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a b s t r a c t

Constructing and analyzing large biological pathway models is a significant challenge. We
propose a general approach that exploits the structure of a pathway to identify pathway
components, constructs the component models, and finally assembles the component
models into a global pathway model. Specifically, we apply this approach to pathway
parameter estimation, a main step in pathway model construction. A large biological
pathway often involves many unknown parameters and the resulting high-dimensional
search space poses a major computational difficulty. By exploiting the structure of a
pathway and the distribution of available experimental data over the pathway, we
decompose a pathway into components and perform parameter estimation for each
component. However, some parametersmay belong tomultiple components. Independent
parameter estimates from different components may be in conflict for such parameters.
To reconcile these conflicts, we represent each component as a factor graph, a standard
probabilistic graphical model. We then combine the resulting factor graphs and use a
probabilistic inference technique called belief propagation to obtain the maximally likely
parameter values that are globally consistent. We validate our approach on a synthetic
pathway model based on the Akt-MAPK signaling pathways. The results indicate that the
approach can potentially scale up to large pathway models.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Biological pathways are inherently complex. To understand the functioning of these pathways, we not only need to
identify the constituent elements and their interactions, but also how their dynamics evolve over time [1,2]. A common
approach is to view the pathway as a network of bio-chemical reactions andmodel them as a system of ordinary differential
equations (ODEs). One then attempts to analyze this system of ODEs to gain insights into the pathway dynamics. This
approach can be extended to include discrete aspects as well [3].

However, this model construction method must overcome several barriers. Firstly, the values of the rate constants of
all the bio-chemical reactions and the initial concentration levels of the reactants are needed to complete the model.
Unfortunately only a few of these parameters will be known or can be measured experimentally. The rest must be
estimated by fitting the model to experimental data. The amount of such data will be limited and noisy. Consequently,
parameter estimation for large bio-pathways is a difficult problem and applying a decomposition based technique is an
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attractive option. This however raises the issue of integration. Different components of a model may share parts whose
dynamics vary according to the components they belong to. One will have to reconcile these differences to obtain a globally
consistent model of dynamics. Secondly, model construction is often an ongoing process. As new experimental data arrives,
it will have to be incorporated into a new model. Instead of having to start from scratch each time, one would like to
have techniques by which the existing model is updated to yield the new model. Finally, one may also want to integrate
a number of existing models constructed independently by adding cross-talks or feedback loops. These considerations
lead to basic questions as to what a component is and what algorithmic techniques are needed to compose component
models.

Our main goal here is to explore these issues in the context of parameter estimation. Specifically, we decompose a
pathway model into components to achieve dimension reduction of the search space for parameter values. We then carry
out parameter estimation for the individual components. We then represent the estimates for each component as a factor
graph, a well-known probabilistic graphical model and apply a probabilistic inference technique called belief propagation
[4] to reconcile the different estimates for the parameters shared by different components to obtain a globally consistent
set of estimated values. We wish to emphasize that our technique is orthogonal to the specific method used for solving the
parameter estimation problem for the individual components. Further, althoughwe focus on systems of ODEs here, it should
be possible to extend our method to related system models such as Hybrid Functional Petri Nets [3].

The present paper extends our previous work [5,6] in several ways. The decomposition based estimation technique in
[5] was based on a component notion which depended on the structure of the pathway model as well as the distribution
of experimental data. Here instead, we define a purely structural notion of components. Different subsets of components
can constitute the decomposition of the model. We exploit the distribution of experimental data to guide the choice of
components to form the decomposition. In addition, the method that we present here yields a canonical decomposition.
In contrast, choosing one decomposition from the several possible ones was based on pragmatic considerations in [5].
More crucially, the problem of reconciling conflicting estimates of parameters belonging to more than one component
was resolved in an ad hoc and local manner in [5] by arbitrarily designating one of the estimated values as the ‘‘true’’
one.

Later, in [6] we identified belief propagation as a way to integrate conflicting parameter estimates of the parameters
shared by different components. However we explored this in a setting where the components were allowed to be related
to each other only in restricted ways. Here we remove such restrictions.

Parameter estimation commonly involves searching a high-dimensional space for a suitable vector of parameter
values, which, when plugged into the model, yields a behavior that matches the given experimental data well. Hence,
the problem is often formulated as a nonlinear optimization problem with differential-algebraic constraints. Several
algorithms have been designed in this setting to estimate the parameters given experimental data, and it continues to be
investigated [7–10]. Interestingly, the formal verification technique called model checking is also being deployed to attack
this problem [11,12]. However, the estimated parameters are required to be consistent only relative to the dynamic
properties captured by the specified temporal logic formulas. As pointed out above, our decomposition–estimation–
integration technique can be combined with these various approaches.

The rest of this paper is organized as follows. In the next section we introduce the ODE-based representation of a bio-
chemical network. We then formulate the graphical model called RNGs (Reaction Network Graphs) to capture the coupling
of the variables induced by the ODEs systems. In the subsequent section we present our decompositionmethod. In Section 4
we introduce factor graphs. We show how a factor graph can be constructed for each of the components present in a
decomposition.We also describe howglobally consistent parameter estimates can be obtained by piecing together the factor
graphs corresponding to the individual components and applying belief propagation. In Section 5 we use our technique to
carry out the parameter estimation of a simplifiedmodel ofwell-studiedAkt–MAPKpathway. Ourmain aim in this case study
is to show how belief propagation based integration will play out in a realistic setting. In the final section, we summarize
our results and discuss prospects for future work.

