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Abstract 

Hespel, C., and G. Jacob, Approximation of nonlinear dynamic systems by rational series, 
Theoretical Computer Science 79 (1991) 151-162. 

Given an analytic system, we compute a bilinear system of minimal dimension which approximates 
it up to order k (i.e. the outputs of these two systems have the same Taylor expansion up to order 
k). The algorithm is based on noncommutative series computation: let s be the generating series 
of the analytic system; then a rational series g is constructed, whose coefficients are equal to those 
of s, for all words of length smaller than or equal to k. These words are digitally encoded, in 
order to simplify the computations of the Hankel matrices of s and g. We then associate with g, 
a bilinear system, which is a solution to our problem. Another method may be used for computing 
a bilinear system which approximates a given analytic system (S). We associate with (S) an 
R-automaton of vector fields and build the truncated automaton by cancelling all the states which 
have the following property: the length of the shortest successful path labelled by a word that 
gets through this state is strictly greater than k. Then, the number of states of this truncated 
automaton yields the dimension (not necessarily minimal) of the state-space. 

1. Introdluction 

Several methods may be used for determining the input-output behavior of a 
dynamic system: transfer functions, functional expansions (Volterra series) [6], and 
generating power series [S]. With all these descriptions, we have the following 
problem: is it possible to constsuct a suitable approximation of the input-output 
behavior of any dynamic system using a more elementary system? 

For single input systems, the transfer function can be used to find a linear 
approximation by means of Pad6 approximants [2,3]. Nevertheless it is not possible 
in general to approximate nonlinear systems by linear ones. 
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Another way for determining approximations of dynamic systems is to compute 
its first Volterra kernels [a], but in this case one must solve the new problem of the 
realization of this truncated Volterra series [ 121. 

The formal power series in several noncommutative variables are the most efficient 
tools for dea!ing with functional expansions. One cannot approximate any nonlinear 
functional with a linear system (i.e a rational series in one variable). But it is possible 
to approximate any nonlinear functional with a bilinear system (i.e. with a poly- 
nomial or a rational series in several noncommutative variables). 

In this paper, a new algorithm is presented which enables us to compute a minimal 
rank bilinear system (B) which approximates a given dynamic system (S) 

??I - 1 

(9 
40) = A,(q) + C ~iW4(qA 

i=l 

jYW =f (q), 
up to order k (i.e. the Taylor expansions of the output of (S) and (B) are equal up 
to order k). As Fliess showed [S, 61, the input-output behavior of a dynamic system 
(S), can be coded by a noncommutative formal power series, called the generating 
series of the system (S). 

A generating power series is known to correspond to a finite-dimensional bilinear 
system if and only if it is rational. Furthermore it is known that a series s is rational 
if and only if the rank of its Hankel matrix H(s) is finite. 

The first method developed here is the following: given a generating series s of 
(S), one builds a rational series g (associated with bilinear system (B)) which 
coincides with s for all words of length s k and is of minimal rank. 

The second method to compute a bilinear system (B) which approximates a given 
dynamic system (S) is as follows: with the given system (S), we associate an 
R-automaton .&. As a series is rational if and only if it is recognized by a finite 
R-automaton [Ill, then we build a truncated automaton T (associated with the 
bilinear system (B)), from the R-automaton ~2 associated with (S). 

2. Notations [l] 

Let X = (x, , . . . , x,,} be a finite, nonempty set called alphabet. The set of finite 
sequences .Y,~ . . . Xi/ of elements of X is the free monoid X* (with concatenaiion 
and neutral element 1). 

An element of X* is a word w = ,Xjl . . . Xi/ ; the length I of which is denoted by 1~1. 

A formal series s with coefficients in R is a function 

where (s, w) is called the coefficient of o in s. 
e note by R{(X)) set of formal series over X with coefficients in R. A structure 

of a semiring is defin n R{(X)) (sum and Cauchy product). The set of polynomials 
is denoted by R(X). 
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A formal series s E R((X)) is proper if the coefficient of the empty word is equal 
to 0. The sum of the locally finite family (s”),, -O is denoted by s* and is called the 
star of s: 

The rational operations in IN(X)) are the sum, the Cauchy product, the two external 
products of W on R((X)) and the star operation. 

The smallest subset containing a subset E of R{(X)) and which is rationally closed 
(i.e. closed for the rational operations) is called the rational closure of E. 

