
scope working at 15 kV, ~2 nA and a working distance of ~17 mm.
U-Pb analysis on monazite grains was performed with a sensitive
high-resolution ion microprobe (SHRIMP II) at the Research School
of Earth Sciences (RSES), ANU, using a beam size of ~20 pm. The
data were collected in sets of six scans throughout the masses, and
reference monazite 44,069 (424.9 4+ 0.4 Ma; Aleinikoff et al., 2006)
was analysed each fourth analysis. Energy filtering was applied to
eliminate the molecular interference on 2°*Pb (Rubatto et al., 2001)
and to reduce any matrix effect. The analyses were corrected for
common Pb based on 2°Pb and 2°’Pb measurements following
Williams (1998). The two correction methods deliver results indistin-
guishable within error. Th-Pb dates, despite being less precise, are
generally in agreement with the U-Pb dates. Here, 2**Pb corrected
data are presented in Table 5 and plotted on concordia diagrams,
and 2°6Pb/238U weighted mean dates were calculated. The common
Pb composition was modelled according to Stacey and Kramers
(1975). U-Pb data were collected over one analytical session using
the same standard, with the session having a calibration error of
2.7% (20), which was propagated through to single analyses. Addi-
tionally, a 1% error was added to the final mean dates to account for
external errors. Data evaluation and calculation of dates were done
using the software Squid1 and Isoplot/Ex 3, respectively (Ludwig,
2003). Mineral abbreviations are according to Whitney and Evans
(2010).
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4. Results

In order to study the stability of monazite and other REE-bearing
accessory minerals within samples of variable bulk rock composition
and variable metamorphic grade across and along-strike of the Chu-
gach Metamorphic Complex, we investigated a total of 30 samples
(Fig. 1, Table 1). Sample numbers, coordinates, major and accessory
minerals and PT conditions (Bruand, 2011) of all samples are sum-
marised in Table 1. The major element bulk rock compositions of all
samples are given in Table 2. Six samples are derived from the phyl-
lite zone, nine samples from the schist zone, and the remaining 15
samples are from the gneiss zone of the Chugach Metamorphic Com-
plex (Fig. 1, Table 1).

4.1. Major phase mineralogy and bulk rock compositions

The samples from the phyllite zone are composed of quartz,
plagioclase, biotite, muscovite, chlorite and epidote (Table 1). All
samples from the schist zone contain an aluminosilicate (andalusite
and/or sillimanite), together with quartz, plagioclase, biotite, musco-
vite 4 garnet (Table 1). The samples of the gneiss zone show variable
mineralogy. There are (1) migmatitic gneisses with quartz, biotite,
plagioclase, +sillimanite, + garnet, 4+ muscovite, (2) retrogressed
migmatitic gneisses with wide-spread late muscovite and chlorite
(T15a, N7, N17), and (3) garnet-amphibole-bearing gneisses derived
from mafic volcanic rocks (T7, N38, N39; Table 1).

In general, the metasedimentary samples from all three metamor-
phic zones cover approximately the same range in bulk rock compo-
sition (Fig. 2, Table 2). They have compositions with Al,O3, Fe;03 and
MgO similar to average pelites (Fig. 2a; e.g. Shaw, 1956; Spear, 1993)
but with generally higher CaO, Na,0 and lower K;0 values (Table 2).
They probably have been derived from pelitic, marly and psammitic
protoliths typical for the accretionary prism of the Chugach and
Prince William terranes. Sample B40 has a considerably different
composition, with very low SiO, but high Al,0s, Fe,05, MgO, K,0

and TiO, (Table 2). Samples N7 and B45 have relatively high SiO, con-
tents. The three garnet-amphibole-bearing metavolcanic gneisses
have lower SiO, and higher Fe,03 contents than the metasedimentary
samples (Table 2).

4.2. Distribution of monazite, allanite and xenotime

Depending on the occurrence of monazite, allanite and + xenotime,
the investigated samples can be classified into four different groups that
broadly correspond to the metamorphic zones (Fig. 1 and Table 1).

4.2.1. Phyllite zone: allanite 4-xenotime (Fig. 1, Table 1)

All samples from the phyllite zone lack monazite and contain alla-
nite 4+ xenotime. Allanite occurs either as large single crystals (~20-
50 um; Fig. 3a) or as irregular small patches (~1 pm) or rims on epi-
dote (Fig. 3b). Xenotime was observed in two of the six phyllite
samples (Table 1) as very small crystals (~5-10 pm) in the matrix.

4.2.2. Schist zone: small monazite, xenotime +minor allanite (Fig. 1,
Table 1)

In the schist zone samples, monazite crystals are abundant, euhe-
dral and small: the majority are ~5-20 um in size with a few being
~20-50 um in size. Most grains lie in the matrix (Fig. 3c) and some
grains are associated with apatite (Fig. 3d). Monazite also occurs as
inclusions in andalusite and garnet (Fig. 3e). About 70% of the grains
are elongated parallel to the main foliation (regionally termed S,
Pavlis and Sisson, 1995; Scharman et al., 2011) and some are folded
by F3 (Fig. 3c). Allanite occurs in four of the nine samples as small
fibres/patches surrounding monazite and/or monazite-apatite pairs
(Fig. 3f). Xenotime occurs as a minor phase in all samples, i.e. only a
few crystals per thin section. The xenotime crystals are small (~5-
20 um) and occur mainly in the matrix and sometimes associated
with zircon.