2. The problem setting

We begin with a system of ODEs as the basic system model and introduce Reaction Network Graphs (RNGs) to capture
the structure of the underlying pathway. Our notion of components and the decomposition procedure will be developed
using RNGs.

We shall assume a bio-pathway is presented as a network of bio-chemical reactions which in turn is modeled as a
system of Ordinary Differential Equations (ODEs). There will be one equation corresponding to each molecular species
describing how the concentration of this species is increased (decreased) by each reaction that produces (consumes)
this species. As a simple example consider the enzyme–catalyzed reaction scheme in (1). In this system, enzyme E
binds reversibly to substrate S to form the intermediate complex ES. Within the complex, enzyme E then converts S
into product P before releasing it. The parameters k, k′, and k′′ are the rate constants that govern the speed of the
reactions.

E + S
k


k′

ES
k′′
→ E + P (1)
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The corresponding system of ODEs will be:

dS
dt

= −k · S · E + k′
· ES

dE
dt

= −k · S · E + (k′
+ k′′) · ES

dES
dt

= k · S · E − (k′
+ k′′) · ES

dP
dt

= k′′
· ES

Above and elsewhere we will abuse notation for convenience and use E, ES etc. to denote both the name of a molecular
species and the real-valued variable denoting its concentration as a function of time. For typical bio-pathways, many
of the rate constants associated with the reactions will be unknown; they will have to be estimated using available
experimental data. As mentioned in the introduction, several parameter estimation methods are available for ODE-based
models. The basic strategy in all these methods may be viewed as a systematic search through the parameter value space.
For instance, in evolutionary strategies one maintains a small population of values for the parameters being estimated.
After scoring them according to their fitness to experimental data, one eliminates a few unfit ones and introduces new
members to the population – systematically or otherwise – by ‘‘mutating’’ the values of some of the members in the current
population [13,14].

Formally, the parameter estimation problem can be formulated as an optimization problem with differential-algebraic
constraints. It boils down to minimizing an objective function that measures fitness to data:

J(k) =

−
i,j

wij(xi(tj; k) − x̃ij)2 (2)

subject to

ẋ = F(x, k) (3)
h(x, t) > 0 (4)
kL

≤ k ≤ kU (5)

x̃ij denotes the measured concentration level of molecular species xi at time tj. xi(tj; k) is the corresponding value
generated by the model using a particular parameter combination vector k. The nonlinear function F describes the system
dynamics. h is the constraints on the concentration levels for each molecule species x ∈ x while kL and kU are the lower
and upper bound constraints imposed on the parameters. The variable wij is the weight that is used to normalize the
contributions of each term to the objective function.

Unfortunately, the size of the search space will be exponential in the number of unknown parameters. For typical
pathway models, this space can hence become prohibitively large with many local minima. This motivates the dimension
reduction technique based on decompositions that we wish to develop. The starting point is a directed graph that captures
the dependencies between variables.

2.1. Reaction network graphs

To define and depict the directed graph representing the dependencies of variables, we shall adopt the notations used for
depicting the structure of Petri nets with test (read) arcs [3]. However, the notion of markings and the firing rule associated
with the dynamics of Petri nets will play no role here. Hence to avoid confusion and to emphasize the purely graph-theoretic
nature of our representation, we shall use the name RNGs (Reaction Network Graphs). A RNG is a directed bipartite graph
with two types of nodes and arcs. Place nodes will correspond to the molecular species (typically, proteins) and transition
nodes will correspond to the bio-chemical reactions in the pathway. The two types of arcs are used to denote whether a
species participates as a normal reactant (governed by mass law kinetics) or as an enzyme (governed by Michaelis–Menten
kinetics) in a reaction. Formally, a RNG is a structure G = (Π, Γ , F), where

• Π is the set of place nodes with p ranging over Π .
• Γ is the set of transition nodes with γ ranging over Γ .
• F ⊆ (Π × Γ × {0, 1}) ∪ (Γ × Π) is the flow relation connecting the nodes in a bipartite way using two types of arcs.

The place-to-transition arc (p, γ , 1) is said to be a normal arc while (p, γ , 0) is said to be a test arc. Every transition-to-
place arc is deemed to be normal. A weight function can be added to the arcs but we will not make use of this feature in this
paper.

The RNG of the enzyme reaction system of (1) is shown in Fig. 1(a). Since mass action is used in this model for all the
reactions, there are no test arcs. As usual, one can apply quasi-steady-state approximation to the reversible pair of reactions
and collapse the system into one Michaelis–Menten equation Vmax[S]/(KM + [S]), with Vmax = k′′

[E] and KM = (k′
+ k′′)/k.
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Fig. 1. (a) The RNG of the enzyme–catalyzed reaction system. Applying the quasi-steady-state approximation, the RNG of the simplified model will be as
in (b).

Fig. 2. (a) The minimal components of a RNG. (b) The component graph of this RNG.

The corresponding RNG is shown in Fig. 1(b). As illustrated, we will use solid lines to denote normal arcs and dotted lines to
indicate test arcs.

3. Pathway decomposition

We start with the notion of a component which depends only on the structure of the pathway as captured by its RNG. As
explained later, based on the distribution of experimental data over the pathway, certain components will be singled out to
serve as sub-models in our decomposition procedure.

In what follows, we implicitly assume a system of ODEs modeling a bio-chemical network and the associated RNG to be
G = (Π, Γ , F). A component of G is a non-empty subset C of Π ∪ Γ ∪ F which satisfies the following closure conditions. As
before, we let γ range over Γ and p range over Π .