A formal series is rational if it belongs to the rational closure of R(X). 
A formal series s E R{(X)) is called recognizable if there exists an integer n 2 1, a 

morphism of monoids 

P :x*+wx” 
and two matrices h E lR’x” and y E R”” ’ such that 

(4 4 = Al,cw 

In this case, the triple (A, p, y) is called a linear representation of s, and n is its 
dimension. According to the Fundamental Theorem of Schutzenberger [ 111, a formal 
series is recognizable if and only if it is rational. 

The Hankel matrix of a formal series s is the matrix H(s) indexed over X* x X* 
and defined by 

HuJs) = (s, uv), Wu, v E X* 

and rk(s) is the rank of its Hankel matrix. 
A series is known to be rational if and only if its rank is finite. In this case, its 

rank is equal to the minimum of the dimensions of the linear representations of s [4]. 

3. Approximation by a minimal rank bilinear system 

3.1 Approximation oj’ a formal series by a rational series [7] 

Let s be a given formal series, we want to build a rational series of minimal rank, 
which approximates s up to order k. 

For that purpose, we compute the Hankel matrix H( p) of the polynome p obtained 
by truncating s by cancelling the coefficients of the words of length greater than k. 

See fig. 1 for k = 2. 

Then, we try to find recursively a linearly dependent relation between one column 
and the precedent columns, by substituting nonzero values for some zero-,, while 
preserving the Hankel matrix structure. 
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1 xo x1 *: *ox1 x1xO x: _____________________ ~_~_~~____~~~_~~~~~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~----- 
d a 1 ab b 0 0 1 

a ab b 

1 0 0 

ab I 
0 

Fig. 1. 

Let us denote Hslq,, the Hankel matrix of p, restricted to the rows indexed by 
the words u of length sI, as well as to the columns indexed by the words u of 
length SC. 

In the previous example, the column vector C, indexed by 1 and the column 
vector Cl,, indexed by x, , are linearly independent in Hs2,so, Hs ,+ 1, Hso,,2, the 
other column vectors being linearly dependent in these blocks: 

CQX, = KY, 3 

c,,,, = cv; = 0, 

cl,; = bC,, 

cb = aC,, . 

In this way, we obtain a minimal rank (=2) rational series even though the rank 
of H(p) is equal to 3 (Fig. 2). 

I 
J 
1 

J 
xo x1 “,2 xOxl 

2 
xlxo xl x; . . . . . . . 

--e-w ~~~~_----__~_~__~--~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1 
__________ 

1 d 

xo a 
x1 l 

XI ab 

x0x1 b 

XIX 0 

xf 0 

x; ab2 

. . 

a 1 ab b 0 0 1 ab2 . . . . . . 

ab b 

r 

ab2 b2 0 0 ab3 . . . . . . 

0 0 0 0 0 0 . 

ab2 b2 ab3 b3 0 0 . 

0 0 0 0 0 0 . 

0 0 0 0 0 0 . 

0 0 0 0 0 0 . 

. . . . . . . 

. . . . . . . 

Fig. 2. 
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3.2 Application to the bilinearization of dynamic systems [8] 

3. 

e 

2. I. Method 

Consider the dynamic 

(S) 
4(t) = A,(q) + 

YW =&f(q)* 

analytic systems, of the form 

M - 1 

c 4WMq), 
i=l 

q is the state which belongs to a finite dimensional R-analytic manifold V, 

vector fields AO, Al,. . . , A,,, _l and output function S are analytic and defined in 
a neighborhood of the initial state q(0). 
u(t)=I(u,(t)... u,-,(t)) is the input function where uI , . . . , u,,,__, are piece-wise 
continuous. 
We build an approximation of these systems by bilinear ones, under the form 

m-l 

(a) 
W+ C uiWM q(t), 

i=l 

q belongs to a finite dimensional R-vector space Q 
M,,... , Mm-l:Q+Q and A:Q+R are R-linear 
Input function u(t) = ‘(u,(t) . . . u,_l (t)) where ul , . . . , u,,_ l are piece-wise con- 
tinuous. 
We say that (B) approximates (S) up to order k, if and only if, whatever the input 

function, the outputs of these two systems have the same Taylor expansion up to 
order k. 

As Fliess showed [S, 61, the input-output behavior of a system (S) can be coded 
by a noncommutative formal power series s, called the generating series of the system. 