Table 2
Major element bulk rock compositions of all samples in weight %.
Sample Rock® Si0 (%) Al 05 (%) Fe,05 (%) MnO (%) MgO (%) Ca0 (%) Na,O (%) K0 (%) TiO> (%) P,05 (%) Sum (%)
B43 p 68.86 13.35 5.76 0.07 2.39 2.06 2.20 2.04 0.70 0.15 99.44
B44 p 61.07 15.63 7.08 0.12 3.79 333 2.75 2.22 091 0.18 99.29
B45 p 70.20 13.79 5.16 0.07 1.80 138 1.74 2.28 0.65 0.15 99.57
T28 p 59.88 17.28 6.67 0.13 3.03 2.89 2.66 2.52 0.76 0.19 99.58
Tk14 p 66.34 12.54 6.54 0.13 3.48 4.57 2.78 1.03 0.93 0.15 99.48
Tk15 p 60.78 16.63 6.79 0.12 3.00 5.07 442 0.89 0.77 0.18 99.77
Tk12 s 69.22 13.77 6.02 0.09 2.15 143 191 2.25 0.68 0.18 99.60
Tk10 s 64.36 16.32 7.34 0.10 2.60 1.16 1.47 2.88 0.84 0.24 99.72
Tk9 s 69.62 12.78 6.14 0.12 2.12 1.53 197 235 0.68 0.23 99.35
Tk8 s 66.50 16.04 5.44 0.07 2.04 1.86 3.67 2.29 0.69 0.06 100.01
Tk6 s 65.59 15.74 5.74 0.08 2.31 1.06 197 3.30 0.74 0.18 99.87
Tk3 s 59.95 18.57 7.82 0.10 2.90 122 225 317 0.97 0.20 99.91
B40 s 46.54 22.30 11.60 0.22 5.30 3.58 347 4.01 1.22 0.09 99.92
B39 s 60.26 17.43 7.26 0.23 2.90 3.16 2.81 3.06 0.75 0.23 99.57
B9 s 60.74 17.59 7.95 0.10 3.12 191 221 313 0.85 0.23 100.48
B21 g 68.08 15.17 4438 0.07 1.97 3.30 3.28 1.99 0.59 0.17 100.01
B22 g 60.36 17.89 7.27 0.11 2.86 2.79 3.27 293 0.84 0.25 99.60
B23 g 60.84 17.16 6.95 0.10 2.87 2.80 3.09 2.73 0.76 0.28 98.83
B26 g 63.24 16.75 7.60 0.09 3.12 2.44 2.53 2.85 0.84 0.23 100.58
KB1f g 61.71 16.89 6.94 0.11 2.87 3.15 3.08 2.61 0.87 0.22 100.31
KB2 g 62.83 16.55 6.44 0.09 2.72 3.19 3.24 241 0.73 0.23 99.79
KB5rest g 62.34 17.14 6.31 0.11 2.84 3.30 3.20 2.93 0.86 0.18 100.70
T7 mv 56.53 17.81 11.49 0.23 441 4.49 2.57 0.27 1.07 0.24 100.95
T15a g 68.64 15.11 4.31 0.06 1.98 3.07 345 1.93 0.48 0.17 100.17
T27 g 65.88 1543 5.31 0.09 2.25 3.19 3.12 2.21 0.61 031 99.65
Loc4 g 66.32 15.28 5.82 0.10 2.28 2.09 2.69 2.38 0.68 0.20 99.85
N7 g 70.94 13.29 3.58 0.10 1.52 3.56 2.89 1.29 0.49 0.14 99.29
N17 g 66.91 15.17 5.26 0.08 1.90 1.08 2.18 2.76 0.68 0.22 99.86
N38c mv 59.53 18.04 8.01 0.23 312 4.07 3.35 1.83 0.84 0.20 99.93
N39 mv 57.22 16.77 12.57 0.30 3.46 4.30 1.80 1.81 0.99 0.24 100.24

@ Rocktypes: p = phyllite, s = schist, g = gneiss, mv = metavolcanic.
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Fig. 2. (a) AFM and Al,03-Ca0 + Na,0-K,0 diagrams for bulk rock compositions of the investigated samples. The bulk rock analyses are given in Table 2. (b) CaO vs. Al,05 content
of our samples relative to average metapelite of Shaw (1956). Monazite versus allanite lines according to Wing et al. (2003) for samples with PT conditions similar to the phyllite
and schist zone samples. There is no corresponding line for samples with PT conditions similar to the gneiss zone samples.

4.2.3. Metapelitic gneiss zone: large monazite, xenotime 4+ minor allanite
(Fig. 1, Table 1)

Eight samples from the gneiss zone belong to this group. They are
metapelitic gneisses that lack significant retrogression and contain
quartz, biotite, plagioclase, & sillimanite, 4-garnet, and 4 muscovite
(Table 1). Compared to the schist zone samples, the monazite grains
in this group are larger (~10-100 pm, with a majority in the ~20-
50 um range) and have a sub-euhedral crystal shape. Monazite grains
are located at grain boundaries or within biotite. Approximately 10%
are associated with apatite (Fig. 3g). Approximately 25% of the mon-
azite grains in three samples (B23, KB2, T27) have irregular grain
boundaries and are surrounded by fine-grained allanite fibres inter-
grown with biotite (Fig. 3h). Xenotime is present in all samples and
occurs as small crystals (~5-15 um) in the matrix.

4.2.4. Heterogeneous gneiss zone: allanite + xenotime - minor monazite
(Fig. 1, Table 1)

The remaining eight samples from the gneiss zone belong to this
group. The group is mineralogically heterogeneous and includes a
qtz+ bt + pl gneiss (B21), four retrogressed gneisses with late mus-
covite + chlorite (garnet-amphibole bearing sample: T7; metapelitic
samples: T15, N7, N17), and two amphibole-garnet-bearing gneisses
(N38, N39, Table 1). All samples contain relatively large allanite
grains which locally overgrew relict monazite. In the five samples
with late muscovite + chlorite, monazite is present in the matrix as
resorbed small crystals (<50 um) with irregular grain boundaries,
suggesting that these crystals represent relict grains (Fig. 3i, inset).

A few monazite grains are overgrown by allanite (Fig. 3i) or complex
allanite-apatite-epidote coronas (Fig. 3j). Single, relatively large allanite
crystals (100-200 pm) are present within muscovite-chlorite-bearing
zones (Fig. 3k), indicating retrograde growth of allanite together with
chlorite and muscovite. In sample B21, the small metastable monazite
crystals are overgrown by allanite (Fig. 31), but further indications for
retrograde overprint such as muscovite and chlorite are missing in this
sample. In the two amphibole-garnet bearing samples, monazite was
only observed as two small (<20 um), relict crystals in N38. Allanite is
wide-spread in both samples as large and strongly zoned crystals in
the matrix (~20-300 pm in size; Fig. 3m, 3n), which are commonly asso-
ciated with epidote and plagioclase.

4.3. Chemical zoning and composition of monazites

Because monazite is particularly stable and common in samples
from the schist zone and unretrogressed migmatites from the gneiss
zone, we further investigated the chemical zoning and composition
of these monazites. We conducted high-resolution BSE imaging, ele-
ment mapping and quantitative chemical analyses on monazites
from representative samples of these two groups.