• Suppose γ ∈ C . If (γ , p) ∈ F then p ∈ C and (γ , p) ∈ C . Next if (p, γ , 1) ∈ F then p ∈ C and (p, γ , 1) ∈ C . Finally, if
(p, γ , 0) ∈ F then (p, γ , 0) ∈ C .

• Now suppose p ∈ C . If (γ , p) ∈ F then γ ∈ C and (γ , p) ∈ C . Next if (p, γ , 1) ∈ F then γ ∈ C and (p, γ , 1) ∈ C . Finally,
if (p, γ , 0) ∈ F then (p, γ , 0) ∈ C .

Thus the key idea of a component is to exploit test arcs to break themodel down into smaller parts. Specifically, for a test
arc of the form (p, γ , 0) that belongs to the component C , one could have that γ (p) belongs to C but not p (γ ).

Intuitively, if γ ∈ C but p /∈ C then such an arc may serve as an input to C from a component to which p belongs. If
we have sufficient time series information about the concentration level of p then one may simulate C without having to
simulate the component that p belongs to as well. If on the other hand p ∈ C and γ /∈ C , then one may simulate C without
considering the component to which γ belongs.

Clearly the union of components is a component. C is aminimal component iff it is a component and no proper subset of
C is also a component. The nodes enclosed in the portion A constitutes a minimal component of the RNG shown Fig. 2(a).

In order to estimate the parameters for a component, one should be able to simulate the component with a candidate set
of values for the unknown parameters in the component, compare the simulation data with experimental data and evaluate
the quality of the candidate set. This strategy is feasible only if there is experimental data available for some of the species
in the component. To identify such components we shall use the notions of a component graph and blocks.

Let G = (Π, Γ , F) be a RNG. Then its component graph is denoted as CGG and it is a directed graph CGG = (C, E) given
by:

• C is the set of minimal components of G.
• E ⊆ C × C satisfies:

Suppose C, C ′
∈ C and there exists (p, γ , 0) ∈ F such that p ∈ C−C ′, γ ∈ C ′

−C and (p, γ , 0) ∈ C∩C ′. Then (C, C ′) ∈ E.

The component graph of the RNG in Fig. 2(a) is shown in Fig. 2(b).
The maximal strongly connected components of CGG will be called blocks and are defined as follows. Let ≡⊆ C × C be

the relation given by:

• C ≡ C ′ iff (C, C ′) ∈ E⋆ and (C ′, C) ∈ E⋆ where E⋆ is the reflexive transitive closure of the edge relation E of CGG.
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Fig. 3. (a) An example of a component graph of an RNG G (where G is not shown) and (b) the Hasse diagram of the blocks-poset of G.

Clearly≡ is an equivalence relation. In what follows, we shall denote the≡-equivalence containing theminimal component
C as [C]. Further, a block is such an equivalence class of minimal components. Clearly every block is also a component.
Next we define the relation @⊆ C/≡ × C/≡ as:

• [C] @ [C ′
] iff (C, C ′) ∈ E⋆ and (C ′, C) /∈ E⋆.

It is easy to see that @ is a strict partial ordering relation. As usual, we shall denote its reflexive closure as ⊑. Our
decomposition procedure will systematically group together the blocks in the poset (C/≡, ⊑). In what follows, we will
refer to this poset as the blocks-poset of the given RNG. In Fig. 3(a), we show a component graph (the RNG it is derived from
is not shown). Its blocks and the Hasse diagram of the resulting blocks-poset is shown in Fig. 3(b). For the moment, the
reader should ignore the gray shading of some of the minimal components and blocks.

We can now specify our scheme for grouping together the blocks into components based on the distribution of
experimental data. To start with, we introduce a coloring scheme on the place nodes. For a place node in the RNG, if there
is experimental data available, we color it gray. Otherwise it is colored white. If a minimal component contains at least one
gray place then it is assigned the color gray. Otherwise it is colored white. It is also colored gray if all the parameter values
associatedwith thisminimal component are known. Finally, a block is colored gray if at least one of theminimal components
contained in it is colored gray. The notion of a colored blocks-poset is now defined in the obvious way.

We now wish to group the blocks into components for doing parameter estimation. The basic idea is to exploit the
experimental data available in the gray blocks to constrain the guessed parameter values in the white blocks. For instance
consider the blocks B2 and B3 in Fig. 3(b). If we group B2 and B3 together, then since B2 influences the dynamics of B3, the
experimental data available concerning the dynamics of the gray block B3 can be used to constrain the guessed values of
the unknown parameters in B2. On the other hand, grouping together the gray block B6 and the white block B7 will not
help in constraining the parameter values of B7 using the experimental data available for B6 since B7 does not influence the
dynamics of B6.

For stating our decomposition algorithm, it will be convenient to introduce the following notation. Suppose (B, ⊑) is a
blocks-poset and B, B′

∈ B with B ⊑ B′. Then [B, B′) = {B′′
| B ⊑ B′′ @ B′

}.

The Decomposition Algorithm

Input : A colored blocks-poset (B, ⊑) with Bw as its set of white blocks and Bg as its set of gray blocks.
Initialization: i = 0 and ACT0 = Bg and D = ∅

while ACTi ≠ ∅ do1
Pick a ⊑-minimal element B in ACTi. Set B

g
i = B and ∆i = {Bg

i } ∪ Xi where Xi is the subset of B given by: B′
∈ Xi2

iff B′ @ Bg
i and [B′, Bg

i ) ⊆ Bw .
ACTi+1 = ACTi − {Bg

i } and D = D ∪ {∆i}3
i = i + 1;4

end5
Output: D6
Quit7

In each ACTi there will be at most l = |Bg | blocks. Further, the cardinality of ACTi+1 will be one less than that of ACTi.
Thus the algorithm will terminate after executing each statement at most l times.