For that purpose, with vector fields AO,. . . , A,,,_, , he associates an alphabet 
x =(x0, X,, . . . , x,_ ,}. The generating series is noted 

s =c (s, w)w. 
H’ 

The generating power series may be rewritten as [6] 

A generating power series g corresponds to a finite-dimensional bilinear system 
if and only if it is rational. The rank of g is also the dimension of the state-space 
of the reduced system [lo]. 

The approximation of (S) with (B) up to order k amounts to the problem of the 
approximation of a formal series s with a rational one, g. 
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3.2.~ ~lg~ithrn for the computation of a bilinear system of minimal rank 193 
Conskier the following problem. Which is the better coding by successive i 

of words E X*, in order to make a matrix calculation (usirg arrays) of the 
matrix of q? 

Consider for m = 3 the word tree shown in Fig. 3; let pre be the preceding (defined 
below) in the base m notation, and code the coding: We define first the following 
preliminary coding: 

pyecoding( 1) = 1 

precoding( wx,) = m x precoding( w) + s, VW E X* 

Qx, E x. 

Thus, 

precoding(x,, . . . Xi,) = mi + il m’-’ + l l l + i,mO. 

The word x,, . . xi1 is then preceded, in the base m notation, by 1 i, . . . i,. 
It may be noticed that this coding produces some “holes”, for m > 2 (between 

the last word of length I - 1 and the first word of length I). We obtain the coding 
by substracting the number of holes from this preceding: 

‘-1 coding (xi, . ..xi.)=nr’+i,m’-‘+* l l +i,m’-(m-2)m 
m-l 

Moreover, let us emphasize that 

codingix,w) = coding( w)+(s+ 1)m’. 

x3 I pre = 100 

/ 
icode = 5 

pre = 10 [pre = 101 

ix0 

/ 
/ 

lC .-- Xl 

pre=l 
code = 1 

\ 

\ 
\ 

\ 
X2 

I 

-xoxl 
code=2 \ 1 code = 6 

1, [pre = 102 
‘X0X2 

I code = 7 
(pre = 110 

/ 

xlxO 
t- code = 8 

pre = ‘rl 

code=3 
- XI 

\ 

I 

pre = 111 

code = 9 
pre = 112 

v2 
code = 10 

C 
pre = 120 

/ 

X2X0 
code = 11 

pre = 12 pre = 121 
- x2x1 

code=4 \ code = 12 

1 hole : 2 3 holes : 6,7,8 

Fig. 3. 

pre = 122 

code = 13 
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This coding of tirt: words allows easy storage of a formal series y the array of its 
coefficients in H(s). 

As the algorithm is written in MACSYMA language, we can make a formal 
calculation and the generating series s is parameterized by the initial state q(0). 

3.23 Comparison with the approximation given by the taftgent linear system 

Example 3.2 

w I 
a a 

A,=(-klq?-klsin(q,))-+q,~ 
342 

a 
4=(1+q,$- 

2 

Y(t)=q2 

A bilinear system (B,), approaching (SZ) up to order k = 5, except for the singular 
points, can be determined using the previous algorithm: 

A&, M, , A being parameterized by the initial state: 

/O O 0 

I 1 0 
42+1 

42 

M()= 0 0 I (2q2+ 1) sin(q,)kz+qfk, 

&+4* 

\ 0 0 0 0 0 1 0 0 1 

000 0 0 0 

0 0 0 pc pc yc 

M,= 1 0 0 yc UC zc 

\ 0 0 0 0 0 1 0 0 1 %r12 %rll EC %rl6 %I-15 7x %r20 %r19 Kc 

A ’ = 

i?2 

--sWl)k2 - q2kl 
9291 

-kd-sin(q,)k, - q2k,) - q2 cos( q1)k2 

-sW,)k, - g,k, 

42+1 

0 0 O \ 
Pb Pb Yb 

yb vb zb 

%rlO %rl4 %r18 

eb Tb Kb 

%r9 %r13 %r17/ 
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%r, are parameters which may be chosen arbitrarily, and the other terms, appearing 
in MO and M, , are functions of ql, q2. The processing is thus generic for every 
point except for singular ones. At these pdints, the Hankel matrix is easy to compute 
numerically. The algorithm yields a numerical minimal bilinear system, approximat- 
ing the given system, at these points. 

The computation of the tangent linear approximant needs the system equation 
to be rewritten, at every operating point. 