4.3.1. Schist zone

High-contrast BSE images of all small monazite grains revealed
that depending on the sample, 60-100% of the grains in each sample
show no zoning, whereas the remaining 0-40% of the grains show
two or three weak zones of BSE-brightness, corresponding to mass
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contrasts. Grains from sample B39 that showed most variations in
BSE-brightness were selected for element mapping and chemical
analysis. Element X-ray maps for Y and Th show only weak variations
(Fig. 4a). Representative chemical analyses from different zones of
these grains are given in Table 3 and plotted in Fig. 5.

4.3.2. Gneiss zone

The large monazite grains present in the non-retrogressed migma-
titic metasedimentary gneisses have more pronounced zoning than
the grains from the schist zone. Up to 80% of the grains within each
sample show two or more different BSE zones. Sample T27 showed

well-developed zoning and was therefore selected for element
X-ray mapping (Fig. 4) and chemical analysis (Fig. 5 and Table 4).
The maps revealed that the strong BSE zoning is the result of inverse
variations in Th and Y content, e.g. bright BSE zones correspond to
high Th and low Y content. The compositional analyses show that
the bright BSE zones have high but variable Th, and high La, Ce and
Pr contents, whereas the dark zones have high Y, Sm, Nd, and Gd
and low Th, La and Ce contents (Table 4, Fig. 5). Bright BSE zones
commonly define cores and the dark zones commonly define rims
(Fig. 4b). However the zoning is in many cases very patchy or mottled
and no clear core-rim structure is present (Fig. 4c).

Phyllite zone

Schist zone

500m

Fig. 3. BSE images of monazite and allanite occurrences within the four different sample groups identified within the CMC. In the phyllite zone, only allanite is present, either as
large crystals (a) or small patches (b). In the schist zone, small monazite grains are present in the matrix (c), associated with apatite (d), in garnet or andalusite (e) and associated
with allanite (f). In the migmatitic metasedimentary rocks of the gneiss zone, large monazite grains are present in the matrix (g) and are sometimes surrounded by allanite fibres
(h). In retrogressed migmatitic gneisses and metavolcanic gneisses, monazite grains are generally small with a relic appearance (i, inset), and overgrown by allanite and epidote (i),
or apatite + allanite + epidote coronas (j). Allanite occurs in muscovite-biotite-chlorite shear zones (k, 1). Allanite occurs in the matrix of amphibole 4 garnet-bearing metavolcanic

samples (m, n).
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Gneiss zone, migmatites

Sdpm

g

Gneiss zone, retrogressed migmatites and metavolcanic rocks

N39

Fig. 3 (continued).
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Fig. 4. Representative BSE images and Y and Th element maps of monazites from (a) sample B39 (schist zone, small, unzoned monazites), and (b-c) sample T27 (gneiss zone, large,
complexly zoned monazites). Representative monazite EMP analyses (numbered points) are given in Tables 3 and 4.

4.4. SHRIMP U-Pb dating of monazites from the gneiss zone

Four samples from the gneiss zone that contained larger monazite
grains (B21, KB5, KB1 and T27, Table 1) were selected for U-Pb
SHRIMP dating. Unfortunately, an attempt of dating the small mona-
zites from three schist samples (B39, Tk9, Tk10) was unsuccessful be-
cause mineral separation was unable to recover such small grains,
and their low abundance prevented obtaining representative dates
by dating them in thin section.

The four samples from the gneiss zone all yielded >50 grains of
monazites per sample, typically ~50-200 pm in size. BSE images of
separated grains (Fig. 6) confirm the complex zoning and the

tendency to bright BSE cores and dark BSE rims that was observed
in the thin section of sample T27 (Fig. 4). We performed 13-18
analyses over 10-11 crystals from each sample covering zones with
different BSE brightness (core and rims, respectively, Figs. 6 and 7).
In sample KB1, one discordant analysis was excluded from the age
calculation (discordant analyses are only shown in Table 5, not in
Fig. 7). In sample T27, two analyses are excluded due to large errors
on the isotopic ratio (Table 5). The remaining analyses from all
samples form tight clusters, allowing the calculation of weighted
average dates (Fig. 7). The dates vary between 51.0+ 1.1 Ma and
53.4+1.1 Ma (Fig. 7). The dates of monazite in samples KB1, KB5
and T27 are within error of each other, whereas the mean date of

Table 3
Representative monazite EMP analyses from sample B39.
B39_1_1 B39_1_2 B39_1_3 B39.2_1 B39.2_2 B39.3_1 B39_3.2 B39.3_3 B39.8_1 B39_8_2 Min? Max? Av?
Si0, 0.27 0.24 0.42 0.33 0.23 0.30 0.31 0.58 0.29 0.36 0.21 0.81 0.34
Y>05 1.86 2.28 1.60 1.69 2.50 2.08 1.60 1.50 1.78 1.65 0.71 2.53 1.80
P,0s 29.92 30.03 29.95 29.65 30.04 29.63 29.64 29.44 30.02 29.62 28.60 30.10 29.70
Ce,05 29.51 28.64 28.38 27.85 28.08 28.56 28.62 29.45 28.86 28.58 27.81 34.70 28.99
ThO, 3.86 439 5.87 5.78 543 3.84 4.79 3.56 430 4.88 2.18 6.27 4.45
Dy,05 0.21 0.34 0.26 0.57 0.54 - 0.22 0.03 0.33 0.29 - 0.59 0.33
La,05 13.29 12.71 12.74 12.05 12.64 12.67 13.04 13.48 12.77 12.99 12.05 16.12 13.13
Ca0 0.78 0.92 1.10 1.04 1.10 0.84 0.89 0.70 0.85 0.89 0.31 1.14 0.87
Sm,05 2.12 2.18 2.10 2.46 2.08 2.08 2.14 2.19 221 233 0.98 2.46 2.12
Pry05 3.52 3.26 3.35 3.26 3.15 3.39 335 342 3.36 3.51 3.15 3.95 3.41
Gd,04 1.77 1.67 1.93 2.05 1.67 1.73 1.80 1.79 1.88 1.94 0.54 2.20 1.72
Nd,03 11.83 11.44 11.42 11.99 11.56 11.39 1135 11.65 12.08 11.72 10.65 12.22 11.55
Eu,05 0.74 0.72 0.76 0.84 0.76 0.61 0.82 0.74 0.71 0.78 0.61 1.15 0.77
Ho,04 0.50 0.45 0.44 0.53 0.51 0.51 0.45 0.57 0.56 0.57 - 0.83 0.48
Tb,03 - 0.02 - 0.01 0.05 0.06 0.12 0.04 0.08 0.02 - 0.17 0.05
Er,04 - 0.02 - - 0.08 - - - - - - 0.12 0.02
Total 100.16 99.31 100.31 100.10 100.44 97.69 99.14 99.14 100.08 100.14 97.69 101.40 99.72