In step (2) of the algorithm a⊑-minimal element from ACTi is picked non-deterministically.Wewish to assert thatD , the
final output of the algorithm, will be insensitive to this non-determinism. To see this, we call the sequence σ = B0B1...Bk−1
to be a (⊑-respecting) linearization of Bg iff every element of Bg appears exactly once in σ . Furthermore, for every i, j in
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{0, 1, . . . , l − 1}, if Bi ⊑ Bj then i ≤ j. We note that every sequence Bg
0B

g
1 . . . Bg

l−1 generated by the algorithm will be a
linearization of Bg . Moreover, every linearization can be generated by the algorithm by making suitable choices in step (2).

Next we define the binary relation R over the linearizations of Bg as follows:
σRσ ′ iff there exists sequences τ1 and τ2 and blocks B and B′ such that σ = τ1BB′τ2 and σ ′

= τ1B′Bτ2.
Now suppose σ = B0B1 . . . BiBi+1Bi+2 . . . Bl−1 and σ ′

= B0B
g
1 . . . Bg

i+1B
g
i Bi+2 . . . Bl−1 are two linearizations generated by

the algorithm so that σRσ ′. From the construction of the algorithm, along any execution, for each j, the set of blocks ∆j will
contain exactly one gray block namely Bg

j and all other blockswill bewhite and lie strictly below Bg
j . Hence if we setB1 = ∆i

and B2 = ∆i+1 along the execution generating σ and similarly set B ′

1 = ∆i and B ′

2 = ∆i+1, then it is easy to verify that
B1 = B ′

2 and B2 = B ′

1. Clearly, for any two linearizations σ and σ ′, we will have σRmσ ′ for some m ∈ {0, 1, . . . , l − 1}
(with R0 viewed as the identity relation). Hence by an easy induction onm one can establish that the output of the algorithm
will be insensitive to the non-determinism in step (2) and hence will be unique.

In Fig. 3(b) we show the iterative construction ofD when the algorithm chooses the linearization B0B1B2B6B5. The output
of the algorithm will be {{B0}, {B1}, {B3, B2}, {B6, B4, B2}, {B5}}. It is easy to check that the output will be the same if the
algorithm chooses the linearization B0B1B6B3B5.

Each ∆i produced by the algorithm will be a component of the RNG that the colored blocks-poset is based on. More
precisely if we collect together all the minimal components that appear in the blocks of ∆i and then collect together all the
nodes and arcs of these minimal components we will end up with a component. The idea should be clear and we will not
formalize it here. Instead we will loosely term ∆i itself to be a component. In this light D = {∆0, ∆1, . . . , ∆k−1} is the set
of components yielded by our decomposition procedure.

We will do parameter estimation of these components in the order suggested by their indices. Once a component’s
parameters have been estimated, then this component can be simulated to yield the enzyme profiles to be used by the
components that lie downstream of it. For instance, for the linearization B0B1B2B6B5, we first estimate the parameters of B0.
Now suppose there is just one edge (p, γ , 0) with p in B0 and γ in B1. Then we simulate B0 with the estimated parameters
to generate time series profile for the enzyme associated with p and then use this to do the parameter estimation for B1. We
note that instead of following a strict sequential order, the parameter estimation for ∆2 can be followed by that of ∆4 while
estimating the parameters of ∆3 in parallel.

As illustrated by Fig. 3(b), a white colored block (consider B2) can appear in more than one component. Consequently,
conflicting estimates for the parameters of such a block can be produced by the parameter estimation procedures executed
for the components in which this shared white block appears. This calls for a technique to reconcile these conflicting
estimates in a globally consistent manner.

We also note that a white colored block may not get included in any component during the decomposition procedure
such as B7 in Fig. 3(b). For such blocks onemust seek fresh experimental data orworkwith the full range of values that can be
assumed by the unknown parameters belonging to the block. The number of components that the decomposition procedure
yields and the number of unknown parameters they contain is a measure of the dimension reduction that is being achieved.
Clearly, this is determined by the structure of the RNG and the availability and distribution of experimental data.

As for the complexity of our decomposition procedure, we note that the RNG of an ODE system can be derived in time
linear in the number of equations, say n and the number of reactions, say,m. With n ·m = k, the size of the RNGwill be O(k).
For each node in the RNG one can run a backward tracing algorithm to determine the minimal component it is contained in
and this will run in time O(k) and in O(k2) time one can construct the component graph. Then using Tarjan’s algorithm [15]
for computing the strongly connected components of a directed graph, the blocks-poset can be computed in timeO(k̂)where
k̂ = O(k) is the size of the component graph. This shows that the time complexity of the decomposition algorithm is at
most O(k̂2).

At present, we have not implemented the decomposition procedure. However, it should be an easy task since obtaining
the RNG from a system of ODEs can be done symbolically and the remaining steps consist of simple graph algorithms.

4. Pathway integration and parameter reconciliation

4.1. Overview

For convenience, assume in what follows that parameter estimates are available for each of the individual components
C i for i = 1, 2, . . . , n. The key task now is to reconcile the potentially conflicting parameter estimates to obtain globally
consistent ones which will lead to a single integrated model. Let k denote the set of all parameters. Let ki be the subset of
parameters for component C i, and Di be the experimental data used in estimating ki. The error in fit to data for component
C i is then J(ki|Di). To reconcile the estimates for all the components, we need to compute an estimate of k =

n
i=1 ki with

minimum J(k|D1,D2, . . . ,Dn). Computing the estimate by a global method will be computationally expensive and hence
we want to compute an estimate of k based on the estimates of ki, i = 1, 2, . . . , n.