In Example 3.2, the generating series expression s of (S,) and the generating 
series expression u of the tangent linear system around q(O), show a difference, 
from length 2 osl, except for singular points: 

(s, .wJ -(u, ~0) = (s, ~0) = -k,q#) - kz sin(q,(O)), 

(s, xf, - (u, xi) = (s, xi) 

= 1 ++(O). 

Then, from order 2 on, the tangent linear approximant is invalid. 

4. Bilinearization via the vector fields automaton 

4.1. The vector fields au toma ton 

Recall that the generating series of a dynamic system (S) may be written as 

where I? is the mirror image of w. 
Therefore, the problem reduces to checking the differential operators: 

A,,. = C A,,;,, Da 
Ct 

with 

D” =D)... 02, 

a a 
‘=G’-‘*v 

DN=- 

aqN ’ 
mpute these operators, define the following automaton operating on 
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Using Leibnitz formula, we can deduce that 

D”A,= f C C~D~(Oj’)ou-pDj 
j=l /3 

where 

159 

(1) 

Moreover, we want to check A, of, that is C, A,;, D”(f). 
Thus, the observation function f enables us to define the final state vector F, 

determined by its components Fb, = DQf: 

4.2. The trurlcated automaton 

In order to compute an approximant bilinear system, whose rank is not necessarily 
minimal, the truncated vector fields automaton can bi: used. This automaton is 
constructed by choosing the states D” that are met along a successful path and the 
length of which is smaller than of equal to k. Therefore the cut off automaton can 
be obtained. The number of states appearing in this latter automaton can be easily 
seen to be the rank of the corresponding bilinear system. 

Example 4.1. The Duffing equation is 

y”+ayi+bZy+cy3=u,(tj, 

that is 

with 

40) = A,(q) + NbA,W, 

?I(0 = q,(t), 

F=-aq,-b2q,-cq:, 

a 
&=FG+q2 

a 
-=FD2+q2D,, 
341 

A, a c-z 
392 

D2. 

The actions of A, and A 1 produced by the letters x0, X, on states 0; 0; , are given 

bY 

D;@Ao= FD;D;+‘+ Ci’F’D;-ID;+‘+ CfF”D;-2D;+’ 

{+ q2D’,“D{+j 

le us to obtain t 
automaton shown in Fig. 5. 
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Fig. 4. 

Fig. 5 

The truncated auto aten can be determined by picking out from these states, the 

states D” which xe rn~t *A ,.CTQ 3 successful path and the length of which is smaller 

than or equal to k. 

Thus we compute 

_LC = length of the shortest path between I and D”, 

_LilCC = length of the shortest path between D” 

and a final state. 
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1 

xo 
*1 

*: 

xoxl 

x1x0 

G 

e 

4 

x: 

3 
xlxO 

k=8 k=9 

Fig. 6. 

D: VZ D; D; D;Dz D,D; 

Ql 1 0 ....................... 

Q2 0 1 0 .................. 

0 . . . . . . . . . . ..I..................... 

F F -a F” 0 0 F”’ 0 

0 .................................. 

1 0 ............................. 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-aFqzF’ (;2F”-aF a&F’ q2F”‘-~” F” () _aF”’ F”’ 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

F(a*+F) F(a2+F) -a(d2+2F) F”(a2+3F) -2aF’ 2F” 3F”2 _2$“’ 2.7 

+q2@F”-aF) +FF” +2q2F” +F”‘(F-aq2) +2q2F”’ +F”‘(a2+4F’) 

+q(qy’-aF”) 

a2+F F” 0 F”’ 0 0 

Fig. 7. 
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Let 1x1 denote the pair (j,,, , j,,.,,,) for every state Da. 
For instance, for k = 7, a truncated automaton containing 9 states, is obtained 

this way (Fig. 6). 
By truncating the vector fields automaton, a rational series realization is obtained, 

which approximates the given series up to order K 
The truncated automaton is completely accessible but generally, it is not com- 

pletely observable. Let M = (D” + *of). M is a matrix whose rows are indexed by 
words w and whose columns are indexed by the states W. The element of row w, . 
column D” is D”A,f: In this matrix (Fig. 7), the columns indexed by the states 
D1 Di and Df D2 can be readily seen to be linear combinations of the other columns. 

A minimal automaton may be obtained in this way, whose rank, equal to 7, is 
minimal. 
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