¢ Minimum, maximum and average compositions from 38 measurements on B39. All analyes are displayed in Fig. 5.
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Fig. 5. Compositional diagrams for monazite compositions analysed in samples B39 and T27. Representative EMP analyses are given in Tables 3 and 4.

monazite rims from sample B21 (51.0 £ 1.1) is slightly younger than
the mean dates of monazite core and rim analyses of sample KB5,
but still within error of the KB1 and T27 dates (Fig. 7). Notably, within
each sample, core and rims dates are within error of each other.

5. Discussion: factors controlling monazite stability within the
cMC

Based on the data on monazite distribution, chemical composition
and U-Pb dates presented above, we propose and discuss a model for
the behaviour of monazite in the greenschist facies phyllites to ana-
tectic gneisses of the Chugach Metamorphic Complex (Fig. 8). We in-
terpret our observations as the result of three key stages in the
evolution of monazite: the monazite-in reaction (Mnz1), the dissolu-
tion-precipitation of monazite during partial melting and subsequent
cooling (Mnz2 and Mnz3), and finally the breakdown of monazite
during retrogression (Fig. 8).

5.1. Monazite-in reaction at ~550 °C and <3.4 kbar

Within the greenschist facies phyllites, detrital (large, broken
crystals, Fig. 3a) and probably metamorphic (small, patchy crystals,
Fig. 3b) allanite is present (Fig. 8). At this low grade, monazite was
not observed. Therefore, the small monazites present in the schist
zone (Fig. 3c-f) are interpreted as entirely metamorphic, implying
that a monazite-in reaction occurred at the transition from the phyl-
lite to the schist zone (Mnz1 growth, Fig. 8). The highest-grade sam-
ple of the phyllite zone is sample B45, which recorded a peak
temperature of 547 450 °C (Table 1, Bruand, 2011) at pressures of

~2-3 kbar (Sisson et al., 1989). The lowest-grade sample of the schist
zone in which monazite was detected is sample Tk12, which recorded
a maximum temperature of 543 423 °C at 3.440.9 kbar (Table 1,
Bruand, 2011). The bulk rock composition of both samples is very
similar, suggesting that the two samples are comparable (Table 2).
Whereas sample B45 only contains quartz, plagioclase, muscovite
and biotite as major phases, andalusite and garnet occur in addition
in sample Tk12. These observations suggest that the monazite-in re-
action occurred in these rocks at ~550°C close to or at the
andalusite- and garnet-in reactions at a pressure of <3.4 kbar (Fig. 8).

A monazite-in reaction associated with the andalusite- and
garnet-in isograds in metamorphosed pelitic rocks has been reported
by numerous workers (e.g. Janots et al., 2008; Kim et al., 2009;
Kingsbury et al., 1993; Kohn and Malloy, 2004; Smith and Barreiro,
1990; Tomkins and Pattison, 2007; Wing et al., 2003) and has recently
been modelled by Spear (2010). However, the exact reactions leading
to monazite growth and the role of the major silicate phases versus
other accessory phases during these reactions are debated. Most stud-
ies agree that the REE necessary for formation of the monazite prob-
ably come from the breakdown of allanite (e.g. Janots et al., 2008;
Smith and Barreiro, 1990; Tomkins and Pattison, 2007; Wing et al.,
2003). Kohn and Malloy (2004) additionally suggested that the
major silicate phases (especially micas and garnet) could liberate
considerable amounts of REE to produce monazite. However, Corrie
and Kohn (2008) concluded that REEs liberated by major silicate
phases are not sufficient and a REE-rich precursor such as allanite is
required for monazite formation. In our case, only mica and no garnet
is present in the phyllites, indicating that the REE necessary for mon-
azite formation were probably derived from a REE-rich precursor

Table 4
Representative monazite EMP analyses from sample T27.

T27_1_1 T27_1_2 T27_2_1 T27_2_2 T27_3_1 T27_3.2 T27_3_3 T27_4_1 T27_4.2 T27_4.3 Min* Max? Av?
Si0, 0.63 0.31 0.69 0.44 0.69 0.40 0.38 0.75 0.32 0.35 0.27 0.93 0.49
Y203 0.20 2.12 0.26 2.19 0.44 2.15 2.52 0.60 1.66 3.00 0.06 3.02 1.38
P,05 29.15 28.70 28.95 29.61 29.06 29.31 29.49 29.34 29.93 30.24 27.77 30.24 29.43
Ce,05 30.37 28.17 29.56 27.85 30.58 28.02 28.01 28.82 29.30 27.01 27.01 31.56 28.86
ThO, 6.25 4.00 7.55 4.46 5.26 421 3.70 7.10 4.05 3.94 1.97 8.76 5.28
Dy,05 0.00 0.28 0.00 0.00 0.19 0.43 0.29 0.30 0.29 0.50 0.00 0.55 0.24
La,05 14.31 11.66 13.96 12.13 1443 12.10 12.09 14.11 12.34 11.80 11.57 15.15 13.11
Ca0 1.00 1.05 1.14 1.09 0.90 1.07 1.02 1.17 0.94 1.10 0.83 1.41 1.08
Sm,03 1.68 2.14 1.72 1.93 1.81 2.15 2.16 1.72 2.23 2.31 1.50 2.60 1.95
Pry05 3.63 3.18 3.59 3.04 3.46 3.21 3.16 3.64 3.40 3.12 3.04 3.81 3.40
Gd,05 0.98 1.58 0.92 1.55 1.14 1.44 1.68 1.18 141 1.80 0.73 1.97 132
Nd,03 11.05 11.93 11.58 11.87 11.87 12.58 12.77 10.94 13.02 12.32 10.53 13.55 11.92
Eu,0; 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.09 0.10 0.09 - - -
Ho,05 0.17 0.58 0.21 0.37 0.29 0.50 0.59 0.20 0.40 0.60 - 0.68 0.32
Tb,05 - 0.01 - 0.03 - 0.08 - 0.11 - 0.03 - 0.11 0.02
Er,0; - 0.02 - 0.08 - 0.11 0.11 - - 0.03 - 0.11 0.02
Total 99.50 95.83 100.21 96.71 100.20 97.84 98.02 100.07 99.39 98.23 95.17 100.95 98.90