To do so, we encode a set of estimates of ki as a probability function
p(ki|Di) = (1/λ) exp(−J(ki|Di)), (6)

where λ is a normalizing constant ensuring that

p(ki|Di) dki = 1. A large value of p(ki|Di) indicates small error in fit to the

data set Di. In other words, we view p(ki|Di) as a probabilistic weight on ki, expressing preferences over ki values due to the
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Fig. 4. The factor model for the function g(x1, x2, x3, x4) = g1(x1, x2) · g2(x1, x4) · g3(x2, x3, x4).

Fig. 5. (a) A simple signaling cascade and its ODEs. (b) The factor graph representation. The variable nodes in gray – x1 , x3 , and x4 – can be eliminated.

constraints from the data set Di. Now our basic idea is to represent the probability function p(ki|Di) for each component C i
as a factor graph, a well-known probabilistic graphicalmodel. Next, we connect these factor graphs together according to the
structural relationships between the components. Finally, we apply belief propagation to reconcile the potentially conflicting
parameter estimates from the various components. We start with a short review of factor graphs.

4.2. Factor graphs

Suppose that a high-dimensional function g(z) can be factored as a product of lower-dimensional functions: g(z) =∏
i gi(zi), where z = (z1, z2, . . .) is a set of variables and each zi is a (small) subset of variables in z. A factor graph for g(z)

is an undirected bipartite graph consisting of two types of nodes: factor nodes and variable nodes. Each factor gi(zi) has a
corresponding factor node in G, and each variable zj has a corresponding variable node in G. There is an undirected edge
between the factor node for gi(zi) and the variable node for zj if zj ∈ zi, i.e., zj is a variable of the function gi(zi). An example
is shown in Fig. 4.

A variable node for zj contains a probability distribution over the values of zj. A factor node for gi(zi) specifies the
dependencies among the variables in zi and expresses preferences over their values due to some constraints. In pathway
parameter estimation, the main variables are the parameters, and the constraints arise from the ODEs in which the
parameters appear. For example, consider the reaction shown in Fig. 5. Suppose that data are available for x1(t), x2(t), x3(t)
at all times t , but the rate constants k1 and k2 are unknown. Then, each of the three equations in the system of ODEs for
the reactions imposes a constraint on the unknowns k1 and k2 at all times t . Those combinations of k1 and k2 values that
satisfy the constraints are favored. In general, each equation in anODEmodel represents a local constraint on the parameters
involved in the equation, and each such constraint results in a factor node.

4.3. The factor graph structure

We now consider a specific component C and construct a factor graph P for its unknown parameters k. We have dropped
the component index i to simplify the notation. Each component contains a set of place nodes and ODEs that describe how
the concentration levels of these molecular species change over time. For each ODE fi associated with the component, we
create a factor node ν(fi) in P . We also create a variable node ν(kj) for each parameter kj and a variable node ν(xj) for each
molecular concentration level xj, if kj or xj is involved in fi. We also insert an edge that connects a factor node for fi and a
variable node for kj or xj. An example is shown in Fig. 5.

Our main goal is to capture the dependencies among the parameters. We can eliminate many of the variable nodes
representing molecular concentration levels and thus simplify P . However, we can eliminate a variable node only if it does
not represent the concentration level of an enzyme. The reason is that although enzymes are not consumed in catalytic
reactions, their concentration levels influence the reactions. In general, eliminating a variable node corresponding to an
enzyme results in the loss of dependency between the reaction producing the enzyme and the reaction catalyzed by the
enzyme. To see this, consider again the example in Fig. 5. If we eliminate the variable nodes for x1, x3 and x4, which are
not enzymes, the dependencies among k1, k2, k3, and k4 remain intact. However, if we eliminate the variable node x2, an
enzyme, the factor graph breaks into two disconnected components. There is no constraint that connects k1 and k2 with k3
and k4, implying that k1 and k2 are independent of k3 and k4. This is clearly not the case.

To summarize, the structure of a factor graph – the variable nodes, the factor nodes, and the edges – is constructed
from the ODEs that model a pathway component. Each factor captures the dependencies among the parameters involved in
a particular equation.
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4.4. The compatibility functions

To complete the construction of the factor graph P , we need to associate a compatibility function, with each factor node
ν(fi). The compatibility function for ν(fi) is given by

gi(ki, xi(t)) = exp(−Ei(ki, xi(t))), (7)

where ki and xi(t) are respectively the set of parameters and the set of molecular concentration levels corresponding to the
variables nodes connected to ν(fi). Note the distinction between xi, which denotes the concentration level of species i, and
xi. The function Ei(ki, xi(t)) consists of two terms:

Ei(ki, xi(t)) = Ei,1(ki) + Ei,2(ki, xi(t)). (8)

The first term Ei,1(ki) measures the fit to data for a particular choice of values for the parameters in ki. The second term
Ei,2(ki, xi(t)) measures whether the values for ki are consistent with those for xi(t).

We calculate Ei,1(ki) based on the global effect of ki on the fit to data for the molecular species that are experimentally
measured:

Ei,1(ki) = min
k\ki

−
m∈M

−
j

(xm(Tj; k) − x̃mj)
2, (9)

where k\ki denotes the set of parameters in k, but not in ki, M denotes the set of all species that are measured
experimentally, xm(t; k) is the concentration level of species m at time t , obtained by simulating the system of ODEs with
parameters k, and finally x̃mj is the experimental concentration level of speciesm at time Tj.