2 Minimum, maximum and average compositions from 35 measurements on T27. All measurements are plotted in Fig. 5.
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Fig. 6. Representative BSE images of dated monazite grains from the four gneiss samples. The location of the SHRIMP analyses is indicated by the ellipses and the corresponding
206ph,238Y dates (in Ma = 10) are reported. The scale is the same for all grains. Note that domains with different BSE brightness do not show differences in age. Full U-Pb analyses

are given in Table 5.

such as allanite and/or xenotime. However, allanite to monazite
break-down textures such as described by Janots et al. (2008), Kim
et al. (2009), Tomkins and Pattison (2007) or Wing et al. (2003)
were not observed in our samples. This may be due to the high level
of equilibration and poor preservation of prograde relics in this
sequence.

Aluminosilicates have been proposed to be necessary for the for-
mation of monazite at or close to the andalusite and garnet-
isograds. Wing et al. (2003) proposed the following reaction for the
formation of monazite at the aluminosilicate-in isograd: 3 allanite
+ 1 apatite + 1 muscovite + 4 aluminosilicate +3 quartz=3 mona-
zite+1 biotite+8 plagioclase +2 H,0. However, Tomkins and
Pattison (2007) observed that the monazite-in reaction in their
rocks occurred slightly down temperature of the aluminosilicate-in
reaction and proposed the following general formation mechanism:
allanite + apatite = monazite + plagioclase + magnetite. ~ Similarly,
Janots et al. (2008) did not observe a clear link with the
aluminosilicate-in reaction and proposed the following generalised
prograde reaction: allanite + apatite + Al-Fe-Mg phases1 =mona-
zite + anorthite + Al-Fe-Mg phases2 (e.g. biotite, muscovite, garnet).
In the Chugach Metamorphic Complex, the rare observation of mon-
azite inclusions in andalusite and garnet (Fig. 3e) indicates that the
monazite-in reaction probably occurred before the formation of anda-
lusite and garnet, similar to observations by Tomkins and Pattison
(2007). In addition, monazite grains in sample B39 from the schist
zone are relatively Y-rich (1-2.5 wt.% Y505, Fig. 5), indicating that
they probably grew before garnet, which preferentially incorporates
Y (e.g. Foster and Parrish, 2003). Based on these qualitative observa-
tions, we propose that probably a reaction similar to the one pro-
posed by Janots et al. (2008) or Tomkins and Pattison (2007) was
responsible for monazite formation in the schist zone samples.

Various workers have shown that the Ca-content of the bulk rock
and/or of the fluid phase influence the stability of monazite (e.g.
Budzyn et al.,, 2011; Foster and Parrish, 2003; Janots et al., 2008;
Spear, 2010; Wing et al., 2003). Several indicators have been used
to show this influence. Wing et al. (2003) used CaO versus Al,03
plots of andalusite-, kyanite- and sillimanite-zones to show that alla-
nite is stable instead of monazite in their samples if the bulk rock con-
tains 2-3 times the average pelite CaO-content. For the CMC samples
of similar metamorphic grade (the phyllite and schist zones, Fig. 2b)
CaO0 versus Al,03 plots do not display such a relationship (Fig. 2b).
For example, samples B39 and B40, which both lie in the stability

field for allanite as defined by Wing et al. (2003), contain abundant
stable monazite, and allanite is only present as retrograde fibres or
as relict prograde crystals. These retrograde allanite fibres are not re-
stricted to samples from the allanite stability field of Wing et al.
(2003), but also occur in samples in the monazite stability field
(Fig. 2). Foster and Parrish (2003) proposed an equation that links
the temperature of monazite growth to the Ca0/SiO,-ratio of the
rock. This equation gives monazite-in temperatures of ~670 °C and
~760 °C for samples B39 and B40, respectively, suggesting that alla-
nite should instead be stable in these samples, which is not the
case. Therefore, for the CMC samples, CaO versus Al,O53 plots or the
Ca0/SiO, ratio seem not to be the tools for revealing the Ca-
influence on monazite stability. Janots et al. (2008) suggested that
the CaO/Na,0 ratio of a sample might influence the breakdown of
allanite to monazite between temperatures of ~500-650 °C, with alla-
nite being stable to higher temperatures with higher CaO/Na,0 ratio.
The CaO/Na,O ratio of all our schist samples is below 1.1, which,
according to Janots et al. (2008), is clearly in the field where allanite
breaks down to monazite at temperatures of ~550 °C-600 °C. This is
in agreement with stable monazite being present in all schist zone
samples. However, since the CaO/Na,0 ratio in our samples does
not vary greatly, we could not investigate whether this ratio correctly
describes monazite vs allanite stabilities in our rocks.

5.2. Dissolution and precipitation of monazite during partial melting and
initial cooling

The monazite-bearing samples from the gneiss zone contain abun-
dant, large monazite grains that are much more zoned in BSE images
than the monazite grains from the schist zone. Element X-ray map-
ping and chemical analyses from one representative sample (T27)
revealed the presence of two compositional domains: Th- and LREE-
rich and Y-poor domains versus Y-, MREE-rich, and Th- and LREE-
poor domains (Fig. 5). The distribution of the domains is mainly pat-
chy, with a tendency of the Th-rich, Y-poor domains constituting
cores and the Th-poor, Y-rich domains constituting rims (Figs. 4 and
6). No differences in U-Pb dates were detected between the different
zones (Figs. 6 and 7). Complex compositional zoning of metamorphic
monazite in upper amphibolite-facies rocks and in migmatites has
been reported by many workers (e.g. Berger et al., 2009; Fitzsimons
et al., 1997; Foster et al., 2002, 2004; Gibson et al., 2004; Kelsey et
al., 2008; Kohn et al., 2005; Pyle and Spear, 2003; Pyle et al., 2001;
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Fig. 7. (a-d) Concordia diagrams for monazites from the four gneiss samples analysed by SHRIMP. White ellipses correspond to core analyses, grey ellipses correspond to rim an-
alyses. The values in the boxes are weighted average 2°°Pb/?>8U ages with corresponding MSWD (mean square weighted deviation). Errors are at the 95% confidence interval. N
denotes number of analyses included in age calculation. Only analyses included in the age calculation are plotted (see Table 5 for the complete list of analyses). Core analyses
can be correlated with monazite generation Mnz2 and rim analyses with monazite generation Mnz3 based on BSE pattern. (e) Weighted mean ages of rim and core analyses
from all samples. Ages overlap within error with the only exception of monazite rims from sample B21, which are slightly younger than the ages of sample KB5.