Finally, we observe that though our decomposition procedure yields a unique result the process of converting a
component model into a factor graph involves sampling and simulations. However, for a fixed discretization, sampling
method and number of samples, the differences between different runs – in terms of the factor graphs that are constructed –
will be small. Clearly the underlying structures will be identical. Further, in case we start with point estimates of the various
parameters in the ODE model, the resulting factor graphs will be identical even in terms of the belief states associated with
the variable nodes under the convention that each interval containing the estimated value of a parameter is assigned the
probability 1 and all other intervals are assigned the probability 0. However, if we start with a component model which
has parameter estimates in terms of prior probability distributions, then the resulting factor graphs will differ from each
other slightly in terms of the belief states. The integration step achieved through belief propagation will not introduce any
additional differences.

The second term Ei,2(ki, xi(t))measures the consistency between the parameter values ki and concentration levels xi(t):
ki and xi(t) are consistent if xi(t) can be obtained by simulating the system of ODEs with parameter values ki and some
suitable choice of values for parameters in k\ki. The function Ei,2(ki, xi(t)) takes binary values. If ki and xi(t) are consistent,
Ei,2(ki, xi(t)) = 0; otherwise, Ei,2(ki, xi(t)) = +∞. This way, ki values that are inconsistent with the dynamics defined by
the ODEs are filtered out, regardless of their agreement with experimental data according to Ei,1(ki).

With our definition of compatibility functions, the factor graph P encodes exactly the function

g(k, x(t)) =
1
λ

∏
i

gi(ki, xi(t)) =
1
λ
exp


−

−
i

Ei(ki, xi(t))

, (10)

where k =


i ki, x =


i xi, and λ is a normalizing constant ensuring that g(k, x(t)) represents a well-defined probability
function. The function g(k, x(t)) has the same extremal values as J(k) and p(k) [16]. It can be shown that if the parameter
values k∗ minimize J(k), then k∗ maximize p(k), and k∗ and concentration levels x(t; k∗) maximize g(k, x(t)), where
x(t; k∗) is the molecular concentration levels obtained by simulating the ODE model with parameter values k∗. This result
implies that to minimize J(k) or maximize p(k), we may equivalently maximize g(k, x(t)).

The compatibility functions defined above measure the fit to data globally over all experimentally measured molecular
species. As a heuristic for improving efficiency, we introduce a variant which measures the fit to data locally as well. The
definition of Ei,1(ki) then depends on whether the concentration level xi of molecular species i is measured experimentally.
If it is, we calculate Ei,1(ki) locally using only the data for xi:

Ei,1(ki) = min
k\ki

−
j

(xi(Tj; k) − x̃ij)2. (11)

If xi is not measured experimentally, we calculate Ei,1(ki) globally using Eq. (9). Intuitively, calculating the fit to data locally
strengthens the local constraints andmakes belief propagationmore greedy. This turns out to be helpful in the experiments
presented in the next section. However this is only a heuristic without any theoretical guarantees.

We now discuss how to represent and compute the compatibility functions gi(ki, xi(t)). First, the parameter values
and the concentration levels are discretized into a finite of set of intervals. Both the probability distributions for variable
nodes and the compatibility functions for factor nodes are represented using this discretization. This is common practice for
factor graphs used in conjunction with belief propagation [4] and it is not a severe limitation here, since the experimentally
measured concentration levels for proteins in a signaling pathway often have very limited accuracy. Furthermore, once belief
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Fig. 6.Merging two component factor graphs.

propagation gives the best parameter estimate up to the resolution of the discretization, we can further refine the estimate
by performing a local search, thusmitigating the effect of discretization. One advantage of the discrete representation is that
the resulting factor graph can represent arbitrary probability distributions, up to the resolution of the discretization. There
is no need to assume a particular parametric form of the distribution.

Next, to compute gi(ki, xi(t)), we need to perform the minimization required in (9) or (11). We first sample a
representative set of parameter values. We may use pseudo-random or the more efficient quasi-random sampling
methods [17] to sample parameter values uniformly at random. We may also use any optimization methods, such as
evolutionary algorithms [13], to sample the parameter values in a biased, but likelymore efficientmanner.We then perform
the minimization over the set of sampled values.

4.5. Pathway composition

We build a factor graph P i for each component Ci. Each component factor graph P i encodes a probability function
expressing preferences over the values of the parameters ki contained in P i. To account for the dependency among the
parameters from different components, wemerge the component factor graphs by fusing their common variable nodes (see
Fig. 6 for an example) and construct a single factor graph P .

The combined factor graph P represents a probability function p(k|D) over all the parameters k =
n

i=1 ki. We apply
belief propagation (BP) over P to reconcile the different preferences over parameter values from each component. In other
words, we apply BP to minimize k∗ of J(k|D1,D2, . . . ,Dn), or equivalently maximize g(k, x(t)) represented by P .

We give only a quick overview of BP here (see [4] for a comprehensive account). Let FG be a factor graph representing a
factored non-negative function g(z) = g(z1, z2, . . .) =

∏
i gi(zi), where zi is the subset of variables involved in the factor

gi(zi). After normalization, g(z) can be considered as a probability function. Each variable node ν(zj) of FG is initializedwith a
probability distribution π0(zj) – commonly called a belief – over the values of zj. A preferred zj value has higher probability.
The initial distribution π0(zj) represents our prior knowledge on the value of zj. If there is no prior information on zj, we
set its initial distribution to be uniform. After initialization, a variable node ν(zj) sends its belief π(zj) as a message to each
adjacent factor node ν(gi). Upon receiving themessages from the adjacent variable nodes, a factor node ν(gi) combines them
with its own compatibility function gi(zi) and creates a new message, which is sent to each variable node ν(zj) adjacent
to ν(gi). The belief at ν(zj) is then updated so that zj values satisfying the compatibility function gi(zi) will have their
probabilities increased. The order in which to send the messages must follow a suitable protocol, and the messages stop
when a termination condition is met.