Rubatto et al.,, 2001). Zoning in Y has been investigated extensively
because Y is also incorporated in other phases such as garnet and
xenotime (e.g. Pyle et al., 2001; Zhu and O'Nions, 1999a,b). The parti-
tioning of Y between the different minerals may permit conclusions
regarding the timing of monazite growth relative to garnet and/or
xenotime growth (e.g. Pyle et al., 2001). Monazite grains in the schist
zone (B39) are relatively Y-rich (Fig. 5), possibly indicating growth
prior to garnet formation. Monazite grains in the gneiss zone (T27),
however, show Y-poor zones preferentially in the grain cores
(Fig. 4). In addition, these cores show complex zoning in Th (Fig. 4).
The composition of these cores suggests that they grew when garnet
was already present in the assemblage (e.g. Foster and Parrish, 2003).
They could therefore represent a younger generation of monazite
than the Y-rich monazite in the schist zone (Mzn2 growth, Fig. 8).
This would imply that Y-rich monazite (Mnz1), which grew before

or simultaneously with garnet (i.e., monazite occurs as inclusions in
garnet in the schist samples), was dissolved prior to the formation
of the Y-poor monazite (Mnz2). The samples containing Mnz2 expe-
rienced partial melting under water-saturated conditions (Bruand,
2011) with garnet being stable both before and during the melting
stage. Monazite solubility in metapelitic melts under water-
saturated conditions can be relatively high (e.g. Montel, 1993; Rapp
and Watson, 1986; Zeng et al., 2005) suggesting that dissolution of
lower-grade monazite during partial melting could have occurred in
the CMC. The Th-rich, Y-poor cores could then have crystallised dur-
ing melt recrystallisation, with the high Th-content being the result
of preferential Th incorporation into monazite in a melt-buffered sys-
tem (Mnz2 growth, Fig. 8; e.g. Kohn and Malloy, 2004; Kohn et al.,
2005). The recrystallisation of these large monazite grains under
peak metamorphic conditions (~650-700 °C and ~4-9 kbar; Bruand,



D. Gasser et al. / Lithos 134-135 (2012) 108-122 119
Table 5
Monazite U-Pb shrimp data.

Label U(ppm) Th(ppm) “Th/**8U  %Pbcommon  2%Pb/?°U  10%  2%Pb/*®U  10%  error correlation  2%Pb/?*8U Age (Ma)  +10
Sample B21

B21-1C 4112 38,887 9.8 142 0.0474 8.2 0.00809 1.6 0.196 52.0 0.8
B21-2C 3196 26,546 8.6 0.00 0.0552 34 0.00784 1.6 0.469 50.4 0.8
B21-2M 5441 64,526 123 0.71 0.0480 5.1 0.00809 1.8 0.357 52.0 0.9
B21-2R 3080 37,389 125 0.37 0.0517 5.1 0.00833 16 0.318 53.5 0.9
B21-3C 3972 38,741 10.1 0.36 0.0497 39 0.00824 15 0.394 52.9 0.8
B21-4C 1603 23,122 14.9 1.16 0.0455 7.0 0.00795 1.8 0.253 51.0 0.9
B21-5C 2885 53,646 19.2 0.31 0.0498 5.8 0.00793 16 0.279 50.9 0.8
B21-6C 2626 28,878 114 1.03 0.0466 7.6 0.00799 2.3 0.306 513 12
B21-6R 2471 22,713 9.5 0.00 0.0545 39 0.00795 1.8 0.474 51.0 0.9
B21-7C 4336 39,452 9.4 0.50 0.0451 6.6 0.00787 1.7 0.250 50.6 0.8
B21-8C* 4943 68,740 144 135 0.0453 109 0.00836 2.1 0.197 53.6 1.1
B21-9C 2240 55,502 25.6 1.04 0.0457 104 0.00792 19 0.183 50.9 1.0
B21-10C 3932 29,956 7.9 0.27 0.0531 6.8 0.00817 3.0 0.446 524 1.6
Sample KB1

KB1A-11R 13,417 30,504 23 0.18 0.0493 3.0 0.00795 1.5 0.486 51.0 0.7
KB1A-10R 6339 31,408 5.1 0.58 0.0500 4.9 0.00798 15 0.306 51.3 0.8
KB1A-12R 8339 32,679 4.0 0.19 0.0522 2.7 0.00813 15 0.567 52.2 0.8
KB1A-8C 7415 30,480 42 042 0.0511 4.0 0.00816 1.5 0.389 524 0.8
KB1A-6C 8198 30,578 39 0.00 0.0537 2.7 0.00818 15 0.544 525 0.8
KB1A-1C 5546 27,957 52 0.00 0.0596 5.5 0.00822 1.6 0.285 52.8 0.8
KB1A-7C 7316 32,106 45 0.00 0.0503 8.5 0.00827 15 0.177 53.1 0.8
KB1A-5C 6360 29,322 48 0.41 0.0527 34 0.00833 15 0.436 53.5 0.8
KB1A-3C 7383 27,492 3.8 0.42 0.0516 4.6 0.00835 2.0 0.426 53.6 1.0
KB1A-9C 2486 34,781 14.5 0.85 0.0563 9.4 0.00836 24 0.257 53.6 13
KB1A-4C 7866 28,833 3.8 0.49 0.0503 39 0.00838 15 0.374 53.8 0.8
KB1A-10C 3076 34,049 114 0.53 0.0509 6.6 0.00839 16 0.244 53.8 0.9
KB1A-2C* 2023 21,587 11.0 4.12 0.0199 47.6 0.00705 3.0 0.063 453 14
Sample KB5