When BP terminates, the variable nodes take on beliefs favoring values that satisfy well the local constraints represented
by the compatibility functions in the factor nodes. If a factor graph contains no cycles, BP converges to the globalmaximum
of the function the factor graph represents [18]. In practice, a factor graphmodeling a complex system often contains cycles.
So convergence is not guaranteed, and one needs to terminate the algorithm using heuristic criteria. Nevertheless, BP on
general factor graphs often generates good results in diverse applications [19,20]. One reason is that BP is in essence a
dynamic programming algorithm, which performs a more global search than strategies such as gradient descent, and is less
likely to get stuck in local maxima.

We now apply BP to a factor graph representing the function g(k, x(t)) in (10). Each compatibility function gi(ki, xi(t))
in the factor graph encodes two types of constraints: Ei,1(ki) measures the fit to data, and Ei,2(ki, xi(t)) measures the
consistency between ki and xi(t) with respect to the dynamics defined by the ODEs. BP will favor k and x values that satisfy
all the constraints well.

To end this section, we wish to point out that although our decomposition procedure will return a unique result, the
integration step may return slightly different factor graphs for different runs. This is due to the fact that the procedure
for converting an ODEs based model into a factor graph involves discretization, sampling and simulations to compute the
belief states to be associated with the variable nodes. Since the sampling procedure will typically compute different seeds,
the belief states of the variables in the component factor graphs may have slightly differing belief states for different runs.
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Fig. 7. (a) The RNGmodel of the pathway showing the components (gray boxes). Places with experimental data are colored gray. (b) The component graph
of the pathway together with the grouping of components shown dashed boxes forming the decomposition.

Consequently, after performing belief propagation to integrate the component factor graphs, the final belief states may also
be different for different runs. As expected, in our case study we found these deviations to be minor.

5. Case study — Akt and MAPK signaling pathway

We applied our approach to the parameter estimation problem for a synthetic Akt–MAPK signaling pathway. The Akt
andMAPK signaling pathways play major roles in apoptosis and cell proliferation respectively. Both signaling pathways can
be activated by a wide range of extra-cellular stimuli. Disruptions to their signaling mechanisms can lead to the onset of
several diseases, such as cancer andAlzheimer’s [21]. In the recent years, cross-talks between someof the signaling pathways
have been recognized to play an important regulatory role. Specifically, the cross-talk between the Akt and MAPK signaling
pathways has been attracting considerable interest [22,23].

Since our main aim was to test out the belief propagation based integration method, we extracted a synthetic and
simplified model for our case study. The resulting model consists of 36 molecule species and 42 unknown rate parameters.
It is a mass-conserved model where, aside from PTEN, the total concentration levels of all the molecules were set at 5 nM.
The nominal values of the parameters were set within the interval [0.0, 1.0]. We assumed that 13 of the molecule species to
be observed at chosen discrete time points. This data was generated by simulating our model using the nominal parameter
values; to be used in lieu of actual experimental data. The pathway diagram, the rate equations and the initial conditions are
shown in Fig. 7(a), Table 1 and Table 2 respectively.

We first decomposed our model into 12 minimal components as shown in Fig. 7. We then converted them into their
factor graph representation. Both these steps were done manually. As shown, there are 2 overlapping components.

We discretized each parameter value range into 10 equal bins. Hence, belief propagation will return a probability
distribution over the bins, using which we can pick the maximum a posteriori (MAP) bin as the one that best fits the
experimental data. We also discretized the time series data by dividing the time domain into 10 equal bins and the
concentration domain into 5 equal bins for each molecular species. Since there can be 510 possible traces, we hash a trace
running through this discretized space into an integer index.

For the sake of convenience, we carried out the parameter estimation procedure for each component itself using the
discretization and belief propagation. As a result, for each component, the parameter estimates were obtained in the form
of maximal likelihood estimates for the (assumed) unknown parameters belonging to the component.

To reduce the space required for our algorithm, we exploited the partial order on the components. The profiles of the
upstream components were cached and used during the sampling of downstream components. This way, the probability
distribution of the variable nodes representing enzymes could be sampled from observed traces, instead of all potential
traces.

Our algorithm is implemented in C++. All simulations were performed on an Intel Core 2 Duo 1.66 GHz processor with 1
Gb memory. Each component was simulated 10,000 times using parameter values randomly sampled from their allowable
ranges to build the joint distribution tables in the factor nodes. For components that require concentration profiles as inputs,
the profiles were picked from a cache of previously observed traces. Upon composing all the factor graphs together, belief
propagation was then performed to obtain the final beliefs of the discretized parameters. The open source tool COPASI [24]
was then used for the fine-tuning of the parameter estimates using the Levenberg–Marquardt [7] algorithm while starting
from the mid-points of the MAP bins for the parameters.
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Table 1
Rate equations of the various reactions in the pathway. [X]
denotes the concentration of the species X.

No Rate equation No Rate equation

1 k1[R] 22 k22[Rafp]

2 k2[Ra] 23 k23[Aktp][Rafp]

3 k3[Ri] 24 k24[Rafp][MEK]

4 k4[Ra][PI3K] 25 k25[PDK1][MEK]

5 k5[PTEN][PI3Ka] 26 k26[MEKp][PP2A]

6 k6[PI3Ka][PIP2] 27 k27[MEKp][ERK]

7 k7[PIP3] 28 k28[ERKp]

8 k8[PIP3][PDK1] 29 k29[ERKp][P90RSK]

9 k9[PDK1m 30 k30[P90RSKp]

10 k10[PIP3][Akt] 31 k31[P90RSKp][Bad]

11 k11[Aktm] 32 k32[Pak1p][Bad]

12 k12[PDK1m][Aktm] 33 k33[Pak1p][Bad]

13 k13[PP2A][Aktmp] 34 k34[Aktp][Bad]

14 k14[Aktmp] 35 k35[Badp112]

15 k15[PP2A][Aktp] 36 k36[Badp136]

16 k16[PI3Ka][Pak1] 37 k37[PI3Ka][Bax]

17 k17[Pak1p] 38 k38[Baxc]

18 k18[Ra][Ras] 39 k39[Bad][Bcl2]

19 k19[Rasa] 40 k40[Bax][Bcl2]

20 k20[Rasa][Raf] 41 k41[Bcl2.Bad]

21 k21[Pak1p][Raf] 42 k42[Bcl2.Bax]

Table 2
The set of initial conditions. Values are given in nM.

Molecule species Initial condition

Serum 1.0
PP2A 5.0
R 5.0
PI3K 5.0
PIP2 5.0
PDK1 5.0
Akt 5.0
Pak1 5.0
Ras 5.0

Molecule species Initial condition

Raf 5.0
MEK 5.0
ERK 5.0
P90RSK 5.0
Bad 5.0
Baxc 5.0
Bcl2 5.0
PTEN 1.0

We ran our algorithm 10 times to iron out the deviations caused by the sampling procedure. For each parameter, we
computed its mean and standard deviation (of its belief state) to assess its relative performance. For further assessing the
quality of ourmethod,we also used theCOPASI tool to do a globalparameter estimation for the same set of experimental data,
initial conditions and unknown parameters. We ran the global algorithm too 10 times and took the means of the estimated
parameter values. The results are shown in Fig. 8(a) and (b). The overall time required for our method was approximately
922 s.

We compared the fitness to data of our simulation profiles (after plugging in the estimated parameters to the model)
with the synthetic experimental data using the weighted cost function specified by Eq. (2) in Section 2 and as implemented
in COPASI. The means and standard deviations, as well as the details of the scores are shown in Fig. 8(c). From the results,
we can see that the performance of our methodwithmean score of 0.187 is comparable to that of SRES (Stochastic Rankings
based Evolutionary Strategy) with a mean score of 0.208. The best score for our method is 0.033 while the worst score is
0.643 while for the global method, the corresponding numbers are 0.058 and 0.829 respectively.

Looking into the estimates of individual parameters, we observe that aside from the parameters, (k7, k9, k21, k31, k36, k37,
k39, k40, k41),most other estimated values are comparablewith thenominal ones. Onepossible reason for the fewmismatches
is that the amount of data is insufficient to constrain the values of those parameters. Further, ours is a simplified model and
adding further details may improve the quality of the estimates.

Finally, the profiles and their fit to data for some of the molecule species are shown in Fig. 9.
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Fig. 8. (a), (b) Bar graphs showing themeans of the estimated parameters for SRES (white), ourmethod (gray) and nominal values (dark gray). The standard
deviation is denoted by the error bars. (c) Bar graph showing the mean fit to data and its standard deviation for SRES (white) and our method (gray) for the
10 runs. The table shows the scores of the individual runs.

In summary, our approach yields good quality estimates given limited experimental data. We note that the uncertainty
in the estimated parameter values is represented in our method in the form of belief states. Consequently, using them as a
priori distributions one can improve these estimates via belief estimation when new experimental data becomes available.

6. Conclusion

In this work, we have shown how a decomposition–estimation–integration based approach can be adopted to help solve
the parameter estimation problem for bio-pathways models. We have focused here mainly on models based on ODEs. Our
decomposition procedure relies on the structure of the pathway as captured by its RNG. The components resulting from the
decomposition are then obtained in a canonical fashion by exploiting the distribution of experimental data. The second step
then is to carry out parameter estimation for the individual components using any of the available methods. In the third
step, we convert each of the estimated components into a factor graph, glue together the resulting set of factor graphs and
then apply belief propagation to obtain a globally consistent set of parameter estimates.

When the structure of the pathways admits good decompositions (many low-dimensional components, each having a
small number of unknown parameters and sufficient experimental data) then the individual estimation tasks will entail
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Fig. 9. The fit to data for some of the molecule species, i.e. Aktp , MEKp , ERKp and Bcl2. The boxes represent experimental data points.

searching through small parameter spaces. The factor graph representation maintains parameter estimates in terms of
probability distributions rather than point values and this could be a more realistic and robust method of maintaining the
current state of knowledge of the pathway model. It also eases the task of updating the model as additional information
becomes available as we have recently shown [16]. In this context, we also note that model refinement and extensions may
be easier to perform in our setting since the component graph can be used to localize the changes that need to be made to
the model when it is extended. The components that are not affected can be identified and their beliefs can be maintained
when doing parameter estimation for the extended model. We also note that we can analyze the blocks-poset to determine
where it will be beneficial to generate additional experimental data.

In terms of future work, it will be important to explore methods for improving the efficiency and scalability of our
approach. We need to carry out larger case studies involving ‘‘live’’ models and experimental data. In addition, it will be
interesting to explore the possibility of using (probabilistic) model checking methods as a substitute for carrying out belief
propagation in the integration step.
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