KB5-4C 3305 36,461 114 0.85 0.0479 5.6 0.00804 2.1 0.371 51.6 1.1
KB5-2C 2009 27,306 14.0 0.00 0.0577 44 0.00815 2.3 0.516 52.3 12
KB5-1C 6044 21,853 3.7 0.25 0.0560 3.7 0.00822 19 0.521 52.8 1.0
KB5-9C 5172 25,267 5.0 0.51 0.0496 43 0.00823 1.5 0.351 52.8 0.8
KB5-10C 2688 30,811 11.8 0.00 0.0584 3.6 0.00830 1.8 0.508 533 1.0
KB5-1R 6867 22,129 33 0.00 0.0554 2.7 0.00830 19 0.675 533 1.0
KB5-8C 4537 41,541 9.5 1.13 0.0456 7.4 0.00831 15 0.208 534 0.8
KB5-7C 5012 22,550 4.6 0.52 0.0489 41 0.00836 16 0.395 53.7 0.9
KB5-10R 10,058 18,487 1.9 0.00 0.0540 23 0.00838 14 0.635 53.8 0.8
KB5-5R 8488 20,678 25 0.28 0.0530 3.0 0.00843 1.8 0.590 54.1 1.0
KB5-6C 5221 38,398 7.6 0.60 0.0552 5.0 0.00844 1.6 0314 54.2 0.8
KB5-3C 3660 31,100 8.8 0.00 0.0569 31 0.00845 1.6 0.499 54.2 0.8
KB5-4M 8347 20,185 25 0.00 0.0552 2.5 0.00853 16 0.652 54.8 0.9
KB5-4R* 4402 26,956 6.3 1.18 0.0405 9.4 0.00784 3.7 0.391 50.3 19
KB5-8R* 5323 21,729 42 442 0.0545 183 0.00802 1.9 0.103 51.5 1.0
KB5-2R? 3941 19,976 5.2 2.38 0.0721 9.2 0.00827 16 0.178 53.1 0.9
KB5-5C* 4375 37,643 8.9 141 0.0424 13.1 0.00828 16 0.124 53.1 0.9
KB5-8M? 2528 29,537 121 1.10 0.0441 14.6 0.00851 3.0 0.202 54.6 1.6
Sample T27

T27-11C 3291 34,414 10.8 0.81 0.0497 6.8 0.00803 1.6 0.238 515 0.8
T27-7R 5519 31,414 5.9 0.59 0.0515 5.6 0.00808 1.6 0.280 51.8 0.8
T27-6C 4057 38,046 9.7 0.96 0.0504 6.0 0.00808 2.2 0.361 519 1.1
T27-10R 15,265 21,526 15 0.26 0.0506 3.1 0.00809 15 0.467 519 0.8
T27-1C 6439 68,741 11.0 113 0.0472 45 0.00810 1.7 0.364 52.0 0.9
T27-2R 8892 28,224 33 0.36 0.0489 31 0.00812 1.5 0.479 52.1 0.8
T27-4C 8999 22,585 2.6 0.33 0.0513 4.0 0.00814 2.9 0.709 522 15
T27-7C 3737 28,640 7.9 0.00 0.0586 3.2 0.00814 15 0.481 523 0.8
T27-9C 5246 31,195 6.1 0.80 0.0535 49 0.00818 23 0.464 525 1.2
T27-6R 8555 27,730 33 0.71 0.0492 39 0.00818 16 0412 525 0.8
T27-3C 4515 36,312 83 0.00 0.0580 3.1 0.00829 16 0.507 532 0.8
T27-1R 9590 18,836 2.0 0.35 0.0474 47 0.00832 14 0.309 534 0.8
T27-8C 4677 44,039 9.7 0.46 0.0525 5.9 0.00833 2.1 0.356 53.5 1.1
T27-5C 11,855 27,660 24 0.38 0.0517 33 0.00838 1.9 0.572 53.8 1.0
T27-1M? 1452 44,155 314 1.57 0.0465 14.2 0.00759 3.9 0.275 488 19
T27-2C 2796 32,899 12.2 1.50 0.0444 12.3 0.00791 2.2 0.183 50.8 1.1

2 Denotes measurement excluded in age calculation and Concordia plots.

2011) is in agreement with experimental monazite stability fields in
rocks of similar bulk composition (e.g. Janots et al., 2007). Similar
monazite zoning has also been described during water-absent

biotite-breakdown melting (e.g. Dumond et al., 2010).

Y-rich zones/rims similar to the Y-rich zones of sample T27
(Fig. 4) have been described by other workers from migmatitic
rocks, and have generally been interpreted as representing a mona-
zite generation which grew during breakdown of garnet and/or in
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Fig. 8. Schematic diagram displaying the different stages of monazite growth and dissolution observed in the metamorphic zones of the CMC relative to metamorphic grade. In the
phyllite zone, only detrital and metamorphic allanite is present. At ~550 °C and <3.4 kbar, monazite growth (Mnz1, medium Y-content) is widespread in the schist zone samples,
prior to and contemporaneous with garnet and andalusite growth and parallel to the S, foliation. In the gneiss zone, Mnz2 growth (Th-rich, Y-poor) occurred due to recrystallisation
from partial melts, and was overgrown by Mnz3 rims (Y-rich) during initial cooling and resorption of garnet. In samples located in or close to late muscovite- and chlorite-bearing
shear zones, monazite was dissolved and overgrown by allanite and allanite + epidote + apatite coronas.

equilibrium with xenotime (e.g. Foster and Parrish, 2003; Kohn et al.,
2005; Mahan et al., 2006; Pyle and Spear, 2003 ). Sample T27 contains
garnet with irregular grain boundaries that show a strong outward
increase in Mn and a slight decrease in Mg in the rim (Bruand,
2011). Sharp rimward zoning in Mg, Fe or Mn in otherwise homoge-
nous garnet is commonly attributed to diffusional exchange and/or
net transfer reactions between garnet and biotite during cooling
(e.g. Kohn et al., 2001; Spear, 1993). Irregular grain boundaries and
truncated zoning together with Mn-rich rims are commonly inter-
preted as resorption of garnet during which liberation of Y may
occur. Additionally, dissolution of xenotime, which is indeed rare in
these samples, in the final stage of melting would liberate Y. There-
fore we suggest that the high-Y monazite rim (Mnz3 growth, Fig. 8)
occurred after release of Y during garnet resorption and/or xenotime
dissolution (e.g. Foster and Parrish, 2003; Kohn et al., 2005; Spear,
1993).

5.3. Break-down of monazite in retrograde fault zones

The retrogressed gneisses contain only small, relict monazite
grains and large allanite crystals. In samples T7, T15a, N7 and N17,
these allanite crystals are texturally linked to the occurrence of late
muscovite and/or chlorite, which is commonly concentrated along
foliation-parallel zones (Fig. 3k, Fig. 8). These muscovite-chlorite
bearing zones are wide-spread in the southern and south-eastern
parts of the CMC, and contain a down-dip lineation with N-side up
sense of movement (Gasser et al., 2011). The zones occur near and
parallel to major fault zones which bound the complex: the Contact
fault system in the west and the Fairweather/Art Lewis Fault System
in the south-east (Fig. 1; Gasser et al., 2011; Pavlis and Roeske,
2007; Plafker et al., 1994). These fault systems were responsible for
exhumation of the CMC during the Eocene to Neogene (Gasser et
al., 2011). We therefore interpret the allanite growth in these samples
as a consequence of fluid-assisted greenschist facies retrogression
associated with exhumation of the gneisses along the bounding

fault zones (Fig. 8). Similar allanite-apatite corona growth around
monazite (as observed in samples N7 and N17, Fig. 3j) has been
described by Finger et al. (1998) as a result of an amphibolite-facies
overprint of granitoids and by Krenn et al. (2008) as a result of a
greenschist-facies overprint of amphibolite-facies metapelites.
Budzyn et al. (2011) produced similar coronas in experiments at
4.5-6.1 kbar, 450-500 °C and with high Ca-fluids, suggesting that
the fluid composition plays a major role in development of such coro-
na growth.

The two amphibole-garnet-bearing metavolcanic gneisses N38
and N39 appear to represent exceptions: the large allanite crystals
present in these samples do not appear to be texturally related to
the late muscovite-chlorite zones, and we infer that they represent
part of the peak metamorphic assemblage. Allanite, plagioclase and
garnet in these samples show complex zoning patterns in Ca, suggest-
ing a complicated reaction history for this assemblage within these
samples. The high molar Ca-content of these samples (~5 Ca mol%)
relative to the other investigated samples (~1-3.8 Ca mol%), probably
in combination with slightly higher overall peak pressures in the
south-eastern part of the CMC (e.g. pressure controls the monazite-
vs. epidote/allanite-stability field as depicted in Fig. 6 in Janots et al.,
2007), likely favoured stability of allanite at the metamorphic peak
in these samples.

5.4. Remarks on the U-Pb ages and regional implications

U-Pb SHRIMP dates from core and rim domains can be correlated
with monazite generations Mnz2 and Mnz3, respectively, based on
their similar BSE pattern (Fig. 6). Single spot analyses from rim and
core domains from the different samples range from 50.3 4 1.9 Ma
to 54.8 £ 0.9 Ma (Table 5), whereas the weighted mean dates of rim
and core domains of the four samples range from 51.0+ 1.1 Ma to
53.4+ 1.1 Ma (Fig. 7). There is no systematic difference between an-
alyses from core and rim domains in the different samples (Fig. 7e).
This indicates that Mnz2 and Mnz3 growth occurred during a short
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period of time of less than 5 m.y., below the resolution of our dating
method (Fig. 8). For samples KB5 and T27, U-Pb SHRIMP ages of
metamorphic zircon rims are within error of the monazite ages for
the same samples (54.0 0.8 Ma for KB5 and 52.6 4+ 0.8 Ma for T27,
Gasser et al., in press). Four additional U-Pb SHRIMP ages of meta-
morphic zircon rims from the CMC and one age from a granodioritic
intrusion also occur within error of the monazite ages (Gasser et al.,
in press). Metamorphic zircon rims were interpreted as being related
to the partial melting event, and we suggest that monazite formation
probably occurred during the same time period as the zircon-rim for-
mation close to or at the metamorphic peak. Together, zircon and
monazite ages indicate a short time period from ~55 to ~50 Ma dur-
ing which partial melting occurred in the CMC, contemporaneously
for at least ~300 km along strike (Gasser et al., in press).

6. Conclusions

In the Chugach Metamorphic Complex, which ranges from greens-
chist facies phyllites to upper amphibolites facies migmatites, monazite
is affected by three major events: (1) At ca. 550 °C and <3.4 kbar, the
detrital and metamorphic allanite present in the greenschist facies
phyllites broke down to form medium-Y monazite (Mnzl). The
widespread growth of monazite occurred prior to and simultaneously
with garnet and andalusite growth, probably following the general re-
action allanite + apatite + Al-Fe-Mg phases1 = monazite + anorthite
+ Al-Fe-Mg phases2. Aluminosilicates or garnet probably did not take
part in the monazite-forming reaction, similarly to what has been de-
scribed by Janots et al. (2008) and Tomkins and Pattison (2007). CaO
versus Al,0s plots, Ca0/SiO, and CaO/Na,0 ratios do not reveal the in-
fluence of Ca on the monazite-in reaction in our samples. (2) During
partial melting of the gneisses, the early medium-Y monazite genera-
tion Mnz1 was apparently dissolved, and a second, Y-poor, Th-rich
monazite generation Mnz2 crystallised, which we interpret to have
formed synchronous with or shortly after the metamorphic peak of
~650-700 °C and 4-9 kbar. During initial cooling and resorption of gar-
net rims, a third, Y-rich, Th-poor monazite generation Mnz3 formed. U-
Pb SHRIMP dating of the second and third monazite generations in the
gneisses shows that Mnz2 and Mnz3 are indistinguishable in age, and
that the two monazite generations crystallised during a short time
span of <5 m.y. at ~55-50 Ma. (3) Retrogression associated with the
development of muscovite- and/or chlorite-bearing shear zones desta-
bilised monazite and led to the formation of allanite and/or allanite +
epidote + apatite coronas. The combination of microstructural observa-
tions, petrology, trace element geochemistry and geochronology
allowed different monazite generations to be related to different meta-
morphic stages. The results illustrate that polyphase, complex monazite
growth and dissolution can occur during a single, relatively short-lived
metamorphic cycle.
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